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Abstract

Background: The recent explosion of experimental techniques in single molecule biophysics has generated a
variety of novel time series data requiring equally novel computational tools for analysis and inference. This article
describes in general terms how graphical modeling may be used to learn from biophysical time series data using
the variational Bayesian expectation maximization algorithm (VBEM). The discussion is illustrated by the example of
single-molecule fluorescence resonance energy transfer (smFRET) versus time data, where the smFRET time series is
modeled as a hidden Markov model (HMM) with Gaussian observables. A detailed description of smFRET is
provided as well.

Results: The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution
given the data. The former provides a metric for model selection via maximum evidence (ME), and the latter a
description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more
commonly used approach of maximum likelihood (ML) optimized by the expectation maximization (EM) algorithm,
the most important being a natural form of model selection and a well-posed (non-divergent) optimization
problem.

Conclusions: The results demonstrate the utility of graphical modeling for inference of dynamic processes in
single molecule biophysics.

Background
Single-molecule techniques allow biophysicists to probe
the dynamics of proteins, nucleic acids, and other biolo-
gical macromolecules with unprecedented resolution
[1-3]. It is now possible to observe viruses pack DNA
into capsids [4], helicases unzip nucleic acids [5], motor
proteins walk on biopolymers [6], and ribosome domains
undergo structural rearrangements during translation [7].
These data are acquired by recording the fluorescent out-
put or forces generated from, for example, biomolecules
tethered onto microscope slides [8]; walking on biopoly-
mers [9]; diffusing in hydrodynamic flow cells [10]; or
pulled by optical [11] or magnetic [12] tweezers. Often
the molecules studied move through a series of locally
stable molecular conformations or positions (generically

termed states) and give rise to data of the type shown in
Fig. 1. From these data, the experimentalist wishes to
learn a model describing the number of states occupied
by the molecule and the transition rates between states.
Although the myriad experimental techniques available
have much in common, the data they generate often dif-
fer enough to require unique models.
For example, some of these models will involve con-

version of chemical to mechanical energy, or motion
associated with diffusion, or motion associated with tran-
sitions between distinct configurational states. Modeling
the data, then, typically involves introducing several vari-
ables — some of which are observed, others of which are
latent or “hidden”; some of which are real-valued coordi-
nates, others of which are discrete states — and specify-
ing algebraically how they are related. Such algebraic
relations among a few variables are typical in physical
modeling (e.g., the stochastic motion of a random walker,

* Correspondence: jeb2126@columbia.edu
1Department of Chemistry, Columbia University, New York, NY 10027, USA
Full list of author information is available at the end of the article

Bronson et al. BMC Bioinformatics 2010, 11(Suppl 8):S2
http://www.biomedcentral.com/1471-2105/11/S8/S2

© 2010 Bronson et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:jeb2126@columbia.edu
http://creativecommons.org/licenses/by/2.0


or the assumption of additive, independent, normally dis-
tributed errors typical in regression); models involving
multiple conditionally-dependent observations or hidden
variables with more structured noise behavior are less
common. Implicitly, each equation of motion or of con-
straint specifies which variables are conditionally depen-
dent and which are conditionally independent. Graphical
modeling, which begins with charting these dependencies
among a set of nodes, with edges corresponding to the
conditional probabilities which must be algebraically spe-
cified (i.e., the typical elements of a physical model) orga-
nizes this process and facilitates basing inference on such
models [13-15].
Here we explore the application of a specific subset of

GMs to biophysical time series data using a specific
algorithmic approach for inference: the directed GM
and the variational Bayesian expectation maximization
algorithm (VBEM). After discussing the theoretical basis
and practical advantages of this general approach to
modeling biophysical time series data, we apply the
method to the problem of inference given single mole-
cule fluorescence resonance energy transfer (smFRET)
time series data. We emphasize the process and caveats
of modeling smFRET data with a GM and demonstrate

the most helpful features of VBEM for this type of time
series inference.

Graphical models
GMs are a flexible inference framework based on factor-
izing a (high-dimensional) multivariate joint distribution
into (lower-dimensional) conditionals and marginals
[13-15]. In a GM, the nodes of the graph represent either
observable variables (data, denoted by filled circles),
latent variables (hidden states, denoted by open circles),
or fixed parameters (denoted by dots). Directed edges
between nodes represent conditional probabilities. For
example, the three-node graphical model X ® Y ® Z
implies that the joint distribution p(Z,Y, X) ≡ p(Z|Y, X)
p(Y|X)p(X) can be further factorized as p(Z|Y)p(Y|X)p(X).
Data with a temporal component are modeled by con-
necting arrows from variables at earlier time steps to
variables at later time steps. In many graphical models,
the number of observed and latent variables grows with
the size of the data set under consideration. To avoid
clutter, these variables are written once and placed in a
box, often called a “plate”, labeled with the number of
times the variables are repeated [15]. This manuscript
will denote hidden variables by z and observed data by d.
Parameters which are vectors will be denoted as such by
overhead arrows.
As an example of a simple GM, imagine trying to

learn the number of boys and girls in an elementary
school class of N students from a table of their heights
and weights. Here the hidden variable is gender and the
observed variable, (height, weight), is a random variable
conditionally dependent on the hidden variable. The
resulting GM is shown in Fig. 2, with the parameters of
p(gender) denoted by


 and the parameters p(height,

weight|gender) denoted by

 and ∑


. The expression

for the probability of the observed data ({d1,…,dN} = D)
and latent genders ({z1,…,zN} = Z) is uniquely specified
by the graph and the factorization it implies:

p p d z p zn n n

n

N

( , , , ) ( , , ) ( ).D Z
     
   ∑ = ∑

=
∏

1

(1)

In such a simple case it is straighforward to arrive at
the expression in Eq. 1 without the use of a GM, but
such a chart makes this factorization far more obvious
and interpretable.

Inference of GMs
In some contexts, one wishes to learn the probability of
the hidden states given the observed data, p K( , , )Z D




where

 denotes the parameters of the model and K

denotes the number of allowed values of the latent

Figure 1 Examples of types of commonly encountered
biophysical time series data. (A) A time series for a molecule
transitioning between a series of locally stable conformations. Such
data often arise, for example, when studying protein domain
movements or the dynamics of polymers tethered to a surface. (B)
A time series for a molecule undergoing a stepping process. Such
data often arise, for example, when studying proteins with
unidirectional movements, e.g., helicases and motor proteins.
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variables (i.e. number of hidden states). If

 is known

then efficient inference of p K( , , )Z D

 can be performed

on any loop-free graph with discrete latent states using the
sum-product algorithm [16], or, if only the most probable
values of Z are needed, using the closely related max-sum
algorithm [17]. A loop in a graph occurs when multiple
pathways connect two variables, which is unlikely in a
graph modeling time series data. Inference for models
with continuous latent variables is discussed in [18,19].
For most time series inference problems in biophysics,
both Z and


 are unknown. In these cases, a criterion for

choosing a best estimate of

 and an optimization algo-

rithm to find this estimate are needed.
Inference via maximum likelihood
Estimating


 is most commonly accomplished using

the maximum likelihood (ML) method, which estimates
 as

ˆ arg max ( , ) arg max ( , , ).  
 

ML = = ∑ 

 
p K p KD D Z

Z
(2)

The probability p K( , )D

 is known as the likelihood.

The expectation maximization (EM) algorithm can
be used to estimate ̂ML [20]. In EM, an initial
guess for ̂ML is used to calculate p K( , , )Z D


 . The

p K( , , )Z D

 learned is then used to calculate a new

guess for ̂ML . The algorithm iterates until convergence,
and is guaranteed to converge to a local optimum. The
EM algorithm should be run with multiple initializations
of ̂ML , often called “random restarts”, to increase the
probability of finding the globally optimal ̂ML .
ML solved via EM is a generally effective method to

perform inference however, it has two prominent short-
comings [14,15]:
Model selection: The first limitation of ML is that it

has no form of model selection: the likelihood monoto-
nically increases with the addition of more model para-
meters. This problem of fitting too many states to the
data (overfitting) is highly undesirable for biophysical
time series data, where learning the correct K for the
data is often an experimental objective.
Ill-posedness The second problem with ML occurs

only in the case of a model with multiple hidden states
and a continuous observable (a case which includes the
majority of biophysical time series data, including the
smFRET data we will consider here). If the mean of one
hidden state approaches the position of a data point and
the variance of that state approaches zero, the contribu-
tion of that datum to the likelihood will diverge. When
this happens, the likelihood will be infinite regardless of
how poorly the rest of the data are modeled, provided
the other states in the model have non-zero probabilities
for the rest of the data. For such models, the ML
method is ill-posed; poor parameters can still result in
infinite likelihood.
In practical contexts, the second problem (divergent

likelihood) can be avoided either by performing MAP
estimation (maximizing the likelihood times a prior
which penalizes small variance) or by ignoring solutions
for which likelihood is diverging. That is, one does not
actually maximize the likelihood. Model selection can
then be argued for based on cross-validation or by pena-
lizing likelihood with a term which monotonically
increases with model complexity [15,21,22]. We con-
sider, instead, an alternative optimization criterion
which naturally avoids these problems.
Inference via maximum evidence
A Bayesian alternative to ML is to perform inference
using the maximum evidence (ME) method. ME can be
thought of as an extension of ML to the problem of
model selection. Where ML asks which parameters
maximize the probability of the data for a given model,
ME asks which model, including nested models which
differ only in K, makes the data most probable. Accord-
ing to ME, the model of correct complexity (K*) is

K p u K d p K p u K
K K

* arg max ( , ) arg max ( , , ) ( , ).= = ∫∑D D Z
Z

    
   (3)

Figure 2 A GM for the problem of learning genders of boys and
girls from a table of their heights and weights. The gender of the
nth child is denoted zn. The 2-dimensional vector of the child’s height
and weight is denoted dn The mean hight and weight for each
gender, variances of height and weight for each gender, and
probability of belonging to each gender are denoted by


 , ∑


, and
 , respectively. Observed variables are represented by open circles,
hidden variables are represented by filled circles, and fixed
parameters are represented by dots. To avoid drawing nodes for all N
hidden and observed variables, the variables are shown once and
placed inside a plate which denotes the number or repetitions in the
lower right corner. This GM specifies the conditional factorization of

p( , , )D Z

 shown in Eq. 1.
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The quantity p u K( , )D


is called the evidence. Some-
times it is also referred to as the marginal likelihood, since
unknown parameters are assigned probability distributions
and marginalized (or summed out) over all possible set-
tings. The evidence penalizes both models which underfit
and models which overfit. The second expression in Eq. 3
follows readily from the sum rule of probability provided
we are willing to model the parameters themselves as ran-
dom variables. That is, we are willing to specify a distribu-
tion over parameters, p u K( , )

 
 . This distribution is

called the “prior”, since it can be thought of as the prob-
ability of the parameters prior to seeing any data. The
parameters for the distributions of the prior ( )


u are called

hyperparameters. In addition to providing a method for
model selection, by integrating over parameters to calcu-
late the evidence rather than using a “best” point estimate
of the parameters, ME avoids the ill-posedness problem
associated with ML.
Although ME provides an approach to model selec-

tion, calculation of the evidence does not, on its own,
provide an estimate for


 The VBEM approach to esti-

mating evidence does, however, provide a mechanism to
estimate


 . VBEM can be thought of as an extension of

EM for ME. Both the VBEM algorithm and considera-
tions for choosing priors are discussed in Methods.

smFRET
Before building a GM describing smFRET data, it is
helpful to review briefly the experimental method. The
experimental technique is based on the spectroscopic
phenomenon that, if the emission spectrum of a polar
chromophore (donor) overlaps with the absorption spec-
trum of another polar chromophore (acceptor), electro-
magnetic excitation of the donor can induce a transfer
of energy to the acceptor via a non-radiative, dipole-
dipole coupling process termed florescence resonance
energy transfer (FRET) [23]. The transfer efficiency
between donor and acceptor scales with the distance
between molecules (r) as 1/r6, with FRET efficiencies
most sensitive to r in the range of 1 − 10nm. Because of
this extraordinary sensitivity to distance, FRET efficiency
can serve as a molecular ruler, allowing an experimen-
talist to measure the separation between donor and
acceptor by stimulating the donor with light and mea-
suring emission intensities of both the donor (ID) and
acceptor (IA) [24]. Usually a summary statistic called the
“FRET ratio” is used to report on molecular distance
rather than the “raw”, 2-channel {IA,ID} data, although
inference of the raw 2-channel data is possible as well
[25]. The FRET ratio is given by

FRET
I

I I
A

D A

=
+

. (4)

When the donor and acceptor are attached to an indi-
vidual protein, nucleic acid, or other molecular complex,
the FRET signal can be used to report on the dynamics
of the molecule to which the donor and acceptor are
attached (see Fig. 3). When the experiment is crafted to
monitor individual molecules rather than ensembles of
molecules, the process is termed single molecule FRET
(smFRET). For many biological studies, such as the

Figure 3 (A) Cartoon of a smFRET experiment studying the
zipping/unzipping of a DNA hairpin. A FRET donor chromophore
(green balloon) and acceptor chromophore (red balloon) are
attached to the DNA. When the DNA is zipped (left), exciting the
donor with green light causes the majority of energy to be
transferred to the acceptor. The donor will fluoresce dimly and the
acceptor will fluoresce brightly. When the DNA is unzipped, the
probes are too far apart for efficient FRET. Exciting the donor in this
conformation causes it to fluoresce brightly and the acceptor to
fluoresce dimly. (B) The two channel (donor, acceptor) time series
generated by the DNA as it transitions between zipped (bright red,
dim green) and unzipped (dim red, bright green). (C) The 1D FRET
transformation of the time series from B, calculated with Eq. 4. The
closer the probes, the more intense the signal. Time series of this
summary statistic are commonly used for analysis.
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identification and characterization of the structural
dynamics of a biomolecule, smFRET must be used
rather than FRET; the majority of molecular dynamics
cannot be observed from ensemble averages. Often the
molecule of interest adopts a series of locally stable con-
formations during a smFRET time series. From these
data, the experimentalist would like to learn (1) the
number of locally stable conformations in the data (i.e.
states) and (2) the transition rates between states.
Although it is theoretically possible use the FRET signal
to quantify the distance between parts of a molecule
during a time series, there are usually too many vari-
ables affecting FRET efficiency for this to be practical
[26]. Consequently, smFRET is usually used to extract
quantitative information about kinetics (i.e. rate con-
stants) but only qualitative information about distances.
The photophysics of FRET have been studied for over

half a century, but the first smFRET experiments were
only carried out about fifteen years ago [27]. The field
has been growing exponentially since, and hundreds of
smFRET papers are published annually [1]. Diverse
topics such as protein folding [28], RNA structural
dynamics [29], and DNA-protein interactions [30] have
been investigated via smFRET. The size and complexity
of smFRET experiments has grown substantially since
the original smFRET publication. A modern smFRET
experiment can generate thousands of time series to be
analyzed [7].

Results and discussion
smFRET as a graphical model
A model of the smFRET time series for a molecule tran-
sitioning between a series of locally stable conformations
should capture several important aspects of the process
[31]. The observable smFRET signal is a function of the
hidden conformation of the molecule. The noise of each
smFRET state can be assumed to be Gaussian, and the
hidden conformations are assumed to be discrete and
finite in number. The probability of transitioning to a
new molecular conformation should be a function of
the current conformation of the molecule (e.g., the DNA
in Fig. 3 is more likely to be zipped at time t + 1 if it is
zipped at time t). The CCD cameras commonly used in
smFRET experiments naturally bin the data temporally,
so it is convenient to work with a model where time is
discrete. The GM expressing these features is called a
hidden Markov model (HMM) and is shown in Fig. 4A.
From the graph, it can be seen that the probability of
the observed and latent variables factorizes as

p K p z K p z z K p d z Kt t

t

T

t t( , , ) ( , ) ( , , ) ( , ,D Z
   
   =

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−

=
∏1 1

2

)).
t

T

=
∏

1

(5)

Here,

 must include parameters for the probability

that the time series begins in each state (p(z1 = k) ≡ πk);
parameters for transition probabilities between states
(p(zt+1 = k|zt = j) ≡ ajk); and parameters for the noise of
the emissions of each state (p(dt|zt = k) = N(dt|µk,lk),
where µk and lk are the mean and precision of the Gaus-
sian). It is necessary to model p(z1) separately from all
other transition probabilities since it is the only hidden
state probability which does not depend on zt−1. The ajk
are commonly represented as a matrix, A, called a transi-
tion matrix. The probability the time series begins in the
kth state and transition probabilities between states are
drawn from multinomial distributions defined by 

 and
the rows of A, respectively. The GM for this HMM is
shown in Fig. 4B. From the GM it can be seen that

p K p u K p z K p z z A K p dt t
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u u Ka b, , ).

(6)

For a time series of length T where each latent vari-
able can take on K states, a brute summation over all
possible states requires O(KT) calculations. By exploiting
efficiencies in the GM and using the sum-product algo-
rithm, this summation can be performed using O(K2T)
calculations (which can be seen by noting that the latent
state probabilities in Eq. 6 factorize into p(zt|zt−1, A, K),
where each of the T latent states has K2 possible combi-
nations of states). The sum-product algorithm applied
to the HMM is called the forward-backward algorithm
or the Baum-Welch algorithm [32], and the most prob-
able trajectory is called the Viterbi path [33].
There are several assumptions of this model which

should be considered. First, although it is common to
assume the noise of smFRET states is Gaussian, the
assumption does not have a theoretical justification (and
since FRET intensities can only be on the interval (0,1),
and the Gaussian distribution has suport (−∞, ∞), the
data cannot be truly Gaussian). Despite this caveat, sev-
eral groups have successfully modeled smFRET the data
as having Gaussian states [25,34,35]. We note that other
distributions have been considered as well [36].
Second, the HMM assumes that the molecule instantly

switches between hidden states. If the time it takes the
molecule to transition between conformations is on the
same (or similar) order of magnitude as the time it
spends within a conformation, the HMM is not an
appropriate model for the process and a different GM
will be needed. For many molecular processes, such as
protein domain rearrangements, the molecule transitions
between conformations orders of magnitude faster than
it remains in a conformation and the HMM can model
the process well [37].
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Third, the HMM is “memoryless” in the sense that,
given its current state, the transition probabilities are inde-
pendent of the past. It is still possible to model a molecule
which sometimes transitions between states quickly and
sometimes transitions between states slowly (if, for exam-
ple, binding of another small molecule to the molecule
being studied changes its transition rates [7]). This situa-
tion can be modeled using two latent states for each
smFRET state. The two latent states will have the same
emissions model parameters, but different transition rates.

Illustration of the inference
A software package, vbFRET, implementing the VBEM
algorithm for this HMM was written and described in

[25], along with an assessment of the algorithm’s per-
formance on real and synthetic data. An illustration of
the method is shown here, demonstrating three of its
most important abilities: the ability to perform model
selection; the ability to learn posterior parameter dis-
tributions; and the ability to idealize a time series.
These abilities are demonstrated on three synthetic
K = 3 state time series, shown in Fig. 5C. The traces
all have µ = {0.25,0.5, 0.75} and identical hidden state
trajectories. The noise of each hidden state is s =
0.015 for trace 1 (unrealistically noiseless), s = 0.09
for trace 2 (a level of noise commonly encountered in
experiments), and s = 0.15 for trace 3 (unrealistically
noisy).

Figure 4 (A) The HMM as a GM. At each time step, t, the system occupies a hidden state, zt and produces an observable emission, dt, drawn
from p(dt|zt). In turn, zt is drawn from p(zt|zt−1). (B) Complete GM for the HMM used to describe smFRET data in this work. Following the
Bayesian treatment of probability, all unknown parameters are treated as hidden variables, and represented as open circles. Emissions are
assumed to be Gaussian, with mean


 and precision


λ . Transition rates are multinomial, with probabilities given by A. The probability of

initially occupying each hidden state is multinomial as well, with probabilities given by

 . Equations for these distributions are described in the

text below Eq. 5. This GM specifies the conditional factorization of p( , )D Z,

 shown in Eq. 6.
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Model selection: For each trace, L(q), the lower bound
of the log(evidence), was calculated for 1 ≥ K ≥ 7. The
results are shown in Fig. 5A, with the largest value of
L(q) for each trace shown in red. For traces 1 and 2,
L(q) peaks for K* = 3, correctly inferring the complexity
of the model. For trace 3, the noise of the system is too
large, given the length of the trace, to infer three clearly
resolved states. For this trace L(q) peaks at K* = 2. This
result illustrates an important consideration of evidence
based model selection: states which are distinct in a
generative model (or an experiment generating data)
may not give rise to statistically significant states in the
data generated. For example, two states which have
identical means, variances, and transition rates would be
statistically indistinguishable from a single state with
those parameters. When states are resolvable, however,

ME-based model selection is generally effective, as
demonstrated in traces 1 and 2.
Posterior distributions: The ability to learn a com-

plete posterior distribution for

 provides more infor-

mation than simply learning an estimate for

 , and is a

feature unique to Bayesian statistics. The maximum of
the distribution, denoted ̂MAP , can be used as an esti-
mate of


 (e.g., if idealized trajectories are needed).

The subscript here differentiates it from the estimate in
the absence of the prior, ̂ML . The curvature of the dis-
tribution describes the certainty of the ̂MAP estimate.
As a demonstration, the posterior for the mean of the
lowest smFRET state of each trace is shown in Fig. 5B.
The X and Y axes are the same in all three plots, so the
distributions can be compared. As expected, the lower
the noise in the trace, the narrower the posterior

Figure 5 (A) Model selection using ME. Inference using 1 ≤ K ≤ 7 hidden states was performed for each trace. The results with the highest L
(q) are shown in red. (B) The posterior parameter distribution for the lowest-valued smFRET state inferred in each time series. The width of the
posterior increases with the noise of the smFRET states, indicating lower confidence in the parameters learned from inference on noisier time
series. (C) The idealized trajectories (red) inferred for each time series (blue) using the most probable parameters of the inference with the
highest L(q).
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distribution and the higher the confidence of the esti-
mate for The estimate of µ for trace 3 is larger than in
the other traces because K* = 2; some the middle
smFRET state data are misclassified as belonging to the
low smFRET state.
Idealized trajectories: Idealized smFRET trajectories

can be a useful visual aid to report on inference. They
are also a necessity for some forms of post-processing
commonly used at present, such as dwell-time analysis
[7]. Idealized trajectories can be generated from the pos-
terior learned from VBEM by using ̂MAP to calculate
the most probable hidden state trajectory (the Viterbi
path) [33]. The idealized trajectories for each trace are
shown in Fig. 5C. For traces 1 and 2, where K* is cor-
rectly identified, the idealized trajectory captures the
true hidden state trajectory perfectly. Because of the
model selection and well-posedness of ME/VBEM the
idealized trajectories learned with this method can be
substantially more accurate than those learned by ML
for some data sets [25].

Conclusions
This manuscript demonstrates how graphical modeling,
in conjunction with a detailed description of a biophysi-
cal process, can be used to model biophysical time series
data effectively. The GM designed here is able to model
smFRET data and learn both the number of states in
the data and the posterior parameter values for those
states. The ME/VBEM methodology used here offers
several advantages over the more commonly used ML/
EM inference approach, including intrinsic model selec-
tion and a well-posed optimization. All modeling
assumptions are readily apparent from the GM. The
GM framework with inference using ME/VBEM is
highly flexible modeling approach which we anticipate
will be applicable to a wide array of problems in
biophysics.

Methods
All code used in this manuscript is available open
source at http://vbfret.sourceforge.net/.

Variational Bayesian expectation maximization
Unfortunately, calculation of Eq. 3 requires a sum over
all K settings for each of T extensive variables Z (where
T is the length of the time series). Such a calculation is
numerically intractable, even for reasonably small sys-
tems (e.g., K=2, T=100) so an approximation to the evi-
dence must be used. Several approximation methods
exist, such as Monte Carlo techniques, for numerically
approximating such sums [38]. The method we will con-
sider here is VBEM.
One motivation for the VBEM algorithm is the follow-

ing simple algebraic identity [15]. Since Bayesian

analysis treats latent variables (Z) and unknown para-
meters ( )


 the same way this section will lump them

both into X for notational simplicity. Let q(X) be any
probability distribution over X. Then,

log ( , ) ( ) log( ( , ))p u K q p u K dD X D X
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Summations over the discrete components of X
should be included in these equations, but are omitted
for notational simplicity. The equality in Eq. 7 results
from the requirement that q(X) be a normalized prob-
ability; Eq. 8 rewrites p u K( , )D


in terms of a condi-

tional probability; and Eq. 11 reinserts {Z, }

 for X and

renames the two terms in Eq. 10 as L(q), the lower
bound of the log(evidence), and the Kullback-Leibler
divergence, respectively.
Using Jensen’s inequality, it can be shown that

DkL (q| |p) ≥ 0, (12)

with equality when q = p. Consequently,

log( ( , )) ( ),p u K L qD


≥ (13)

i.e., exp(L(q)) is a lower bound on the model’s evi-
dence. Eq. 12 implies that L(q) is maximized when
q( , )Z


 is equal to p u K( , , , )Z D

 
 . As a corollary, from

this it follows that q(θ) approximates p u K( , , )
 
 D , the

posterior distribution of the parameters. Therefore, the
optimization simultaneously performs model selection
(by finding a K which maximizes p u K( , )D


) and infer-

ence (by approximating p u K( , , , )Z D
 
 ).

The approach suggested by Eqs. 7–12 is to replace
an intractable calculation with a tractable bound
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optimization. If p K( , )D

 is in the exponential family

and a conjugate prior is used, then the only assumption
about q( , )Z


 needed is that q q q( ) ( ) ( )Z, Z

 
 = (i.e., it

factorizes into a function of Z and a function of

 ) for

the inference problem to be tractable using VBEM [39].
In addition, under these conditions p u K( , , )

 
 D will

have the same functional form as p u K( , )
 
 . The

VBEM algorithm is similar to EM, but rather than itera-
tively using guesses for ̂ML to set Z and guesses for Z
to set ̂ML the update equations iterate between [15,40]:

VBE : ( ) exp log ( , , ) ( , )( )q p K p u KqZ D Z
Z

= ( )⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

1


�
  

   (14)

VBE : ( ) exp log ( , ) ( , )( )q p K p u Kq

   


  


= ( )⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠

1


�Z D, Z ⎟⎟ . (15)

Here �denotes the expected value with respect to
the subscripted distribution and  is a normalization
constant. Whereas the log( ( , ))p u KD


is a log of a

sum/integral, the right hand sides of Eqs. 14 & 15 both
involve the sum/integral of a log. This difference renders
log( ( , ))p u KD


intractable, yet Eqs. 14 & 15 tractable.

An interesting and potentially useful feature of the
q( )

 learned from VBEM is that when K is chosen to

be larger than the number of states supported by the
data, the optimization leaves the extra states unpopulated.
This propensity to leave unnecessary states unpopulated
in the posterior, sometimes called “extinguishing”, is a
second form of model selection intrinsic to VBEM, which
is in addition to the model selection described by Eq. 3.
An explanation for this behavior can be found in
Chapter 3 of [15].

Priors
Several considerations should go into choosing a prior.
Choosing distributions which are conjugate to the para-
meters of the likelihood can greatly simplify inference
[39]. Priors can be chosen to minimize their influence
on the inference. Such priors are called “weak” or unin-
formative. Alternatively, priors can also be chosen to
respect previously obtained experimental observations
[40]. It is important to check that inference results do
not heavily depend on the prior (e.g. doubling or halving
hyperparameter values should not affect inference
results).
The conjugate prior of a multinomial distribution is a

Dirichlet distribution: p u p a a a uK k kK k K A
k( , , ) ( ); ( , , ) ( ).,   1 1 1  = = −Dir Dir

Expressed in terms of precision l, rather than variance s2

(where l = 1/s2), the conjugate prior for the mean and pre-
cision of a Gaussian is a Gaussian-Gamma distribution:
p u u u uk k k m

k k
k k a

k
b
k( , ) ( ,( ) ) ( , )  λ λ λ= − 1 Gam .

Here, hyperparameters were set so as to give
distributions consistent with experimental data and
to influence the inference as weakly as possible:
u u u u uk

a
jk k

m
k

a
k

 = = = = =1 1 0 25 0 5 2 5, , . , . , . and
ub

k − 0 01. , for all values of k. Qualitatively, these hyper-
parameters specify probability distributions over the hid-
den states such that it is most probable that the hidden
states are equally likely to be occupied and equally likely
to be transitioned to. Quantitatively, they yield 〈µk〉=
0.5 and mode[s] ≈ 0.08, consistent with experimental
observation:

1

1
0 08

mod [ ] ( )
. .

e λ k

b
k

a
k

u

u
k=

−
≈ ∀ (16)

Data generation
Synthetic traces were generated in MATLAB using 1-D
Gaussian noise for each hidden state and a manually
determined hidden state trajectory. All traces were ana-
lyzed by vbFRET [25], using its default parameter set-
tings, for 1 ≥ K ≥ 7, with 25 random restarts for each
value of K. The restart with the highest evidence was
used to generate the data in Fig. 5. The posterior prob-
ability of is given by  ( ,( ) ) k m

k k
kv v λ −1 , where


v are

the hyperparameters of the posterior. The data in Fig.
5B were generated using this equation with lk fixed at
its most probable posterior value.
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