
RESEARCH Open Access

Semi-supervised prediction of protein subcellular
localization using abstraction augmented Markov
models
Cornelia Caragea1,2*, Doina Caragea3, Adrian Silvescu1,2, Vasant Honavar1,2

From Machine Learning in Computational Biology (MLCB) 2009
Whistler, Canada. 10-11 December 2009

Abstract

Background: Determination of protein subcellular localization plays an important role in understanding protein
function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery.
Supervised machine learning methods for predicting the localization of a protein in a cell rely on the availability of
large amounts of labeled data. However, because of the high cost and effort involved in labeling the data, the
amount of labeled data is quite small compared to the amount of unlabeled data. Hence, there is a growing
interest in developing semi-supervised methods for predicting protein subcellular localization from large amounts of
unlabeled data together with small amounts of labeled data.

Results: In this paper, we present an Abstraction Augmented Markov Model (AAMM) based approach to semi-
supervised protein subcellular localization prediction problem. We investigate the effectiveness of AAMMs in
exploiting unlabeled data. We compare semi-supervised AAMMs with: (i) Markov models (MMs) (which do not take
advantage of unlabeled data); (ii) an expectation maximization (EM); and (iii) a co-training based approaches to
semi-supervised training of MMs (that make use of unlabeled data).

Conclusions: The results of our experiments on three protein subcellular localization data sets show that semi-
supervised AAMMs: (i) can effectively exploit unlabeled data; (ii) are more accurate than both the MMs and the EM
based semi-supervised MMs; and (iii) are comparable in performance, and in some cases outperform, the co-
training based semi-supervised MMs.

Background
The problem of predicting subcellular protein localiza-
tion is important in cell biology, because it can provide
valuable information for predicting protein function and
protein-protein interactions. Furthermore, the location
of proteins in their designated subcellular compartments
is essential for the proper functioning of the cell. Abnor-
mal subcellular localization has been correlated with dis-
eases such as cancer [1].
Many supervised machine learning methods have been

successfully applied to the problem of predicting the

subcellular localization of a protein, which can be for-
mulated as a sequence classification problem [2], where
the amino acid sequence of a protein is used to classify
it in localization classes. For example, Park and
Kanehisa [3] trained Support Vector Machine (SVM)
classifiers using as features, frequencies of occurrence of
pairs of amino acids, with 0 to 3 gaps between them.
Emanuelsson et al. [4] developed a Neural Network-
based approach using only information available in the
N-terminal sequence. Höglund et al. [5] integrated
information from the N-terminal sequence, amino acid
composition, and protein sequence motifs in an SVM-
based approach. Ong and Zien [6] trained multiclass
SVMs and used an automated combination of protein
motif kernels, with motifs of length up to 5 extracted

* Correspondence: cornelia@cs.iastate.edu
1Artificial Intelligence Research Laboratory, Department of Computer Science,
Iowa State University, Ames, IA, 50010, USA
Full list of author information is available at the end of the article

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

© 2010 Caragea et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:cornelia@cs.iastate.edu
http://creativecommons.org/licenses/by/2.0

from the whole sequence, and from different subse-
quences of it, i.e., the first 15 and 60 amino acids, and
the last 15 amino acids of the sequence. Scott et al. [7]
developed a Bayesian network that predicts the subcellu-
lar localization of a target protein using its features, e.g.,
InterPro motifs and the subcellular localization of its
interacting partners. Yuan [8] trained kth order Markov
chain models, with k ranging from 1 to 8, and used an
approximation technique to estimate the probability of
each element in a sequence given the k contiguous pre-
vious elements.
The accuracy of classifiers obtained using supervised

learning algorithms depends in part on the quantity of
labeled data that is available. Recent advances in sequen-
cing technologies have resulted in an exponential
increase in the rate at which DNA and protein sequence
data are being acquired [9]. Because annotating the
sequences with their subcellular localization requires
costly experiments and manual curation effort, reliable
annotations are available for only a small fraction of
protein sequences. However, even the unlabeled data
can provide valuable information, i.e., they contain
information about the joint probability distribution over
sequence elements. Consequently, there is a significant
interest in semi-supervised algorithms [10] that can
exploit large amounts of unlabeled data together with
limited amounts of labeled data in training classifiers to
predict protein subcellular localization.
Formally, the semi-supervised learning problem

can be defined as follows: Given training data D
= (DL, Du) of labeled and unlabeled examples, where
D yL l l l DL

= =(,) , ,x 1 , xl Î Rd, yl Î Y, and
DU u u DU

= =() , ,x 1 xu Î Rd, |DL| ≪ |DU|, respectively;
a hypothesis space H; and a performance criterion P, a
learning algorithm L outputs a classifier h Î H that
optimizes P. If |DL| = 0, the problem reduces to unsu-
pervised learning; if |DU| = 0, it reduces to supervised
learning. The input x can represent sequences over a
finite alphabet X, x Î X*. During classification, the task
of the classifier h is to accurately assign a new example
xtest to a class label y Î Y.
Recently, a variety of methods for semi-supervised

learning have been developed in the literature (see [11],
[10] for reviews). Such methods have been successfully
applied in many areas including text classification [12],
[13], [14], natural language processing [15], [16], [17],
image annotation [18], and more recently bioinformatics
and computational biology, [19], [20], [21]. However,
semi-supervised learning methods have not been widely
applied to the subcellular localization prediction
problem.
One notable exception is the work of Xu et al. (2009)

[22]. The authors applied Co-Forest, which is an algo-
rithm proposed by Li and Zhou [23], to exploit

unlabeled data in order to improve predictive accuracy
on the protein subcellular localization prediction task.
Co-Forest extends the co-training approach of Blum
and Mitchell [13] by using an ensemble of N classifiers,
called Random Forest [24]. Note that the original
co-training approach uses only two classifiers [13]. Co-
Forest works as follows: let HN = (h1,…,hN} denote an
ensemble of N classifiers. For each classifier hi Î HN, let
Hi

N−1 denote the concomitant ensemble of hi, where
Hi

N−1 is defined as the set of classifiers in HN except
hi, i.e., H H hi

N N
i

− =1 \{ } . An ensemble HN of N random
trees is initially trained on D yL l l l DL

= =(,) , ,x 1 . At
each subsequent iteration, for each classifier hi Î HN, its
concomitant ensemble Hi

N−1 examines the unlabeled
examples DU u u DU

= =() , ,x 1 . An unlabeled example
along with the label predicted by Hi

N−1 is added to the
newly labeled set of hi, DLi′ if the number of classifiers
in Hi

N−1 that predict a particular label exceeds a prede-
fined threshold. The classifier hi is re-trained
on D DL Li′ . The process is repeated until no tree in
the Random Forest changes from one iteration to
another [23].
In this paper, we present a novel semi-supervised

approach to the problem of predicting protein subcellu-
lar localization. Specifically, we use abstraction augmen-
ted Markov models (AAMMs), which are variants of
Markov models, to incorporate information available in
the unlabeled data. AAMMs model the dependency of
each element in a sequence on abstractions of k preced-
ing elements [25]. The abstractions are organized into
an abstraction hierarchy that groups together k-grams
that induce similar conditional probabilities of the next
letter in the sequence. An AAMM corresponds to a
generative model for sequence data expressed in terms
of random variables whose values correspond to abstrac-
tions over k-grams, in addition to the MM random vari-
ables [25]. AAMMs provide a simple way to incorporate
unlabeled data into the model: first, the abstraction hier-
archy is constructed using the entire training set includ-
ing the unlabeled data. Next, the labeled data is used to
estimate the parameters of a set of AAMMs (one for
each class) based on the resulting abstraction hierarchy.
Thus, in effect, AAMMs: (i) exploit the relatively large

amount of unlabeled data to discover abstractions that
transform the sequence data x and, hence, effectively
reduce the number of parameters used to specify the
probability p(x); and (ii) use the resulting representation
to estimate the posterior probability p(y|x). Hence, we
hypothesize that AAMMs are likely to yield more robust
estimates of p(y|x) than MMs when the amount of
labeled data is much smaller compared to the amount
of unlabeled data.
To test our hypothesis on the protein subcellular loca-

lization prediction task, we compare AAMMs that use

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 2 of 13

both labeled and unlabeled data with AAMMs that use
only labeled data, with the standard MMs, which can
not make use of unlabeled data, and also with MMs
that can incorporate unlabeled data through an expec-
tation maximization approach (EM-MM) and a co-
training approach. The results of our experiments show
that AAMMs can make effective use of unlabeled data
and significantly outperform EM-MMs when the
amount of labeled data are very small, and relatively
large amounts of unlabeled data are readily available.
Here, because of the small amounts of labeled data
available for estimating parameters, the ability of
AAMMs to minimize overfitting (through parameter
smoothing) turns out to be especially useful. The results
also show that AAMMs are competitive with, and in
some cases significantly outperform two co-trained
MMs on different views of the data.

Experiments and results
We present results of experiments on three protein sub-
cellular localization data sets: psortNeg, plant, and
non-plant data sets (see Data sets Section for details).

Experimental design
Our experiments on the protein subcellular localization
prediction task are designed to explore the following
questions: (i) How does the performance of semi-
supervised AAMMs, which use both labeled and unla-
beled data compare to that of MMs trained only on
labeled data? (ii) How do AAMMs compare with MMs
when both use unlabeled data? (iii) How effective are
AAMMs at exploiting unlabeled data to improve classifi-
cation accuracy when the amount of labeled data is lim-
ited? Specifically, how does the performance of an
AAMM trained using both labeled and unlabeled data
compare to that of an AAMM trained using only
labeled data when both take advantage of abstraction?
To answer the first and second questions, we compared
AAMMs trained using an abstraction hierarchy con-
structed from both labeled and unlabeled data with the
standard MMs, which can not make use of unlabeled
data, and with MMs that can incorporate unlabeled data
through an expectation maximization approach (EM)
[26]. To answer the third question, we compared
AAMMs trained using an abstraction hierarchy
constructed from both labeled and unlabeled data with
AAMMs trained using an abstraction hierarchy con-
structed only from labeled data.
In the first set of experiments, we trained semi-

supervised AAMMs and supervised MMs for psortNeg,
plant, and non-plant data sets. We ran experiments
with 1%, 10%, and 25% of the training data being used
as labeled examples, and the rest being treated as unla-
beled examples (by ignoring the class). To obtain the

subsets of 1%, 10%, and 25% of labeled examples, we
sampled examples, using a uniform distribution, from
the training set. Semi-supervised AAMMs are trained
for values of m that range from 1 to N, where m is the
cardinality of the set of abstractions Am used as “fea-
tures” in the classification model, and N is the number
of unique k-grams. We learned a single abstraction hier-
archy (AH) from both labeled and unlabeled training
data and used it to train an AAMM for each class
(from the labeled sequences). An MM is trained on the
same fraction of labeled data as its AAMM counterpart.
In the second set of experiments, we trained AAMMs,

MMs, and EM-MMs for all three data sets. In the case
of AAMMs, we trained classifiers for m = 1500 (m is set
to 1500 because this partitioning of the set of k-grams
produces classifiers that use substantially smaller num-
ber of “features” compared to MMs, i.e., ≈ 8000
k-grams, and at the same time, the model compression
is not very stringent so as to lose important information
in the data through abstraction). We denote by AAMM
(l+u) an AAMM trained using an AH constructed from
both labeled and unlabeled data, and by AAMM(l) an
AAMM trained using an AH constructed only from
labeled data, when it is necessary to distinguish between
AAMMs training procedures. EM-MMs are trained on
the same fractions of labeled and unlabeled data as their
AAMM(l+u) counterparts, and AAMM(l) and MMs are
trained on the same fraction of labeled data as their
AAMM(l+u) counterparts.
Here, we fixed the number of unlabeled examples and

varied the number of labeled examples. Specifically, we
performed experiments with 1%, 5%, 10%, 15%, 20%,
25%, 35%, and 50% of the training data being used as
labeled examples, and 50% being treated as unlabeled
examples (by ignoring the class label). Note that the
unlabeled subset of the training data is the same across
all the experiments; the labeled subset of the training
data is successively augmented to increase the amount
of labeled data that is provided to the learner.
In the third set of experiments, we compared AAMMs

with EM-MMs using a fixed the number of labeled
examples and a variable number of unlabeled examples.
We performed experiments with (i) 1% of training data
being treated as labeled, while 1%, 10%, 25%, 50%, 75%,
90%, and 99% being treated as unlabeled; (ii) 10% of
training data being treated as labeled, while 1%, 10%,
25%, 50%, 75%, and 90% being treated as unlabeled; (iii)
25% of training data being treated as labeled, while 1%,
10%, 25%, 50%, and 75% being treated as unlabeled. As
before, to obtain the subsets of labeled and unlabeled
examples, we sampled using a uniform distribution,
from the training set. In all experiments, the class distri-
bution in each labeled subset is the same as that in the
entire training set.

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 3 of 13

In the fourth set of experiments, we compare the
semi-supervised AAMM with the co-training procedure
as described in [13]. The co-training procedure can be
used with any learning algorithms for training two clas-
sifiers h1 and h2. In this study, we used two Markov
models. Inspired from the work of Ong and Zien [6],
instead of considering features extracted from the entire
protein sequence, we considered two views on different
subsequences. Specifically, the first view corresponds to
features extracted from the first 60 amino acids of each
sequence, whereas the second view corresponds to fea-
tures extracted from the last 15 amino acids of each
sequence. We trained each Markov model on a different
view. Furthermore, in this experiment, we trained
AAMMs on the two subsequences of the first 60 and
the last 15 amino acids of each sequence, rather than
the entire sequence.

Results
For all of the experiments, we report the average classi-
fication accuracy obtained in a 5-fold cross-validation
experiment. All models are trained using 3-grams
extracted from the data. For psortNeg, plant, and non-
plant data sets the number of 3-grams is 7970, 7965,
and 7999, respectively. Although the number of all
unique k-grams is exponential in k, for large values of k,
many of the k-grams may not appear in the data (conse-
quently, the counts for such k-grams are zero). Note
that the number of unique k-grams is bounded by the
cardinality of the multiset of k-grams extracted from D.
We define the relative reduction in classification error

between two classifiers to be the difference in error
divided by the larger of the two error rates. To test the
statistical significance of results, we used the 5-fold
cross-validated paired t test for the difference in two
classification accuracies [27]. The null hypothesis that
the two learning algorithms M1 and M2 have the same
accuracy on the same test set can be rejected if |t(M1,
M2)| >t4,0.975 = 2.776 (p < 0.05). We abbreviate |t(M1,
M2)| by |t| in what follows.
AAMMs can provide more accurate models com-

pared to MMs on the protein subcellular localization
prediction task when the amount of labeled data is
small compared to that of unlabeled data.
Figure 1 shows results of the comparison of AAMMs

with MMs for 1%, 10%, and 25% of labeled data, for
non-plant, plant, and psortNeg data sets. Note that the
x axis of all subfigures shows the number of abstractions
m on a logarithmic scale. When only 1% and 10% of the
training data are labeled (Figure 1, first and second
rows), AAMMs significantly outperform MMs for many
choices of m, on all three data sets. For example, on the
1% plant data set, with m = 200, the accuracy of
AAMM is 38.72%, whereas that of MM is 30.53%,

which represents 12% reduction in classification error,
and |t| = 3.16 (the largest values of t are 27.58 for m =
4905, 21.91 for m = 2070, and 27.34 for m = 535 on
non-plant, plant, and psortNeg, respectively). On the
10% plant data set, with m = 560, AAMM achieves an
accuracy of 47.97%, compared to that of MM which is
37.87%, and |t| = 10.01.This represents 16% reduction
in classification error. When we increased the fraction
of labeled data to 25%, AAMMs still have a higher per-
formance than MMs for many choices of m on non-
plant and plant data sets, but become comparable in
performance with MMs on psortNeg data set.
AAMMs trained using abstraction hierarchies con-

structed from both labeled and unlabeled protein
subcellular localization data significantly outperform
AAMMs trained using abstraction hierarchies con-
structed only from labeled protein subcellular locali-
zation data.
Figure 2 shows results of experiments that compare

AAMM(l+u) with AAMM(l), MM, and EM-MM on
non-plant, plant, and psortNeg data sets. The x axis
indicates the number of labeled examples in each data
set. The number of unlabeled examples is kept fixed
and is equal to the rightmost number of labeled exam-
ples on the x axis of each plot.
As can be seen in the figure, AAMM(l+u) significantly

outperforms AAMM(l) on all three data sets when small
fractions of labeled data are available. For example, with
110 labeled sequences on non-plant (i.e., 5% of labeled
data), AAMM(l+u) achieves 63% accuracy while AAMM
(l) achieves 52%, which gives 23% reduction in classifica-
tion error (|t| = 7.2). Strikingly, on the same data set,
with only 22 labeled sequences (i.e., 1% of labeled data),
AAMM(l+u) achieves 59% accuracy as compared to 43%
obtained by AAMM(l), which gives 28% reduction in
classification error (|t| = 9.73). Hence, AAMM(l+u) are
able to incorporate information available in the unla-
beled data (i.e., joint probability distributions of contigu-
ous amino acids in a sequence) to learn more robust
abstraction hierarchies than AAMM(l) when the labeled
training set is limited in size (thereby, reducing the risk
of overfitting).
Furthermore, AAMM(l+u) decreases the need for

large numbers of labeled data. Specifically, on non-
plant, AAMM(l+u) achieves 63% accuracy with 110
labeled examples, which is matched by that of AAMM(l)
with 438 labeled examples (≈ 4 times more labeled
data). However, when the fraction of labeled data is
large, and hence, good estimates of model parameters
can be obtained from such data, there is not much need
for unlabeled data. For example, AAMM(l+u) becomes
similar in performance with AAMM(l) on non-plant
using 35% and 50% of labeled data (the null hypothesis
is not rejected, |t| = 1.38 and |t| = 0.26, respectively).

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 4 of 13

Figure 1 Comparison of AAMMs with MMs. Comparison of AAMMs with MMs for 1% (first row), 10% (second row), and 25% (third row) of
labeled data available for non-plant (left), plant (center), and psortNeg (right), respectively.

Figure 2 Comparison of AAMM(l+u) with AAMM(l), MMs, and EM-MMs. Comparison of AAMMs trained using an abstraction hierarchy
learned from both labeled and unlabeled data, AAMM(l+u), with (i) AAMMs trained using an abstraction hierarchy learned only from labeled data,
AAMM(l); (ii) Expectation-Maximization with Markov models, EM-MM; and (iii) Markov models, MM, on non-plant (left), plant (center), and
psortNeg (right) data sets. x axis indicates the number of labeled examples in each data set corresponding to fractions of 1%, 5%, 10%, 15%,
20%, 25%, 35%, 50% of training data being treated as labeled data. The fraction of unlabeled data in each data set is fixed to 50%.

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 5 of 13

As expected, the performance of AAMM(l+u)
increases with the increase in the amount of labeled
data. For example, on psortNeg with 12 labeled
sequences (i.e., 1% of labeled data), AAMM(l+u)
achieves 32% accuracy while AAMM(l+u) with 289
labeled sequences (i.e., 25% of labeled data) achieves
58% accuracy, which corresponds to 38% reduction in
classification error.
AAMMs are able to incorporate information avail-

able in the unlabeled protein subcellular localization
data, and hence, produce more robust classifiers
than MMs and EM-MMs, when the fraction of
labeled protein subcellular localization data is small.
Again as can be seen in Figure 2, AAMM(l+u) is

superior in performance to MM, especially when small
amounts of labeled data are available. For example, on
plant, with 75 labeled sequences (i.e., 10% of labeled
data), MM achieves 39% accuracy as compared to 44%
obtained using AAMM(l+u) (|t| = 3.07). On non-plant,
with 219 labeled sequences (i.e., 10% of labeled data),
MM achieves 51% accuracy whereas AAMM(l+u)
achieves 64% (|t| = 14). AAMM(l+u) not only incorpo-
rates information available in the unlabeled data (see
previous comparison), but also performs parameter
smoothing. Thus, AAMM(l+u) provides more robust
estimates of model parameters than MMs, and hence,
help reduce overfitting when the labeled training set is
limited in size.
Both AAMM(l+u) and EM-MM make use of informa-

tion available in the unlabeled data (i.e., both improve the
performance of their counterpart classifiers trained only
from labeled data) on all three data sets, although the
improvement is not very large on psortNeg (Figure 2).
However, AAMM(l+u) uses the joint distribution over
amino acids (independent of the class variable) to learn a
more robust abstraction hierarchy (i.e., a finer partition-
ing of the set of k-grams), especially when the amount of
labeled data is small, so that better estimates of para-
meters can be obtained. On the other hand, EM-MM
uses the joint distribution over amino acids after an
initial classifier has made predictions on the unlabeled
data. When small amounts of labeled data are available,
the predictions made by the initial classifier may not be
reliable.
AAMM(l+u) significantly outperforms EM-MMs on

non-plant, plant, and psortNeg data sets, when the
fraction of labeled data is small (see Figure 2). For
example, with only 22 labeled sequences on non-plant
(i.e., 1% of labeled data), AAMM(l+u) achieves 59%
accuracy while EM-MM achieves 42%, which gives 29%
reduction in classification error (|t| = 8.83). Similarly,
with only 8 labeled sequences on plant (i.e., 1% of
labeled data), AAMM(l+u) achieves 34% accuracy as
compared to 28% obtained by EM-MM, which gives 8%

reduction in classification error (|t| = 4.66). As the
amount of labeled data increases, EM-MM significantly
outperforms AAMM(l+u). For example, with 767 labeled
sequences on non-plant (i.e., 35% of labeled data), EM-
MM achieves 69% accuracy while AAMM(l+u) achieves
67% (|t| = 4.87).
Note that EM may decrease rather than increase the

accuracy of classifiers if the generative model assump-
tions are not satisfied (see Figure 2 plant data set). A
weighted EM (i.e., weighting unlabeled sequences less)
[12] helped improved the performance of EM-MMs
(data not shown). A similar approach could be consid-
ered in AAMMs during learning the abstraction
hierarchies.
Figure 3 shows results of comparison of AAMMs with

EM-MMs on non-plant, plant, and psortNeg data sets,
respectively, while varying the amount of unlabeled data
for three different fractions of labeled data (i.e., 1%, 10%,
and 25% of labeled data) that are kept fixed. The x axis
indicates the number of unlabeled examples in each
data set.
As can be seen in Figure 3, the improvement in per-

formance of AAMMs over EM-MMs is rather dramatic
when the amount of labeled data is quite small. For
example, when only 1% of labeled data is used regard-
less of the amount of unlabeled data, AAMMs consis-
tently significantly outperform EM-MMs on non-plant
and plant data sets (the largest and smallest t values on
non-plant are 10.96 and 5.66, respectively). However,
the difference in performance between AAMMs and
EM-MMs diminishes as more and more labeled data
become available (and eventually levels off). When the
amount of labeled data is increased (e.g., 25% of labeled
data), EM-MMs often significantly outperform AAMMs
(Figures 3(a) and 3(c)). For example, on non-plant with
25% of unlabeled data, EM-MM achieves 68% accuracy,
whereas AAMM achieves 66% (|t| = 7).
The classification accuracy of AAMMs typically

increases with the amount of unlabeled data (when the
subset of labeled data is fixed) (see Figure 3). For exam-
ple, on non-plant, AAMM with 22 labeled sequences
(i.e., 1% of labeled data) and 219 unlabeled sequences
(i.e., 10% of unlabeled data) achieves an accuracy of 56%
as compared to 49% obtained by AAMM with 22
labeled sequences (i.e., 1% of labeled data) and 22 unla-
beled sequences (i.e., 1% of unlabeled data), 14% reduc-
tion in classification error.
AAMMs are comparable in performance with, and

in some cases outperform, the co-training procedure,
which uses MMs trained on different views of the
protein subcellular localization data.
Figure 4 shows results of experiments that compare

AAMMs with co-training MMs on non-plant, plant,
and psortNeg data sets, where we fixed the number of

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 6 of 13

unlabeled examples (to 50%) and varied the number of
labeled examples (from 1% to 50% as before). The x axis
indicates the number of labeled examples in each data
set. The number of unlabeled examples is kept fixed
and is equal to the rightmost number of labeled exam-
ples on the x axis of each plot.
As can be seen in the figure, AAMMs trained on the

first 60 and last 15 amino acids of each protein
sequence significantly outperform two co-trained MMs,
one trained on the first 60 amino acids of each
sequence, and the other trained on the last 15 amino
acids of each sequence on the non-plant data set. For
example, with 22 labeled sequences (i.e., 1% of labeled
data), AAMM achieves 59% accuracy while co-training
MMs achieves 56% (|t| = 7.14). With 548 labeled
sequences (i.e., 25% of labeled data), the accuracy of
AAMM is 61%, whereas that of co-training MMs is 57%
(|t| = 7.12). These results give 1% reduction in classifica-
tion error .

However, on plant and psortNeg data sets, AAMMs
are comparable in performance with co-training MMs.
For example, on plant data set using 188 labeled
sequences (i.e., 25% of labeled data), the accuracy of
AAMM is 57%, whereas that of co-training MMs is 58%
(the null hypothesis is not rejected, |t| = 0.61).

Summary and discussion
Identifying subcellular localization of proteins is an
important problem with broad applications in computa-
tional biology, e.g., rational drug design. Computational
tools for identifying protein subcellular localization that
can exploit large amounts of unlabeled data together
with limited amounts of labeled data are especially
important because of the high cost and efforts involved
in labeling the data.
In this study, we presented an abstraction-based

approach to semi-supervised learning of classifiers for
the protein subcellular localization prediction task. Our

Figure 3 Comparison of AAMMs with EM-MMs. Comparison of AAMMs with EM-MMs for three different fractions of labeled data (i.e., 1%,
10%, and 25%) while varying the amount of unlabeled data on non-plant (left), plant (center), and psortNeg (right) data sets. x axis indicates
the number of unlabeled examples in each data set corresponding to fractions of 1%, 10%, 25%, 50%, 75%, 90%, 99% of training data being
treated as unlabeled data.

Figure 4 Comparison of AAMMs with co-training MMs. Comparison of AAMMs with co-training MMs on non-plant (left), plant (center), and
psortNeg (right) data sets. AAMMs are trained on the first 60 and the last 15 amino acids of each protein sequence, AAMM(60 + 15). Co-
training MMs consists of two co-trained MMs, one trained on the first 60 amino acids of each sequence, the other trained on the last 15 amino
acids of each sequence. x axis indicates the number of labeled examples in each data set corresponding to fractions of 1%, 5%, 10%, 15%, 20%,
25%, 35%, 50% of training data being treated as labeled data. The fraction of unlabeled data in each data set is fixed to 50%.

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 7 of 13

approach utilizes abstraction augmented Markov models
[25], which extend higher order Markov models by add-
ing new variables corresponding to abstractions of
k-grams (i.e., substrings of a fixed length k). AAMMs
are probabilistic generative models that have the ability
to incorporate information available in the unlabeled
data: initially, an abstraction hierarchy over the k-grams
is constructed from both labeled and unlabeled data,
independent of the class variable. The labeled data is
used to estimate the model parameters, based on the
resulting abstraction hierarchy.
In this paper we compare AAMMs with MMs and

EM-MMs and co-trained MMs. The results of our
experiments on the subcellular localization prediction
task show that semi-supervised AAMMs: (i) can effec-
tively exploit unlabeled data; (ii) are more accurate than
both the MMs and the EM based semi-supervised MMs;
and (iii) are comparable in performance, and in some
cases outperform, the co-training based semi-supervised
MMs.

Related work on semi-supervised learning
A variety of approaches to semi-supervised learning
have been studied in the literature (see [11], [10] for
reviews). Most of the existing semi-supervised learning
algorithms including those based on co-training [13],
Expectation Maximization (EM) [12], Transductive Sup-
port Vector Machines (TSVM) [14], cluster kernel [28],
manifold based approaches [29,30], essentially involve
different means of transferring labels from labeled to
unlabeled samples in the process of learning a classifier
that can generalize well on new unseen data.
EM-based methods provide a way to estimate the

parameters of a generative model from incomplete data
[26], i.e., samples that contain missing values for some
of the variables. Semi-supervised learning is a special
case of such inference where it is the class labels that
are missing for a subset of the data [12]. Specifically, the
parameters of the model are estimated initially from the
labeled fraction of the training data, DL, and the result-
ing model is used to predict p(y|x) for each of the unla-
beled samples in DU. The parameters are re-estimated
using the entire training data D and this process is
repeated until the estimates converge. Co-training [13]
is a variant of this approach where unlabeled data are
labeled with two different classifiers trained on different
subsets of the features in x.
Several semi-supervised learning algorithms based on

discriminative approaches to classification have been
investigated. TSVM [14] can be seen as a discriminative
counterpart of EM. TSVM starts by training an SVM on
the labeled data and uses the trained SVM to label the
unlabeled data. The algorithm iteratively attempts to
maximize the margin of separation between the sets of

samples labeled by the SVM (by considering at each
iteration, alternative labels for pairs of originally unla-
beled samples that have been assigned different labels
by the SVM). A similar outcome can be achieved
by adding an additional regularization term for unla-
beled data to the objective function optimized by SVM
[10]. Similar approaches for exploiting unlabeled
data in training discriminative classifiers include [31],
[32], [33], [34].
An alternative approach to exploiting unlabeled data

relies on the manifold assumption: high-dimensional
data lies on a lower dimensional manifold, making it
possible to propagate labels from labeled samples to
unlabeled samples based on some measure of closeness
of the data points on the manifold. The manifold can
be approximated by a weighted graph in which the
nodes correspond to data samples and the weights on
the links between nodes correspond to the pairwise
similarity of the corresponding data points [35]. A num-
ber of techniques for label propagation have been pro-
posed [29], [30]. Note that graph laplacian based
techniques can be interpreted as a more general type of
regularization where not only the L2 norm of the
hypothesis is penalized but also the L2 norm of the
hypothesis gradient.
In contrast to the approaches reviewed above, we

present a novel abstraction-based approach to semi-
supervised learning of sequence classifiers. We compared
the semi-supervised AAMMs with the semi-supervised
variants of Markov models trained using expectation
maximization [12], and using co-training [13], [10].

Expectation Maximization applied to Markov models
EM applied to MMs (EM-MMs) involves an iterative
process of E- and M-steps. Specifically, an initial Mar-
kov model is learned only from labeled sequences DL

using Equations (3), (4), and (5) (initialization step). The
current model is used to assign probabilistic labels to
the (originally) unlabeled sequences DU (i.e., to calculate
the probability that each class generated an unlabeled
sequence, p c j u(;)x , u =1,…,|DU|) using Equation (6)
(E-step). Next, a new model is learned from originally
labeled sequences (,) , ,x l l l Dy

L=1 combined with
the newly probabilistically labeled sequences
(,[()]) , ,x xu j u cj C u Dp c

U∈ =1 , which were originally unla-
beled, using Equations (3), (4), and (5) (M-step) (See
Methods section for Equations (3), (4), (5), and (6) for
details). E- and M- steps are repeated until the model
does not change from one iteration to another [12].

Co-training of Markov models
Let DL be a set of labeled examples, and DU a set of
unlabeled examples. A set DU′ is obtained by sampling
u examples from DU (we used u = 75 examples in

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 8 of 13

experiments). Each example x has two views, i.e., can be
encoded with two different sets of features, x(1) and x(2).
First, use DL and the x(1) encoding to train a classifier
h1, and DL and the x(2) encoding to train another classi-
fier h2. Second, classify the examples in DU′ using h1
and h2 separately. Select h1’s and h2’s top (kj)j=1,…,|C|
most confident predictions from each class (correspond-
ing to the underlying data distribution), add them to DL,
and remove them from DU′. Sample 2 ∑ =j

C
jk1 examples

from DU and move them to DU ′. This process is
repeated for a fixed number of iterations, or until all
unlabeled data are used up [13], [10] (in experiments,
we iterated until all unlabeled data was used). In co-
training, the idea is that the two classifiers teach one
another by re-training each classifier on the data
enriched with predicted examples that the other classi-
fier is most confident about.

Semi-supervised abstraction augmented Markov models -
our approach
Our abstraction-based approach to learning classifiers
for the protein subcellular localization prediction task
exploits large amounts of unlabeled data together with
small amounts of labeled data to construct more robust
abstraction hierarchies over the values of the parents of
each node in a Markov model. Two values (k-grams) are
clustered together if they induce similar conditional dis-
tributions of the next node, independent of the class.
When the data are scarce, the estimates of joint prob-
abilities are not reliable. However, the unlabeled data
contain information about the joint probability distribu-
tion over sequence elements, and can help improve the
statistical estimates of parameters. The abstraction hier-
archy is subsequently used to learn a Markov model
with abstract values of the parents.
It is worth mentioning that part of the AAMM is the

representation of the clustering. Specifically, after the
abstraction hierarchy is learned, for a given choice of
the size m of an m-cut that defines an AAMM, an array
of indices of size equal to the number of unique k-
grams specifies the mapping between k-grams and
abstractions (the space complexity is |X|k, where X is
the alphabet). However, the number of parameters of
AAMM (for a given class) based on such an abstraction
hierarchy and an m-cut is m|X|, as opposed to |X|k|X|
in the case of MMs, where m ≪ |X|k.
While AAMMs reduce the complexity of the learned

model, some information is lost due to abstraction. It is
of interest to incorporate into AAMMs some means of
gracefully trading off the complexity of the model
against its predictive accuracy. One way to do this is to
augment the algorithm, e.g., by designing an MDL-based
scoring function to guide a top-down search for an opti-
mal cut [36].

AAMMs not only significantly outperform MMs but
also are simpler than MMs, and hence easier to inter-
pret from a biological standpoint: the set of k-grams in
an abstraction can be seen as a sequence profile (e.g.,
Position Specific Scoring Matrix).
The results of our experiments show that AAMMs

can make effective use of unlabeled data and that
AAMMs significantly outperform EM-MMs when the
amount of labeled data is very small, and relatively large
amounts of unlabeled data are readily available. Here,
because of the small amounts of labeled data available,
the ability of AAMMs to minimize overfitting (through
parameter smoothing) turns out to be especially benefi-
cial. In comparing semi-supervised AAMMs with the
previous semi-supervised work on the protein subcellu-
lar localization prediction task, we found that AAMMs
are competitive with, and in some cases outperform, co-
training of MMs.
The results presented here demonstrate the effective-

ness of an abstraction-based approach to exploiting
unlabeled data in a semi-supervised setting on the pro-
tein subcellular localization prediction task. Such an
approach can in principle be combined with existing
semi-supervised learning techniques including those that
use EM, co-training, manifold assumption (propagation
of labels from labeled to unlabeled samples based on
some similarity measure between samples).
Our current implementation of AAMM constructs an

abstraction hierarchy over the values of the k predeces-
sors of a sequence element by grouping them together if
they induce similar conditional distributions over that
element of the sequence. It would be interesting to
explore alternative approaches to building abstraction
hierarchies, e.g., probabilistic suffix trees (PSTs) [37].

Methods
In this section, we briefly described the data sets used in
experiments, provide some background on Markov
models for sequence classification, and then present our
novel AAMM-based approach to semi-supervised
learning.

Data sets
The first and second data sets used in our experiments,
plant and non-plant [38], were first introduced in [4].
The plant data set contains 940 examples belonging to
one of the following four classes: chloroplast (141), mito-
chondrial (368), secretory pathway/signal peptide (269)
and other (consisting of 54 examples with label nuclear
and 108 examples with label cytosolic). The non-plant
data set contains 2738 examples, each in one of the fol-
lowing three classes: mitochondrial (361), secretory path-
way/signal peptide (715) and other (consisting of 1214

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 9 of 13

examples labeled nuclear and 438 examples labeled
cytosolic).
The third data set used in our experiments, PSORTdb

v.2.0 [39] Gram-negative sequences, introduced in [40],
contains experimentally verified localization sites. We
refer to this data set as psortNeg. We use all proteins
that belong to exactly one of the following five classes:
cytoplasm (278), cytoplasmic membrane (309), periplasm
(276), outer membrane (391) and extracellular (190).
The total number of examples (proteins) in this data set
is 1444.

Markov models
Markov models (MMs) are probabilistic generative mod-
els that assume a mixture model as the underlying
model that generated the sequence data. Each mixture
component corresponds to a class cj Î C = {c1,…,c|c|}. A
sequence is generated according to a set of parameters,
denoted by θ, that define the model.
Let x = x0…xn−1 be a sequence over a finite alphabet

X, x Î X*, and let y denote x’s class (note that if x was
generated by the jth mixture component, then y = cj).
Let Xi, for i = 0,…, n − 1, denote the random variables
corresponding to the sequence elements xi in x. In a kth

order MM, the sequence elements satisfy the Markov
property: Xi X X X Xi k i k ih { , , } { , , }0 1 1 − − − − . That
is, Xi is conditionally independent of X0,…, Xi−k−1 given
Xi−k,…, Xi−1 for i = k,…, n − 1. Xi−k,…, Xi−1 are called
parents of Xi. Figure 5 shows the dependency of Xi on
Xi−k,…,Xi−1 in a kth order MM. Hence,

p(xi|x0…xi−1,cj;θ) = p(xi|xi−k…xi−1,cj;θ). (1)

The probability of x given its class cj, p(x|cj;θ), can be
written as follows:

p c p c p x x c p x x x cj j k j i i k i j

i k

n

(;) () (;) (, ;).x = − − −
=

−

∏0 1 1

1

 (2)

Let Si−1 denote the parents Xj−k…Xi−1 of Xi. The
values of Si−1 represent instantiations of Xi−k…Xi−1,
which are substrings of length k (i.e., k-grams) over the
alphabet X. Let S denote the set of k-grams over X, s
denote a k-gram in S, and s a symbol in X. The cardin-
ality of S is |X|k and is denoted by N.

The set of parameters θ of an MM is:
 = ∈ ∈ ∈ ∈ ∈ ∈{ : , , ; : , ; : }| , |s c j s c j c jj j j

s S c C s S c C c C , where
 | , |(| , ;), (| ;)s c j s c jj j

p s c p s c= = , and c jj
p c= (|) .

Learning Markov models
Given a labeled training set D yL l l l DL

= =(,) , ,x 1 , learn-
ing a Markov model reduces to estimating the set of
parameters θ from DL, using the maximum likelihood
estimation [41]. The estimate ˆ

| , s c j
of | ,s c j is

obtained from DL as follows:

ˆ #[,] (|)

#[,
| ,

s c

l
D

l l j l

l
D

l
j

L

L

s p y c

s
=

+ ∑ ⋅ =

+ ∑ ∑ ′
=

′ ∈ =

1 1

1

x x

x]] (|)
,

⋅ =p y cl j lx
(3)

where #[ss, xl] is the number of times the symbol s
“follows” the k-gram s in the sequence xl, and p(yl = cj|
xl) Î {0,1} is obtained based on the sequence label.
The estimate ˆ

|s c j
of s c j| is obtained from DL as fol-

lows:

ˆ #[,] (|)

#[,] (
|s c

l
D

l l j l

s l
D

l
j

L

L

s p y c

s p
=

+ ∑ ⋅ =

+ ∑ ∑ ′ ⋅
=

′ ∈ =

1 1

1

x x

x yy cl j l= |)
,

x
(4)

where #[s, xl] is the number of times s occurs in xl.
The class prior probabilities ̂ c j

are estimated as
follows:

ˆ (|)
.c

l
r

l j l

L
j

p y c

D
=

+ ∑ =
+

=1 1 x

(5)

We used Laplace correction to obtain smoothed
estimates.

Using Markov models for classification
Classification of a new sequence x requires computation
of conditional probability p y c j()

^= x; . Applying Bayes
rule:

p y c p c p cj j j(;) (;) () .
^ ^ ^= ∝x x (6)

The class with the highest posterior probability,

arg max (;)
^

j jp y c= x is assigned to x.

Semi-supervised AAMM
We first provide the AAMM definitions and then
describe how to learn semi-supervised AAMMs.

Figure 5 Markov model for sequence classification. Dependency
of Xi on Xi−k,…,Xi−1 in a kth order Markov model.

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 10 of 13

AAMMs
AAMMs effectively reduce the number of parameters of
a kth order MM (which is exponential in k) by learning
an abstraction hierarchy (AH) over the set of k-grams S.
Definition 1 (Abstraction Hierarchy)An abstraction

hierarchy T over a set of k-grams S is a rooted tree such
that: (1) the root of T denotes S; (2) the leaves of T corre-
spond to singleton sets containing individual k-grams in
S; (3) the children of each internal node (say a) corre-
spond to a partition of the set of k-grams denoted by a.
Thus, a denotes an abstraction or grouping of “similar”
k-grams.
Note that each internal node (or abstraction a) con-

tains the subset of k-grams at the leaves of the subtree
rooted at a. Figure 6(a) shows an example of an AH T
on a set S = {s1,…,s9} of 2-grams over an alphabet of
size 3.
Definition 2 (m-Cut)An m-cut gm through an

abstraction hierarchy T is a subset of m nodes of T such
that for any leaf s Î S, either s Î gm or s is a descendant
of some node in gm. The set of abstractions A at any
given m-cut gm forms a partition of S.
Specifically, an m-cut gm partitions the set S of k-

grams into m (m ≤ N = |S|) non-overlapping subsets A
= {a1 : S1,…,am:Sm}, where ai denotes the i-th abstrac-
tion and Si denotes the subset of k-grams that are
grouped together into the i-th abstraction based on
some similarity measure. Note that S1 ∪…∪ Sm = S and
∀1 ≤ i, j ≤ m, Si ∩ Sj = ∅. In Figure 6(a), the subset of
nodes {a15, a6, a14} represents a 3-cut g3 through T.
AAMMs extend the graphical structure of MMs by

introducing new variables Ai that represent abstractions
over the values of Si−1, for i = k,…, n − 1 (Figure 6(b)).
Each Ai takes values in the set of abstractions A = {a1,
…,am} corresponding to an m-cut, gm. We model the
fact that Ai is an abstraction of Si−1 by defining p(Ai =

ai|Si−1 = si−1) = 1 if si−1 Î ai, and 0 otherwise, where si
−1 Î S and ai Î A represent instantiations of variables Si
−1 and Ai, respectively. Furthermore, in AAMMs, the
node Xi directly depends on Ai instead of being directly
dependent on Si−1, as in the standard MMs. Hence, the
probability of x given its class, p(x|cj;θ), can be written
as follows:

p c p c p s c p x a c p a sj j k j i i j

i k

n

i i(;) () (;) (, ;) ().x = −
=

−

−∏1

1

1 (7)

The set of parameters θ of an AAMM is:
 = ∈ ∈ ∈ ∈ ∈ ∈{ : , , ; : , ; : }| , |a c j s c j c jj j j

a c s c c , where
 | , |(, ;), (;)a c j s c jj j

p a c p s c= = , and
 c jj

p c= () .

Learning semi-supervised AAMMs
In what follows we show how to learn AAMMs from
both labeled and unlabeled data. This involves: learning
abstraction hierarchies from both labeled and unlabeled
data; and learning model parameters from labeled data
using the resulting abstraction hierarchy.
Learning abstraction hierarchies
The algorithm for learning AHs over a set S of k-grams
starts by initializing the set of abstractions A such that
each abstraction aj Î A corresponds to a k-gram sj Î S,
j = 1,…,N. The leaves of the AH T are initialized with
elements of S. The algorithm recursively merges pairs of
abstractions that are most “similar” to each other and
terminates with an abstraction hierarchy after N − 1
steps. We store T in a last-in-first-out (LIFO) stack. For
a given choice of the size m of an m-cut through T, the
set of abstractions that define an AAMM can be
extracted by discarding m − 1 elements from the top of
the stack.

Figure 6 Abstraction augmented Markov models. (a) An abstraction hierarchy T on a set S = {s1,…,s9} of 2-grams over an alphabet of size 3.
The abstractions a1 to a9 correspond to the 2-grams s1 to s9, respectively. The subset of nodes A = {a15, a6, a14} represents a 3-cut g3 through T;
(b) Dependency of Xi on Ai, which takes values in a set of abstractions A corresponding to an m-cut gm, in a kth order AAMM.

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 11 of 13

We consider two k-grams to be “similar” if they occur
within similar contexts. In our case, we define the con-
text of a k-gram s Î S to be the conditional probability
distribution of the next letter in the sequence given the
k-gram, p(Xi|s), independent of the class variable.
Hence, this can be estimated from both labeled
sequences DL and unlabeled sequences DU as follows:

ˆ #[,] #[,]

#[,
|

s

l
D

l u
D

u

l
D

l

L U

L

s s

s
=

+ ∑ + ∑

+ ∑ ∑ ′
= =

′ ∈ =

1 1 1

1

x x

x]] #[,]+ ∑ ′⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥=

∈
u
D

u
U s1

x

(8)

where #[ss, xl] and #[ss, xu] represent the number of
times the symbol s “follows” the k-gram s in the
sequence xl, and xu, respectively.
Since an abstraction is a set of k-grams, the context of

an abstraction a = {s1,…, s|a|} is obtained by a weighted
aggregation of the contexts of its k-grams. That is,

ˆ #

#
ˆ ,| a

t

t
a

tt

a

s
s

s t
=

∑
⋅

==
∑

11

(9)

where # #[,] #[,]s s st l
D

t l u
D

t u
L U= + ∑ + ∑= = 1 1x x .

We identify the most “similar” abstractions as those
that have the smallest weighted Jensen-Shannon diver-
gence between their contexts. JS divergence [42] pro-
vides a natural way to compute the distance between
two probability distributions that represent contexts of
two abstractions. Specifically, we define the distance
between two abstractions a′ and a″ in D as follows:

d a a p a p a JS p X a p X aD i ia a
(,) (() ()) ((), ()),′ ′′ = ′ + ′′ ⋅ ′ ′′

′ ′′

where ′
′

′ ′′
=

+a
a

a a

p a

p a p a

()
() ()

and ′′
′′

′ ′′
=

+a
a

a a

p a

p a p a

()
() ()

.

Learning AAMM parameters
Given a labeled training set D yL l l l DL

= =(,) , ,x 1 , learn-
ing an AAMM reduces to estimating the set of para-
meters θ from DL, denoted by ̂ . This can be done as
follows: use Equation (3) to obtain the estimates

ˆ
| ,

s c j

⎡
⎣

⎤
⎦ ∈

of

| ,s c j
⎡
⎣

⎤
⎦ ∈

for any k-gram s Î S (note

that these estimates correspond to the estimates

ˆ
| ,

a c j

⎡
⎣

⎤
⎦ ∈

when a = {s}, i.e., the leaf level in the AH

T). The estimates ˆ
| ,

a c j

⎡
⎣

⎤
⎦ ∈

of

| ,a c j
⎡
⎣

⎤
⎦ ∈

, when

a = {s1,…,s|a|}, are a weighted aggregation of the esti-

mates of a’s constituent k-grams, i.e.,

ˆ #

#
ˆ ,| , ,

 a c
t

t
a

tt

a

s cj t j

s

s
=

∑
⋅

==
∑

11

(10)

where # #[,] ()]s s p y ct l
D

t l l j l
L= + ∑ ⋅ == 1 x x . Use

Equations (4) and (5) to obtain the estimates ˆ
|s c j

of
s c j| and ̂ c j

of c j , respectively.

Using AAMMs for classification
Given a new sequence x = x0,…,xn−1 and an m-cut gm
through T, p c j(;)

^
x can be computed as follows: initi-

alize p c j(;)
^

x by ˆ
|x x ck j0 1 −

; parse the sequence from
left to right. For each k-gram xi−k…xi−1 find the abstrac-
tion aw Î gm it belongs to and retrieve the parameters
associated with aw. Successively multiply ˆ

| , a cw j
for i =

k,…, n − 1 to obtain p c j(;)x .
As in MMs, apply Bayes rule to obtain p y c j(;)

^= x
and assign the class with the highest posterior probabil-
ity to x.

Acknowledgements
This research was funded in part by an NSF grant IIS 0711356 to Vasant
Honavar and Doina Caragea.
This article has been published as part of BMC Bioinformatics Volume 11
Supplement 8, 2010: Proceedings of the Neural Information Processing
Systems (NIPS) Workshop on Machine Learning in Computational Biology
(MLCB). The full contents of the supplement are available online at http://
www.biomedcentral.com/1471-2105/11?issue=S8.

Author details
1Artificial Intelligence Research Laboratory, Department of Computer Science,
Iowa State University, Ames, IA, 50010, USA. 2Center for Computational
Intelligence, Learning, and Discovery, Iowa State University, Ames, IA, 50010,
USA. 3Computer and Information Sciences, Kansas State University,
Manhattan, KS, 65501, USA.

Authors’ contributions
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 26 October 2010

References
1. Alberts B, Bray D, et al: Molecular Biology of the Cell New York and London,

Garland Publishing. 1994.
2. Baldi P, Brunak S: Bioinformatics: the Machine Learning Approach MIT Press

2001.
3. Park K, Kanehisa M: Prediction of protein subcellular locations by support

vector machines using compositions of amino acids and amino acid
pairs. Bioinformatics 2003, 19(13):1656-1663.

4. Emanuelsson O, Nielsen H, Brunak S, von Heijne G: Predicting subcellular
localization of proteins based on their N-terminal amino acid sequence.
J. Mol. Biol. 2000, 300:1005-1016.

5. Höglund A, Donnes P, Blum T, Adolph HW, Kohlbacher O: MultiLoc:
prediction of protein subcellular localization using N-terminal targeting
sequences, sequence motifs, and amino acid composition. Bioinformatics
2006, 22(10):1158-1165.

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 12 of 13

http://www.biomedcentral.com/1471-2105/11?issue=S8
http://www.biomedcentral.com/1471-2105/11?issue=S8
http://www.ncbi.nlm.nih.gov/pubmed/12967962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12967962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12967962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10891285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10891285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16428265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16428265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16428265?dopt=Abstract

6. Ong CS, Zien A: An Automated Combination of Kernels for Predicting Protein
Subcellular Localization. Proceedings of the 8th Workshop on Algorithms in
Bioinformatics (WABI) Springer. Lecture Notes in Bioinformatics. 2008, 186-179.

7. Scott MS, Calafell SJ, Thomas DY, Hallett MT: Refining Protein Subcellular
Localization. PLoS Comput Biol 2005, 1(6):e66.

8. Yuan Y: Prediction of Protein Subcellular Locations using Markov Chain
Models. FEBS Letters 1999, 451:23-26.

9. Ansorge W: Next-generation DNA sequencing techniques. New
Biotechnology 2009, 25(4):195-203.

10. Zhu X, Goldberg A: Introduction to Semi-Supervised Learning Morgan &
Claypool 2009.

11. Chapelle O, Schöelkopf B, Zien A: Semi-Supervised Learning MIT Press 2006.
12. Nigam K, Mccallum AK, Thrun S, Mitchell T: Text Classification from

Labeled and Unlabeled Documents using EM. In Machine Learning 1999,
103-134.

13. Blum A, Mitchell T: Combining labeled and unlabeled data with co-
training. Proc. of COLT’ 98 New York, NY, USA: ACM 1998, 92-100.

14. Joachims T: Transductive Inference for Text Classification using Support
Vector Machines. In Proc. of the ICML’99 1999, 200-209.

15. Niu ZY, Ji DH, Tan CL: Word sense disambiguation using label
propagation based semi-supervised learning. In Proc. of the ACL 2005.

16. Goldberg A, Zhu X: Seeing stars when there aren’t many stars: Graph-
based semi-supervised learning for sentiment categorization. In HLT-
NAACL 2006 Workshop on Textgraphs 2006.

17. Qi Y, Kuksa P, Collobert R, Sadamasa K, Kavukcuoglu K, Weston J: Semi-
Supervised Sequence Labeling with Self-Learned Features. Proc. of ICDM
Washington, DC, USA 2009, 428-437.

18. Camps-valls G, Member S, B TV, Zhou D: Semi-supervised graph-based
hyperspectral image classification. IEEE Transactions on Geoscience and
Remote Sensing 2007, 45:2044-3054.

19. Käll L, Canterbury J, Weston J, Noble W, MacCoss M: Semi-supervised
learning for peptide identification from shotgun proteomics datasets.
Nature Methods 2007, 4(11):923-925.

20. Lafferty J, Zhu X, Liu Y: Kernel conditional random fields: Representation
and clique selection. In The 21st ICML 2004.

21. Kuksa P, Huang PH, Pavlovic V: Efficient use of unlabeled data for protein
sequence classification: a comparative study. BMC Bioinformatics 2009,
10(Suppl 4):S2.

22. Xu Q, Hu DH, Xue H, Yu W, Yang Q: Semi-supervised protein subcellular
localization. BMC Bioinformatics 2009, 10(Suppl 1):S47.

23. Li M, Zhou ZH: Improve Computer-Aided Diagnosis with Machine
Learning Techniques Using Undiagnosed Samples. 2007.

24. Breiman L: Random Forests. Machine Learning 2001, 45:5-32.
25. Caragea C, Silvescu A, Caragea D, Honavar V: Abstraction Augmented

Markov Models. NIPS Workshop on “Machine Learning in Comp. Biol.” , ’09..
26. Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, Series B
1977, 39:1-38.

27. Dietterich TG: Approximate Statistical Tests for Comparing Supervised
Classification Learning Algorithms. Neural Computation 1998,
10:1895-1923.

28. Weston J, Leslie CS, Zhou D, Elisseeff A, Noble WS: Semi-supervised
Protein Classification Using Cluster Kernels. In NIPS 2004.

29. Bengio Y, Delalleau O, Le Roux N: Label Propogation and Quadratic
Criterion. Semi-Supervised Learning MIT PressChapelle O, Schoelkopf B, Zien
A, 2006, 193-217.

30. Jebara T, Wang J, Chang SF: Graph construction and b-matching for
semi-supervised learning. ICML ’09: Proc. of the 26th Annual ICML ACM
2009, 441-448.

31. Lawrence ND, Jordan MI: Semi-supervised learning via Gaussian
processes. In NIPS-17 Saul L, Weiss Y, Bottou L 2005.

32. Szummer M, Jaakkola T: Information regularization with partially labeled
data. In Advances in Neural Information processing systems 15 2002.

33. Grandvalet Y, Bengio Y: Semi-supervised Learning by Entropy
Minimization. Advances in Neural Information Processing Systems 17 MIT
Press 2005, 529-236.

34. Jaakkola T, Meila M, Jebara T: Maximum entropy discrimination. In Neural
Information Processing Systems 1999, 12.

35. Belkin M, Niyogi P, Sindhwani V: Manifold Regularization: a Geometric
Framework for Learning from Labeled and Unlabeled Examples. Journal
of Machine Learning Research 2006, 7:2399-2434.

36. Zhang J, Kang DK, Silvescu A, Honavar V: Learning Accurate and Concise
Naive Bayes Classifiers from Attribute Value Taxonomies and Data.
Knowledge and Information Systems 2006, 9(2):157-179.

37. Ron D, Singer Y, Tishby N: The Power of Amnesia: Learning Probabilistic
Automata with Variable Memory Length. In Machine Learning 1996,
117-149.

38. TargetP. [http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php].
39. PSORTdb v.2.0. [http://www.psort.org/dataset/datasetv2.html].
40. Gardy JL, et al: PSORT-B: improving protein subcellular localization

prediction for Gram-negative bacteria. NAR 2003, 31(13):3613-17.
41. Casella G, Berger RL: . Statistical Inference Duxbury 2002.
42. Lin J: Divergence measures based on the Shannon entropy. IEEE Trans.

on Inf. Thr. 1991, 37:145-151.

doi:10.1186/1471-2105-11-S8-S6
Cite this article as: Caragea et al.: Semi-supervised prediction of protein
subcellular localization using abstraction augmented Markov models.
BMC Bioinformatics 2010 11(Suppl 8):S6.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Caragea et al. BMC Bioinformatics 2010, 11(Suppl 8):S6
http://www.biomedcentral.com/1471-2105/11/S8/S6

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/16322766?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16322766?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10356977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10356977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19429539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17952086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17952086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9744903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9744903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20351793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20351793?dopt=Abstract
http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
http://www.psort.org/dataset/datasetv2.html
http://www.ncbi.nlm.nih.gov/pubmed/12824378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824378?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Experiments and results
	Experimental design

	Results
	Summary and discussion
	Related work on semi-supervised learning
	Expectation Maximization applied to Markov models
	Co-training of Markov models
	Semi-supervised abstraction augmented Markov models - our approach

	Methods
	Data sets
	Markov models
	Learning Markov models
	Using Markov models for classification

	Semi-supervised AAMM
	AAMMs
	Learning semi-supervised AAMMs

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

