Table 2.
Fracture Status as Determined by Gold Standard | |||||
---|---|---|---|---|---|
Positive | Negative | ||||
Fractures identified by SQLServer (report) | Positive | 2 reportsa | 0 reportsb | Precision: 1.00 | |
Negative | 11 reportsc | 387 reportsd | Negative predictive value: 1.00 | ||
Accuracy: 0.97 | |||||
Recall: 0.15 | Specificity: 1.00 | F-statistic: 0.26 | |||
Fractures identified by SQLServer (sentence) | Positive | 12 reportsa | 0 reportb | Precision: 1.00 | |
Negative | 1 reportsc | 387 reportsd | Negative predictive value: 0.99 | ||
Accuracy: 0.92 | |||||
Recall: 0.92 | Specificity: 1.00 | F-statistic: 0.96 | |||
Fractures identified by NegEx | Positive | 13 reportsa | 0 reportsb | Precision: 1.00 | |
Negative | 0 reportsc | 387 reportsd | Negative predictive value: 1.00 | ||
Accuracy: 1.00 | |||||
Recall: 1.00 | Specificity: 1.00 | F-statistic: 1.00 |
Notes:
Accuracy: (true positives + true negatives)/(true positives + true negatives + false positives + false negatives)
Precision: (true positives)/(true positives + false positives)
Recall: (true positives)/(true positives + false negatives)
Negative predictive value: (true negatives)/(true negatives + false negatives)
Specificity: (true negatives)/(true negatives + false positives)
F-statistic: 2 * (precision * recall)/(precision + recall)
true positives
false positives
false negatives
true negatives