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1 Department of Technologies and Health, Istituto Superiore di Sanità, Rome, Italy, 2 Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy

Abstract

Atrial fibrillation (AF), the most common cardiac arrhythmia, is associated with extensive structural, contractile, and
electrophysiological remodeling. In this manuscript we re-analyzed gene expression data from a microarray experiment on
AF patients and control tissues, using a new paradigm based on a posteriori unsupervised strategy in which the
discrimination of patients comes out from purely syntactical premises. This paradigm, more adherent to biological reality
where genes work in highly connected networks, allowed us to get both a very precise patients/control discrimination and
the discovery of cell adhesion/tissue modeling and inflammation processes as the main dimensions of AF.
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Introduction

Atrial fibrillation (AF) is the most common persistent cardiac

arrhythmia and also the most common cause of arrhythmia-

related hospitalizations [1,2]. It has an enormous societal impact

because of its very high incidence, its clinical consequences, the

difficulty of its diagnosis and management. Given that its incidence

increases with age and with life expectancies, increasing in both

developed and developing countries, AF is projected to become an

increasing burden on most health care systems [3].

The relative risk of death for people with AF is over 20% higher

per year than that of age-matched controls, with stroke accounting for

the majority of that greater risk [4]. AF is also associated with

extensive structural, contractile, and electrophysiological remodeling,

which can sustain AF itself. Current pharmacological treatments of

AF present some limits because they can be ventricular proar-

rhythmic and not able to prevent recurrences of AF.

The understanding of the molecular events of these remodeling

processes is essential for the development of new targeted

therapeutic interventions so fostering a great deal of research in

the elucidation of the molecular bases of the disease.

Thus far, there has been a major focus on electrical components of

the remodeling process, which has been analyzed at the molecular

level by candidate gene approaches that have identified expression

changes in genes encoding ion channels or calcium-handling proteins

[5,6]. Some recent studies characterized the molecular basis of AF

remodeling on a more global scale, using genome-wide [7–10] and

dedicated [11] microarrays. All these studies used the classical

supervised statistical technique of hypothesis testing (detecting

differentially expressed genes one by one).

This approach, while surely providing an information easily

understandable to biologists who are used to think on a gene-by-

gene based, can be severely biased by the high dimensionality of

the microarray experiments provoking a lot of chance correlations

[12]. Moreover, on a physiological standpoint, the idea of genes

working independently (implicit in the supervised gene-by-gene

approach) is very unrealistic [13–15]. This is particularly cogent in

the case of cardiac arrhythmias such as atrial and ventricular

fibrillation that were demonstrated to be related to the feature of

multistability of cardiac tissues [16], an intrinsic property emerging

from the interaction of a multiplicity of different factors. New

paradigms are needed if we are to succeed in unravelling

multifactorial genetic causation at higher levels of physiological

function [17]. Thus we shifted to an a posteriori, unsupervised

approach relying on the application of principal component

analysis technique in both a clustering (oblique principal

components) and spectral (component extraction of the data set

having as variables the different tissues and as samples the

analyzed genes) mode [18].

Beside the discovery of a relevant inflammatory component in

addition to the already known cell adhesion/tissue remodeling

one, our approach allowed us to confirm the ‘attractor-like’

hypothesis of gene expression regulation and demonstrated a very

deterministic structure down to very minor regulation modules.

In a clinical perspective the very efficient patient/control

discrimination obtained opens the way for both a quantitative

estimation of disease gravity and efficacy of therapeutic interven-

tions.

Materials and Methods

A. Expression data
The data were obtained from the public functional genomics

data repository of the National Institute of Health (called Gene
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Expression Omnibus, GEO). Data from record #GSE2240 have

been analyzed, consisting of samples of right atrial myocardium

(appendage). Data were related to two Affymetrix platforms

U133A and U133B. Right atrial appendages were obtained from

30 patients undergoing open heart surgery for valve repair or

coronary artery bypass grafting. Of these, 10 patients had

permanent AF defined as duration of AF longer than 3 months

as documented by ECG, whereas 20 patients had no history of AF

and were in SR when open heart surgery was performed. Details

on clinical protocol and hybridization procedures can be found in

[10,13]. According to these previous publication, all patients gave

written informed consent.

B. Data analysis strategy
The data are organized in such a way to have the genes as

statistical units and the patients as variables. The genome-wide

expression profiles of each individual (variables), both AF and

control subjects, were clustered by a divisive clustering algorithm

based on Oblique Principal Component Analysis (OPCA, [19]).

The original data set is progressively subdivided in clusters with

the goal to cluster together maximally correlated variables. The

progressive division of the data set corresponds to the generation

of clusters of variables and to generate clusters the more

independent of each other: this is a maximum intra cluster

correlation/minimal inter clusters correlation criterion analogous

to the k-means procedure [19]. In this case, given the huge

between variables (genome wide profiles) correlation, the system

gives by default a single cluster solution (all the profiles pertaining

to the same cluster) explaining the 98.7% of total variance. This

result is consistent with the well known fact that any sample of a

particular tissue has a strongly invariant gene expression profile.

To check if an unsupervised clustering strategy was consistent with

normal vs pathology classification, we set a priori the number of

clusters: we forced the software to generate a two cluster solution

whose relative asymmetry in control/patients composition is thus a

completely unbiased (no choice of genes, no a priori driving of

solution) measure of discrimination. This analysis was followed by

a principal component analysis (PCA) of the data set.

The principal components were extracted from the same

matrix. Patients and controls are then defined in the space of

component loadings which represent different individuals in

terms of similarities in the gene expression space. The loading

space was then analysed by a linear discriminant analysis

(a supervised procedure) based on three components (two from

U133A and one from U133B space) allowing for an almost perfect

(only one misclassified unit) separation of the data set into

patients and controls. PCA defines single genes in the space of

component scores, allowing for a biological association of

components to groups of genes having the highest absolute

scores and thus permitting a biological interpretation of the

obtained discrimination.

Results

OPC analysis on the U133A data set generated an optimal two

cluster solutions of the data set exhibiting the composition in terms

of control and disease samples reported in Table 1.

The same procedure as applied to U133B set generated the

contingency table reported in Table 2.

Both the classifications are significantly related to the patient/

control discrimination scoring a Fisher’s exact test significance

equal to p,0.0001 and p,0.015 respectively.

This points to a global, genome-wide, significant discrimination

of the two groups. In order to go in depth and refining this

preliminary ‘raw’ result, we separately applied PCA to the two

U133A and U133B sets.

Tables 3 and 4 show proportional and cumulative variance

expressed by the first 10 PCs, for microarray data extracted from

chip U133A and U133B, respectively.

The first PC, for each chip, accounts for more than 98% of the

total variability so pointing to a remarkable general similarity

between samples’ profiles as evident in Fig. 1.

A lot of experimental evidences [20–21] point to the genome

regulation as the dynamics of an highly connected system that

cannot be profitably a priori factorized into single genes

independent dynamics. This connectivity is at the basis of the

consideration of cell kinds as ‘attractors’ in multidimensional

spaces constituted by the characteristic expression values of the

different genes [21]. This attractor-like (and very deterministic)

properties of gene expression hold at the cell population level,

while, at the single cell level, stochasticity seems to prevail [21].

Since the population level is the one important for our analysis

that deals with tissue properties, the analysis of the genome profiles

as a whole is of utmost importance for the description of between-

Table 1. Optimal cluster solution generated by OPC analysis
on the U133A data set.

Control AF patients

Cluster1a 15 0

Cluster2a 5 10

doi:10.1371/journal.pone.0013668.t001

Table 2. Optimal cluster solution generated by OPC analysis
on the U133B data set.

Control AF patients

Cluster1b 3 16

Cluster2b 7 4

doi:10.1371/journal.pone.0013668.t002

Table 3. Proportional and cumulative variance expressed by
the first 10 PCs, for microarray data extracted from chip
U133A.

Eigenvalue Proportionn Cumulative

1 0.9842 0.9842

2 0.0032 0.9874

3 0.0021 0.9895

4 0.0014 0.9909

5 0.001 0.9919

6 0.0009 0.9928

7 0.0007 0.9935

8 0.0007 0.9941

9 0.0006 0.9947

10 0.0005 0.9952

doi:10.1371/journal.pone.0013668.t003

Atrial Fibrillation
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lines differences. The presence of a very strong common attractor

correspondent to the specific tissue and cell kind leads to between-

samples correlations close to one, as for the genome-wide

expression profile. Globally the commonality between gene

expression profiles on the genome-wide scale accounts for 98%

of total variability in both sets. This overwhelming commonality

confines the between-samples differences into minor components.

The principal component analysis (PCA) projects by construction

the initial space spanned by the different samples into a new

derived space whose axes (principal components) are each other

orthogonal. It allows for a direct, unbiased normalization of the

data field, where the ‘shared variance’ is accounted for by the first

principal component (attractor) and the minor components (from

second component onward) keep trace of the relevant among

samples differences.

The analysis of the factor loadings (FL, correlation coefficients

between original variables and components) of the first 6 PCs

revealed that the FLs which better discriminate between

permanent AF patients and controls were: FL of the 2nd PC for

both chips (namely, FL2A and FL2B); FL of the 3rd component of

chip A (FL3A); and FL of the 5th component of chip B (FL5B). A

linear discriminant analysis (LDA) based on the combination of

these 4 FLs leads to the classification reported in table 5.

The classification obtained by LDA on the four selected

components space is extremely accurate with only one missed

sample.

Figure 2 shows the discrimination plane obtained combining

FL2A and FL2B. This reduced bidimensional plane does not allow

to get the same accuracy as the four dimensional one used for

LDA, but it explains the general logic of the method.

The correlation of each FL of one chip with the corresponding

FL of the other chip leads to the results reported in table 6.

Surprisingly, the FL of one chip turned out to be highly correlated

with the corresponding one of the other chip up to the 6th PC. The

surprise comes from the fact that, even if the minor components

are more and more affected by noise [19], we found relevant

correlations for components like the sixth, which explains as few as

8 parts out of ten thousands of the global variability. It suggests an

extremely deterministic type of control. Clearly this determinism,

analogously to the strict determinism of thermodynamic laws,

arises as an average over millions of single stochastic elements

(cells). This tissue level control is probably at the basis of the organ

reliability [14,15,21]. This finding is extremely relevant consider-

ing U133A and U133B share only a minimal portion of common

genes. The fact that U133B has a larger portion of not annotated

genes than U133A is a further proof of the fact that genomes work

as a network rather than as a summation of the activities of

Table 4. Proportional and cumulative variance expressed by
the first 10 PCs, for microarray data extracted from chip
U133B.

Eigenvaluee Proportionn Cumulative

1 0.9835 0.9835

2 0.0035 0.9870

3 0.0028 0.9898

4 0.0010 0.9908

5 0.0008 0.9917

6 0.0008 0.9924

7 0.0006 0.9930

8 0.0006 0.9936

9 0.0005 0.9942

10 0.0005 0.9946

doi:10.1371/journal.pone.0013668.t004

Figure 1. The graph axes are the genome-wide profiles of two samples (an AF and a control one), the vector points are the single
genes. The overwhelming order parameter correlating around 20000 genes expression values is evident. The line roughly corresponds to PC1.
doi:10.1371/journal.pone.0013668.g001
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independent units. This implies that any sufficiently wide sampling

of the genome is an almost equivalent system.

The genes having the highest 50 scores (in module) of the

discriminant components were extracted to give a biological

meaning of the observed patient/control discrimination. Table 7

shows the genes with the highest scores (in absolute value) for the

factor loadings of the 2nd PCs for chip U133A (FL2A).

The genes reported in gray rows are those previously found on

the same data by the group who perform the atrial biopsy in 2005,

using the classical methods of gene up- and down-expression of

patients respect to controls [10,12]. The large number of genes in

common extracted with two completely different methodologies is

a further proof of the robustness of the adopted strategy.

Looking at the biological functions of the genes most influenced

by the discriminant components we can try and give a functional

characterization to the obtained discrimination. With some

exceptions of genes specifically linked to heart functioning

(natriuretic factor), the great majority of the extracted genes

pertains to two main ‘biological classes’: genes linked to tissue

organization and heart structure and genes involved in inflam-

matory processes.

Discussion

The mechanism of AF in human tissues is extremely complex,

because atrial remodeling consists of electrical, contractile, and

structural remodeling. In addition, structural remodeling may

occur from chronic hemodynamic, metabolic, or inflammatory

stressors. The cellular and molecular basis of AF is a field of

enormous interest. Many factors such as ion channels, proteins

influencing calcium homeostasis, connexins, autonomic innerva-

tion, fibrosis, and cytokines may be involved in the molecular

mechanism of AF.

Some aspects of the molecular mechanisms underlying the

genetic variability of AF and the perioperative cardiovascular risk

have been investigated, indicating the alteration of genes involved

in oxidative stress, inflammation and coagulation [10,11,22–24].

In this paper we applied the PCA to microarray data obtained

from permanent AF patients and no-AF control group. The

underlying hypothesis of the strategy is that the AF signature in

terms of differential gene expression cannot be traced back to the

independent activation of single players (genes) but on a general

modulation of the entire genome.

Comparing our methodology with the commonly used general

supervised inferential approach (with statistical test such as SAM)

we were able to better characterized different physiopathological

aspects of AF, aspects impossible to be separately identified by a

classical supervised approach [12].

Unlike the classical meta-analysis approach [25] which tries to

identify sets of relevant genes shared by independent studies, we

abandoned the concept of the selection of important genes as main

goal of the procedure, to shift toward an unsupervised approach

centered on the elucidation of major fluxes of gene expression

correlations as defined by principal component analysis.

As expected, the first PC accounts for more than 98% of the

total population variability; the first PC can be considered as the

common substrate of each individual myocardium. The differ-

ences in gene expression profiles between permanent AF patients

and controls are related to a very small part of the data variability.

However, the analysis of such a small difference in terms of factor

loadings and scores, succeed in discriminating patients from

controls and extracting further genes involved in the pathology,

respect to those already detected. The strict deterministic

character (at the population scale) of the fine modulation

correspondent to the minor components is proven by the strong

correlations existing between partially independent gene expres-

sion panels.

A careful investigation of the genes endowed with highest scores

relative to the second component of gene expression (the only

component common to the two U133A and U133B endowed with

an elevated discriminant power) reveals groups of genes that are

involved in cardiac muscle structure and organization and in

inflammatory processes. Most of these genes are known to be

markers of the pathology, validating our approach; however, we

detect further genes involved in the pathology that allows

Table 5. Classification of patients combining FL2A, FL2B,
FL3A and FL5B by LDA.

AF Control Total

AF 10 0 10

Control 1 19 20

Total 11 19

doi:10.1371/journal.pone.0013668.t005

Figure 2. Discrimination plane obtained combining FL2A and
FL2B. The points in the plot correspond to individual patients
(N = normal patients; AF = atrial fibrillation patients). The plot is
spanned by the two most relevant discriminating factors obtained
from the two chips. The discriminating line is the result of the
application of linear discriminant analysis on the FL2A and FL2B space.
doi:10.1371/journal.pone.0013668.g002

Table 6. Correlation among the FLs of the two chips (U133A
and U133B).

FL1A FL2A FL3A FL4A FL5A FL6A

FL1B 0.70 0.01 0.38 20.39 20.21 20.12

FL2B 0.01 0.72 20.59 20.10 20.12 0.13

FL3B 0.15 20.38 20.64 20.21 20.02 0.14

FL4B 20.44 20.28 20.32 0.80 20.10 0.15

FL5B 20.26 0.18 20.14 0.31 0.75 20.23

FL6B 20.13 20.11 0.11 20.04 0.11 0.70

doi:10.1371/journal.pone.0013668.t006
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completing the transcriptomic deregulation picture of the

pathology studied.

It is worth noting the virtual absence of genes directly involved

in the generation of the electrical stimulus at the single ion channel

microscopic level. This is a very important point that in some way

alters the classical picture of the disease: the most relevant

information for the AF disease are located at the level of tissue

organization that in turn is linked to the stimulus conduction and

generalization on the tissue scale and not at the level of single cell

stimulus onset.

Both tissue organization [26] and inflammation [27] are well

known players in atrial fibrillation, thus our analysis gave results

consistent with the clinical evidences. It is worth noting that both

tissue organization and inflammation are systemic features hardly

decomposable into single genes contributions [17].

At this level of analysis is practically impossible to separate

‘causes’ from ‘consequences’, i.e. modifications in gene expression

that can play a role in the onset of the pathology and modifications

that are induced by the fibrillation event.

We hope further experimentation along this way could shed

light into this very important point.

Conclusion
This manuscript applies a novel approach for the processing of

microarray data of atrial tissue in persistent AF patients. This

approach allows a clear discrimination between microarray

expression profiles of persistent AF patients respect to a control

population. The analysis of genes involved in this clustering reveals

modification of microarray expression in genes involved in cardiac

muscle structure and organization and in inflammatory processes.
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