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Abstract

Many methods, including parametric, nonparametric, and Bayesian methods, have been used for detecting differentially
expressed genes based on the assumption that biological systems are linear, which ignores the nonlinear characteristics of
most biological systems. More importantly, those methods do not simultaneously consider means, variances, and high
moments, resulting in relatively high false positive rate. To overcome the limitations, the SWang test is proposed to
determine differentially expressed genes according to the equality of distributions between case and control. Our method
not only latently incorporates functional relationships among genes to consider nonlinear biological system but also
considers the mean, variance, skewness, and kurtosis of expression profiles simultaneously. To illustrate biological
significance of high moments, we construct a nonlinear gene interaction model, demonstrating that skewness and kurtosis
could contain useful information of function association among genes in microarrays. Simulations and real microarray
results show that false positive rate of SWang is lower than currently popular methods (T-test, F-test, SAM, and Fold-change)
with much higher statistical power. Additionally, SWang can uniquely detect significant genes in real microarray data with
imperceptible differential expression but higher variety in kurtosis and skewness. Those identified genes were confirmed
with previous published literature or RT-PCR experiments performed in our lab.
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Introduction

DNA microarray technologies have been widely used in

biological studies, and simultaneously measure expression levels

of thousands of genes across cells or tissues under different

conditions [1]. In the microarray data analysis process, one of the

most important steps is to determine whether a gene is

differentially expressed under particular conditions since follow-

up analysis depends on the selected differentially expressed genes

(DEGs). Nevertheless, the selection of the DEGs is associated with

both statistical and biological problems [2]. The biological

problem is whether the identification of DEGs should consider

nonlinear biological system. Practically, gene interactions are

nonlinear [3–5]. In nonlinear systems such parameters (mean,

variance, skewness, kurtosis) can be interdependence [6], where

skewness and kurtosis are defined as nonlinear index [7] and can

be preserved even in a weakly nonlinear network or system [8,9].

When an input signal follows normal distribution, nonlinear

system (e.g., quadratic) can produce an output signal with non-

Gaussian distribution [7,9]. Hence, skewness and kurtosis should

be used in evaluating nonlinear systems. Statistically, some current

existing tests for DEGs detection assume linear relationships,

Normal distribution, and large sample sizes according to the

classical statistics. In fact, the limitation of resources and high cost

of the microarray experiments make the sample sizes usually much

smaller relative to the number of considered genes, which results in

the decrease of the statistical power (SP), high false positive rate

(FPR), and the enlargement of sample’s error [10].

Many methods, such as T-test, SAM [11], two-sample Bayesian

T-test [2], and Fold-change, have been proposed to detect DEGs

according to the location (mean) difference of case-control. T-test

is a classical and useful statistical method but it can only detect the

different means of gene expression profiles. SAM, a derivation of

T-test, uses the same principle as T-test to detect DEGs and its

uncertainty s0 has significant effects on the mean difference

detection of gene expression [1]. Similarly, the principle of Golub’s

discrimination score [12], Welch t-statistic [13], t-type score [1],

probe level locally moderated weighted median-t (PLW) [14], and

locally moderated weighted-t (LMW) [14] focus on the difference

of locations. Two-sample Bayesian T-test [2], which can be used

for the small sample size via incorporating prior information, still

detects DEGs based on the mean difference. Finally, Fold-change

[15] is a simple method to detect the mean difference of gene

expression. However, all of those methods are unable to use the

information of variance, kurtosis and skewness of gene expression

simultaneously.
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In contrast, other methods, such as Hartley, Cochran, and

Bartlett test, could utilize sample variance difference to detect

DEGs. These methods identify DEGs without considering the

difference between means based on an assumption that the

logarithm of expression-level measurement of a gene under a given

condition has a rough Gaussian distribution. Meanwhile, non-

parametric methods without any distribution hypothesis have also

been used to select differentially expressed genes, but much

information is ignored because those methods only considerate the

rank of samples.

Alternatively, other methods have been developed to detect DEGs

on the basis of large-scale data, or statistical models. The false

discovery rate (FDR) [16], ranking analysis of microarray data

(RAM) [17], FDR-base methods [17], and optional discovery

procedure (ODP) [18] identify DEGs through ranking the statistics

of any statistical method based on large-scale data. FDR, an

expected proportion of the false positive among all the positives

detected, is to control the erroneous rejection of a number of true

null hypotheses, while RAM is a large-scale two-sample t-test

method and is based on the comparisons among a set of ranked T

statistics. Hence, the first step of FDR and RAM is to calculate

statistics of each gene in a microarray. In the application of ODP, the

assumption of the null distribution and alternative distribution is the

prerequisite. Hotelling’ T2 test is to test the different mean vectors of

entirety genes of case-control, yet it is still limited by the smaller

sample sizes relative to the number of considered genes. The MFS-

Hotelling’ T2 [19] is not affected by sample sizes but is still based on

means and covariance. Those methods are designed for large-scale

data, while other methods based on statistical models have been

proposed, like Bayesian method included probe-level measurement

error (BPLME) [14], and FS test [20]. BPLME employs Bayesian

hierarchical models to estimate probe-level measurement error

which is utilized to adjust the variance for selecting DEGs. Similar to

ANOVA and F-test, FS test is based on generalized linear model to

estimate shrinking variance to determine DEGs. Although these

methods may be robust in finding DEGs to a certain extent, they all

ignore the information of the high moments.

Unlike other methods, ANOVA, a generalization of the t-test,

allows for the comparison for more than two conditions’ samples.

Similarly, F-test, fixed-ANOVA, and mixed-ANOVA are designed

to detect DEGs under several conditions [21]. However, they only

consider the information of the locations.

In all, current published methods are adjusted basic statistics

methods and try to decrease the FPR in microarray analysis

according to aforementioned approaches. Those methods only

focus on difference of location or variance and ignore the

difference of high moments, which could possibly lead to error

in certain parts of randomization theory [22]. Moreover, they also

ignore the functional association from those functionally related

genes in microarray experiments because they assume that

biological systems are linear and their approaches follow Normal

distribution, respectively. During the process of DEGs selection,

those statistical methods simply discard the genes which may

actually be quite important because they display insignificance in

different means or variances between case and control. Therefore,

those methods normally have comparatively low statistics power

with high FPR [10]. It is still a challenge that how to improve SP

and maximally extract the useful information from the microarray

data by incorporating the information about the functional

relationship between genes from the microarray data with

relatively small sample size [10].

To decrease FPR and improve SP, we present the SWang test to

detect the DEGs not only by utilizing means, variances, skewness,

and kurtosis simultaneously, but also by recognizing and latently

incorporating the functional relationship of genes in biological

systems. In the study, we conduct comparative evaluation of the

performance between SWang and other tests, like T-test, F-test,

SAM, and Fold-change, based on simulated and real microarray

data. Two real microarray datasets of breast cancer are employed

to test SWang method and other four tests. Moreover, we carry out

experiments at the bench to confirm those genes uniquely

identified as being differentially expressed by SWang(1,4). All the

results demonstrate that our method is superior to the other four

statistics methods for the DEGs detection.

SWang test has several unique characteristics compared to the

current popular methods.

First, SWang utilizes the information of multiple and high

moments which have been used to summarize the shape of a

probability distribution in probability theory (File S1 text). The

high moments represent certain information of distributions, e.g.,

the skewness indicating symmetric distribution. The positive

skewness means the asymmetric distribution with longer right tail

while negative skewness indicates the asymmetric distribution with

longer left tail [23]. Therefore, the first moment (also known as

mean) could not be enough to represent all the location information

in asymmetric distribution. The positive kurtosis means that most of

the variance is the result of infrequent extreme deviations, as

opposed to frequent modestly sized deviations [23]. To illustrate the

biological significance of high moments, we construct a nonlinear

gene interaction model to demonstrate that high moments contain

the information of association among genes. Although the estimated

high moments may be biased, the estimation of kurtosis could be

reliable in Pearson’ distribution family with relatively small sample

size [23] and they are necessary to be considered in detecting

DEGs. Because the sample size is much smaller than the size of

genes under most circumstances in the microarray application, and

the small sample size makes the law of large number invalid [24,25],

it indicates that the mean and variance contain insufficient

information of the data when the sample size is small.

Second, we assume that the distribution of gene expression

profile belongs to Pearson distribution family that includes normal

distribution, exponential distribution, Gammas distribution, or

mixture of Gaussian/Gammas distribution, according to previous

studies [25–27].

Third, from the statistical view, the highest moment for the

samples should be four and the fourth moment corresponds to

kurtosis [22]. Our method realizes and utilizes multiple moments

simultaneously, since it can also be statistically proven that the

high moment is necessary and essential for the gene differential

expression detection under the small sample size.

Fourth, SWang latently incorporates the biological facts that

functionally related genes have effects on the expression levels of

one another. Although the associations among genes are not easy

to be estimated, they could be recognized via considering all

moments according to nonlinear gene interaction model and

nonlinear biological system.

Finally, SWang can be used to detect DEGs with different

combinations of different moments which depend on the sample

size and the assumption of distribution. SWang is based on a null

hypothesis that the mean, variance, skewness, and kurtosis

between case and control should be equal. Although there are

total of 15 combinations, we suggest that it is better to consider the

four different moments simultaneously during the application.

Results

To evaluate the performance of SWang, we carried out two

statistical simulations to measure and compare the FPR and SP

A Simultaneous Test on Moments
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under Pearson distribution family between SWang and four other

methods, including T-test, F-test, SAM(s0 = 0.3), Fold-change.

The first simulation was to calculate FPR without considering gene

associations under various distributions and the second was to

measure SP with the consideration of nonlinear biological system.

Next, DEGs were selected in real microarray data with those

methods. During the processes, the criteria for p-value and q-value

are 0.05 (or 2-fold change), and these rigorous criteria are to

minimize the false positive results [28]. Subsequently, the results

generated with those five different methods are compared with

each other. Additionally, we also use ‘spike-in’ data to evaluate the

SWang.

Firstly, we randomly drew samples from both case and control

groups. The distribution of case group was considered as

exponential, normal, uniform, cauchy distribution, complex of

triangular, normal, and exponential distribution, or mixture of

normal distribution, respectively, when the distribution of control

group was regarded as normal distribution with mean as 1 and

standard deviation as 1.5. Sample size was the combination of the

sample size of both case and control from 3 to 53 (Details in File
S4). This step is to generate a pair of case and control groups for a

gene of interest to test whether the gene is differentially expressed.

During simulation, we randomly assigned 20% genes as DEGs to

calculate false positive rate when the distributions of case and

control are the same and explore the differences of skewness and

kurtosis between case and control from either small samples or real

gene-expression variation. Then we calculated the p-value of

SWang, T-test, SAM, and F-test or fold-change ratio. Subsequent-

ly, we counted the number of those genes with p-value less than

0.05 or fold change greater than 2. Finally, we calculated the FPR

and SP of each method [29].

Next, we drew the figures with false positive rate as vertical

coordinate and cut-off p-value as horizontal coordinate according

to the simulation results. The cut-off p-value is the theoretical false

positive rate which is the ratio of undifferentially expressed genes

selected as DEGs to the total number of DEGs in theory. The false

positive rate is the real p-value generated from the simulation

results. Practically, if the curve in generated figures is above

diagonal line, it indicates that the real false finding ratio is higher

than estimated false finding ratio, and the method is unconvincing,

so that the result obtained by this method is undesirable with low

confidence. In contrast, if the curve is on or below the diagonal

line, the real false finding ratio is equal to or less than the estimated

false finding ratio, resulting in the satisfied findings with high

confidence.

The results showed that the curves of F-test, T-test, and SWang

displayed lower false positive rate with their curves on or below the

diagonal line, with the curve of SWang located at lowest level

(Figure 1).

Traditionally, the microarray data are regarded to follow

normal distribution. We tested the performance of SWang and

others under this assumption. Comparing the curves generated

from other methods, the slope value of the curve for SWang with

different combinations of moments and different sample sizes are

the smallest. It can be seen that the separation ability for the curve

between SWang and others is largest when fourth moment

(kurtosis) is applied in SWang to detect DEGs. Simulation results

also show that the FPRs of SWang with high moments are the

lowest among all the tested methods, regardless of the sample size

(Figure S4).

In fact, the real microarray data distribution does not always fit

normal distribution. Therefore, we considered the situation that

the distribution of microarray data belongs to Pearson distribution

family, and also tested the performance of SWang and other

methods under various Pearson distributions. Exponential distri-

bution is a special gamma distribution which is a subset of Pearson

distribution family. The curves generated from those methods

indicate that the slope of the curve for SWang is the most gradual.

The FPR of SWang with high moments are the lowest with sample

size greater than 5 (Figure S6). We obtained the similar results on

other Pearson distribution including Uniform distribution, and

Cauchy distribution.

The results from Figure 1, and Figure S1, S2, S3, S4, S5, S6,

S7 demonstrated that our methods have good performance with

higher confidence in DEGs detection, and that the differences of

skewness and kurtosis between case and control are not due to the

sample size but to real gene-expression variation. When high

moments are utilized, FPRs of SWang are less than those of other

methods. As the sample size increases, the significance of skewness

and kurtosis correspondingly decreases.

We also verified the effectiveness of SWang with the ‘spike-in’

data [30] that contain a limited number of spiked-in cRNAs. The

‘spike-in’ data is a control dataset which has been used for

evaluating the effectiveness of analysis methods for microarrays.

This dataset has several features to facilitate the relative assessment

of different analysis options [30]. Our analysis demonstrated that

the SWang(1,4) option provided the lowest false positive rate

(Figure S8). The other options of SWang proved less effective

compared to the SAM and Fold-change methods, this could be

due to the criteria in ‘spike-in’ experimental design for selecting

DEGs solely based on Fold-change. In addition, the experimental

design for the ‘spike-in’ data may not even have considered gene

function associations.

We then evaluated the robustness of SWang with simulation

when considering nonlinear biology system (Figure 2, and

Figure S8, S9, S10, S11, S12, S13, S14, S15). The sample

size is the combination of the sample sizes from both case and

control groups and the SP is the ratio of the number of DEGs to

the total genes generated from the simulation results. Visually, the

far the curve in the figures from the horizontal coordinate, the

better the method.

Under normal distribution, the curve of the SWang(1,4) option is

on the top, the curve of F-test is the second, below that of

SWang(1,4), and the curves of the other three methods separate

from that of SWang and F-test significantly, being close to baseline

(Figure 2A). More interestingly, under Exponential distribution,

the curve of SWang(1,4) is on the top and far apart from the curves

of other four methods (Figure 2B). Similar results can be

observed under Uniform, Gamma, mixture of Gamma and

Normal, and complex distribution (Figure 2C–2F). When the

sample size is very small, it seems that the curves of SWang and the

other four methods cannot be distinguished. To further compare

SP between SWang and the other four methods under small sample

size, we drew Figure S9 with small sample size and the result

illustrates that the curves using the SWang(1,4) option are still on

the top. Therefore, it is shown that SP of SWang is always larger

than other methods under various tested distributions, indicating

that SWang has the best performance among those five methods.

To compare SPs under different moment combinations of

SWang with the other four methods, we also measured SPs with

Pearson distribution family. Under normal distribution, the curves

of SWang(1,3) and SWang(1,4) are farther from the horizontal

coordinate (Figure S10), demonstrating that the SPs of

SWang(1,3) and SWang(1,4) are larger than those of the other four

tested methods. F-test has the second largest SP under the test

situation. Although there are some overlap between curve of

SWang and the others methods, the curves of SWang are higher that

those of the others when considering small sample size (Figure

A Simultaneous Test on Moments
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S11). Simulation results under other Pearson distribution family

also showed that the curves of SWang(1,3) and SWang(1,4) to be far

above the curve of other methods (Figure S12, S13, S14, S15,

S16). These analyses demonstrate that SPs of SWang(1,3) and

SWang(1,4) are larger than those of the other methods, and that it

is necessary to utilize high moments to detect DEGs.

To evaluate the performance of our method on real data, we

used the SWang (1,4) option to detect the DEGs in both dataset1

and dataset2 related to breast cancer (See Material & Method),

and then mapped those selected genes to human biological

pathways based on the KEGG system. Here, we only focus on

those genes that are mapped to the cancer related pathways from

KEGG.

In Dataset1, the previous study has identified 160 significantly

differentially expressed genes at threshold of q values#0.05 [28]. In

the same dataset, our method detected 157 genes with differential

expression in those 160 genes. The three genes that are not selected

by our method all have higher p-value in our result, although the q-

value for those genes is less than 0.05 based on previous method.

The p-value for gene CKS2 (Mutation Id 359119) with our method

is 0.05667 when its q-value is 0.04540; gene MYCLK1 (Mutation Id

417226) has a q-value of 0.04723, but its p-value based on our

method is 0.05011; meanwhile, the Mutation Id (HV18H8)

corresponding to an unknown gene is also detected as differentially

expressed with a q-value of 0.04984 based on previous study, but in

our result its p-value is 0.055762, larger than 0.05.

We also applied several other common different statistical

methods to detect the DEGs in both dataset1 and dataset2, and

the overlapping genes selected by all of the applied methods are

shown as 5-venn diagram in Figure S18 and Figure S19. A

number of genes were not regarded as significantly differentially

expressed by other applied methods since their p-values were

greater than 0.05 based on T-test, SAM(0.3), F-Test, or their fold

changes were less than 2. Among these genes, our method has

Figure 1. False positive rate of T-test, F-test, Fold-change, SAM(0.3), and SWang with 5 samples for both case and control from
Normal distribution. A: False positive rate of SWang(1,2) and other methods. B: False positive rate of SWang(1,3) and other methods. C: False
positive rate of SWang(1,4) and other methods. D: False positive rate of SWang(2,3) and other methods. E: False positive rate of SWang(2,4) and other
methods. F: False positive rate of SWang(1,3) and other methods. The false positive rate of T-test(black spotline), F-test(gray spotline), Fold
change(not shown), SWang(blue spotline), and SAM(0.3)(not shown) with cutoff of p-value. Note that the curves of SAM and Fold-change cannot be
drawn due to false positive rate of SAM and Fold-change that can not calculated, as all real DEGs are considered as non-DEGs under both methods.
doi:10.1371/journal.pone.0013721.g001

A Simultaneous Test on Moments
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additionally detected 42 genes (63 Mutation Id) in Dataset1, 312

genes (362 probes) in Dataset2 as differentially expressed.

Although there are larger number of genes detected by F-test

and T-test than that of genes selected by SWang, T-test and F-test

have higher FPR with respect to non-Gaussian distribution of

microarray [19]. Moreover, T-test and F-test ignore the nonlinear

biology system. The inherent limitations of the two tests could

bring about high positive result.

To further confirm the results of our analysis, we randomly

selected 9 genes from those genes detected by T-test, F-test,

SAM(0.3), or Fold-change but not detected by our method in

Dataset2, and carried out the same RT-PCR experiment. Because

some of the gene names do not exist in NCBI anymore and the

RT-PCR for some other genes was unsuccessful, eventually, we

got RT-PCR result for 3 out of 9 genes. The result shows that

those three genes are not differentially expressed between the

breast cancer lines and control (Figure S20).

In dataset1, we focused on those uniquely selected genes

(Table S1 in File S5) that are involved in the related cancer

pathways. The relative statistics for those genes are listed in

Table 1. TP53 (GeneID: 7157) was one of gene selected which

encodes a tumor suppressor, that has been widely recognized as

an important protein in various carcinogenesis. It is one of the

components in MAPK signaling pathway [31]. Changes in the

TP53 gene greatly increase the risk of developing breast cancer

[32], [33–35]. TP53-mutated breast cancers have been shown

increased sensitivity to high-dose chemotherapy or dose-dense

epirubicin-cyclophosphamide.

In dataset2, mapping those uniquely selected genes by our

method to cancer pathways left 12 genes, BID (GeneID: 637),

CCNE2 (GeneID: 9134) [36], DVL3 (GeneID: 1857), FGF7

(GeneID: 2252), FGFR1 (GeneID: 2260), FGFR2 (GeneID: 2263),

FZD4 (GeneID: 8322), MAP2K2 (GeneID: 5605), PDGFB

(GeneID: 5155), PGF (GeneID: 5228) [37], PML (GeneID:

Figure 2. Statistical power of T-test, F-test, Fold-change, SAM(0.3), and SWang(1,4). The distributions of control are normal, Statistics
power of those methods are A: under Normal distribution for case. B: under Exponetial distribution for case. C: under Uniform distribution for case. D:
under Gamma distribution for case. E: under mixture of gamma and normal distribution of case group. F: under complex distribution which is a
combination of various distribution for case. The statistics powers of T-test(black spotline), F-test(gray spotline), Fold-change(green spotline),
SWang(blue spotline), and SAM(0.3)(red spotline), while the size in the coordinate is equal to the sample size of control group times that of case
group with power as 0.2.
doi:10.1371/journal.pone.0013721.g002

A Simultaneous Test on Moments
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5371), and WNT1 (GeneID: 7471) (Table S2 in File S5).

Interestingly, we found that those genes, WNT1, FZD4, and

DVL3 are enriched in the Wnt signaling pathway (Figure S17)

[38–41]. WNT1 detected as down-regulated in the dataset2 has

been reported to be involved in human breast neoplasma.

Among those uniquely selected DEGs with our method in

dataset 1 and dataset2, There are three common genes, PDGFB

(GeneID: 5155), MCM4 (GeneID: 4173), and MYD88 (GeneID:

4615). The Fold-changes of PDGFB, MCM4, MYD88 in dataset 1

are 0.786, 0.043, 20.38, respectively while the Fold-changes of

those genes in Dataset2 are 0.408, 0.427, 20.0046. Interestingly,

the trends of overexpression or underexpression for those genes

are consistent between those two datasets. The upregulated

MCM4 gene in our result is one of the genes involved in DNA

replication and cell cycle, it has been reported that mutation in

MCM plays a role in cancer development in mice and may

increase breast cancer risk in humans [41]. MYD88, an adaptor

protein which is known to mediate the signaling of toll-like

receptor (TLR), has been reported to mediate IFN-c- induced

MAP kinase activation and PD-L1 expression. Previous research

has confirmed that TLR is expressed in breast cancer [42].

Meanwhile, it has been shown that chemopreventive agents

potentiate IFN-c-induced PD-L1 expression in human breast

cancer cells [43].

Finally, we utilized the same Semiquantative RT-PCR to verify

those 12 genes uniquely detected with our method and not

confirmed with experiments from published literature. The result

clearly shows that those genes are differentially expressed between

the different breast cancer lines comparing with the different

metastasis abilities and the control (Figure 3).

Discussion

A basic and crucial step in microarray data analysis is to detect

DEGs from ten thousands of genes on microarray. Previously,

several statistical methods [1,2,10–19] have been applied for the

selection process, but the inherent biases of those methods limit

their application and result in relatively high FPR [16]. Our

proposed SWang test has the lowest false positive rate in

simulations and the best performance using real microarray data

to detect DEGs compared with those popular tested methods,

because SWang latently considers the complicated gene interaction

relationships acting on gene expression in biological systems and

incorporates more concealed information of the microarray data,

like kurtosis, skewness, and high moments which are ignored by

other methods [20,27]. Furthermore, results of SP in simulation

indicate that SWang has comparatively significant performance

whether or not the gene function association is considered.

In the microarray application, the nonlinear characteristics and

small sample sizes always cause high FPR and low SP when

detecting the DEGs with current popular methods. SWang

incorporates skewness and kurtosis, and those moments can

indicate nonlinear effects that should not be neglected when

evaluating data with small sample sizes. Previous researches [7–9]

and our analysis of nonlinear gene interaction model suggest that

skewness and kurtosis can be used to measure nonlinear effects for

nonlinear systems. Besides, according to the Law of Large

Number, when the sample size is large enough, only considering

the mean and variance could be enough to detect those genes with

differential expression. However, under most of circumstances, the

sample sizes in microarray experiments are too small compared

with the number of genes found on the microarray, and the law of

large number will become invalid. In such case, maximally using

various information the data contains becomes more important to

correctly select the DEGs and the curious property of moments of

small sample size is that ignoring moments could possibly lead to

error in certain parts of randomization theory [22]. SWang

considers the high moments, and it yields both the lowest FPR and

highest SP under the small sample size, compared with the other

four methods.

For certain genes in a microarray experiment, even if the null

hypotheses can be accepted when using T-test, F-test, or SAM,

skewness and the kurtosis for those genes can be significantly

different, indicating the distributions of both case and control are

asymmetric and leptokurtic/platkurtic. Therefore, when the

SWang statistical method is applied on the related data, the null

hypotheses for those genes could get rejected. For instance, in

dataset1, the statistics of T-test and F-test for gene BCR with fold-

change 20.1775 are 0.5423 and 0.3282. However, the skewness

and the kurtosis of the gene between case and control are larger

than 1, with 21.6916, 20.6692 in case group, and 20.0750,

0.5691 in control group, respectively. In dataset2, the gene CD8A

Table 1. The value of genes of different statistics.

Mutation_id gene q-val F_C T_T pt sam psam F_T Pf SWang P_sw

UG4B8 BCR 0.6568 20.18 0.542 0.298 0.263 0.398 4.775 0.328 3.7843 0.0435

HV7G7 CASP3 0.6533 20.02 0.081 0.468 0.030 0.488 1.951 0.007 3.8086 0.0428

LO1E11 CCND1 0.4079 20.06 1.165 0.132 0.1560 0.438 0.13 1.365 5.1738 0.0179

LO5H3 EGFR 0.4683 0.004 0.016 0.494 20.006 0.502 2.939 2E-04 5.9013 0.0118

HV4C6 IL1R1 0.4788 0.351 0.977 0.173 20.471 0.677 7.003 0.912 3.7972 0.0431

HV25H4 MCM4 0.3918 20.38 0.996 0.169 0.450 0.313 7.639 0.994 4.5766 0.0258

HV5D11 MYD88 0.5618 0.043 0.228 0.412 20.083 0.532 1.531 0.058 3.7185 0.0456

HV16G1 PDGFB 0.1694 0.786 1.744 0.052 20.917 0.812 12.58 2.92 4.4912 0.0272

HV31E10 RRAS2 0.1957 20.18 1.552 0.072 0.416 0.342 0.807 2.428 3.7161 0.0456

UG4C10 TAGLN 0.5245 0.818 0.655 0.262 20.455 0.672 76.68 0.438 3.7843 0.0435

LO2D5 TP53 0.2422 20.52 1.444 0.086 0.721 0.242 2.261 0.157 5.249996 0.017

The genes and their related mutation Id in Dataset1, q_val is the q_value of gene expression, F_C is Fold-change of gene expression, T_T is T-test value, pt is the p-value
of T-test. Sam is the value of SAM(0.3), F_T is the value of F_test, pf is the p-value of F-test for gene expression. SWang is the value of SWang for gene expression, and
P_sw is the p-value of SWang.
doi:10.1371/journal.pone.0013721.t001
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is regarded as not significantly differentially expressed based on the

same popular statistics methods above, since its fold-change ratio is

20.002, with T-test value as 20.0047, and F-test value as 2E-05.

However the skewness and the kurtosis of the gene are 20.4663,

20.7884 in the case group, and 20.2214, 0.6683 in control group,

our method has recognized it as a gene with significantly

differential expression, and the result is confirmed in the breast

cancer cell lines with semiquantatitive-RT-PCR (Figure 2).

Although estimations of skewness and kurtosis of small sample

size could be unstable, there is a stable way to extract information

of skewness and kurtosis. The raw moments of any sampling

distribution can be unbiasedly and separately estimated but they

cannot take the expected values simultaneously [22]. However, for

central-moments like mean, variance, skewness and kurtosis, and

raw moments, the sample size should be greater than 4 when

unbiased estimating the four central and raw moments, and the

highest order of moments should not be greater than the sample

sizes [22]. In addition, in the Pearson distribution family, reliable

kurtosis can be estimated at relatively small sample sizes [23].

Furthermore, our simulation results for FPR also demonstrate that

the sample size should be greater than 4 when estimating the first

four moments of a distribution from Pearson distribution family.

Finally, symmetric functions of raw moments are unbiased

estimators of central moments [44]. As a result, to obtain stable

skewness and kurtosis and avoid problem [44], we suggest to

transform skewness with the third raw moments and kurtosis with

the fourth raw moment.

The SWang test can have different combinations with different

moments, and we can use SWang (h,k) to represent SWang test

which includes information from hth moment to kth moment,

where h is defined as greater than or equal to 1 and is the smallest

moment, k is defined as greater than or equal to h and is the largest

moment. Also, we can apply SWang test as the SWang((1,3,5))

format which means that SWang utilizes the information from the

first, third, and fifth moments to test the difference between the

case samples and control group. When h = 1 and k = 1, the

SWang(1,1) is the square of classical T-test (File S3), as T-test has

an assumption that the two-sample variances are equal. When k is

greater than 2, the SWang test is not a general test. When all

existing moments are employed in the SWang test, SWang will test

whether the distributions of case and control are the same or not.

It should be noted that the SWang test is not an adjustment of T-

test, because it can test the mean, variance, kurtosis, and skewness

simultaneously. In contrast, T-test can only test the differences of

mean without considering the differences of variance, kurtosis, and

skewness. Since the function of Hotelling’T2 test (formula 10) can

test multivariate simultaneously, our SWang method looks like the

Hotelling’T2 test. However, our method can utilize the informa-

tion of the moments that are from second moment to high

moment when it is necessary according to the sample size and

data.

SWang test can be used not only on datasets with large sample

size but also on those with small sample size, the degrees of which

depend on the sample size and the moment. The sample size

determines how many moments need to be used, and conversely,

the usage of the selected moment can also have an effect on the

sample size. Practically, the highest moment should be four,

because the underlying hypothesis distribution is normal distribu-

tion that belongs to the Pearson distribution family, which is

supported by the characteristics of the gene expression. For the

degrees of SWang(1,k), the sum of sample sizes from both case and

control should be greater than k+1 and the minimum sample size

of both case and control groups should be greater than or equal to

2. Otherwise, the SWang test will be invalid. Similarly, the total of

samples from case and control should be at least six when using

SWang(1,4) option. When the sample sizes of both case and control

are equal to two, SWang(1,2) or SWang(1,1) should be adopted in

the DEGs selection process. Strictly speaking, the sample sizes of

Figure 3. Semiquantative RT-PCR comparision. MCF-10A cells were cultured in DMEM/F12 with 10%FBS, 20ng/ml EGF, 0.5ug/ml
Hydrocortisone, 0.01ug/ml Insulin and 0.1ug/ml Cholera toxin. MCF-7, SK-BR-3, MDA-MB-453 and MDA-MB-231 cell-lines were maintained in DMEM
with 10%FBS. PCR products (MCF-10A, lane 1; SK-BR-3, lane 2; MCF-7, lane 3; MDA-MB-231,lane 4) were separated on 2% agarose gel and then stained
with ethidium bromide. Stained bands were visualized under UV light and photographed. The beta-actin used as an internal control.
doi:10.1371/journal.pone.0013721.g003
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case and control should be greater than 4 for SWang(1,4) for

consideration of the reliability of skewness and kurtosis.

SWang can be used to detect DEGs based on the same

distribution of null hypothesis which is transformed as s1,case~

s1,control ,s2,case~s2,control ,s3,case~s3,control ,s4,case~s4,control in Pear-

son family distribution. Realistically, the real distribution for

microarray data is unknown and complex. Normally sample size is

much smaller than the number of genes for microarray, thus the

distribution for both case and control for all used datasets has been

assumed to be exponential, log-normal, Gamma or their mixture

distribution [26,27]. However, those assumptions could be

insufficient. Our results of Empirical distribution Test indicate

that distributions of case and control for certain genes could be the

same or different in the same dataset. For example, distributions

between case and control for TP53, MYM88, and PDGFB

between dataset1 and dataset2 are different, despite the fact that

distributions of case and control for those genes in each dataset are

the same, suggesting that distributions in different datasets should

be different (Table S3). Furthermore, the previously assumed

distributions and variety of observed distributions belong to the

Pearson distribution family. Hence, Pearson distribution family

will be a necessary assumption for the distribution in microarray

data. Any distribution can be characterized by a number of

moments and the moments of a distribution describe the nature of

its distribution [24]. SWang can use existing moments to detect

DEGs via determining whether the distributions of case and

control are the same. Under such circumstance, the general SWang

test will be better for detecting DEGs.

In conclusion, SWang has significant performance with unbiased

estimation of skewness and kurtosis under small sample sizes, and

is a method to test the differences of the distributions between case

and control for complex distribution of microarray data. Thus it

can detect DEGs with low FPR and high SP when applied in

microarray data analysis comparing to the other four methods.

As the microarray technologies have been widely used during

the past decade, enormous data have been accumulated. How to

extract the meaningful biological information from them is still a

challenge. Our new method provides a new alternative and

powerful way to recognize the DEGs. It is expected that revisiting

the microarray data with our method could lead to the discovery

of new biological knowledge and new insight into mechanisms for

old biological processes and diseases.

Materials and Methods

Datasets
Two different datasets of breast cancer were used. The first

dataset (Dataset1), used in the development of the q value method,

was downloaded at http://research.nhgri.nih.gov/microarray/

NEJMSupplement [28]. It consists of 3,226 genes on sample size

n1 = 7 of BRCA1 arrays and sample size n2 = 8 of BRCA2 arrays.

The second dataset (Dataset2) was downloaded from GEO

(GES8193) and is an expression dataset from age-dichotomized

ER+ breast tumors. We followed the original experimental design

and divided the Dataset2 into two groups: one is used as control

with the age #45; the other is as case with the age $70.

Semiquantitative RT-PCR analysis
Total RNA was extracted with Trizol Reagent (Invitrogen)

based on American Type Culture Collection’s instructions, from

which all breast cancer cell lines were obtained. Then cDNA was

synthesized from total RNA using PrimeScriptTM RT reagent Kit

(TaKaRa). The PCR reaction to amplify DNA fragments was

performed at 94uC for 30 seconds, 55uC for 25 cycles of

30 seconds each, and 72uC for seconds.

SWang methods
Assume the expression values of genes from m samples of control

group are X~f(xi1,xi2, � � � ,xim)Di~1,2, � � � ,pg, where the p is

total size of genes, and the expression values of genes from n

samples of case group are Y~f(yi1,yi2, � � � ,yin)Di~1,2, � � � ,pg.
Also, the raw data transformed with logarithm base 2 are assumed

normal distribution.

Previous statistical methods, such as T-test and its derivations,

ANOVA and its derivations, and Fold-change, do not consider

information of means, variances, skewness, and kurtosis simulta-

neously. We can determine whether a gene is differentially

expressed solely based on the mean difference. However, it will be

difficult for us to determine the differential expression of genes if

the paired means of the gene expression levels between the control

and case have no difference. Under such circumstance, we need to

consider more information besides the means, such as variances,

skewness, and kurtosis. Here, the null hypothesis is that the mean,

variance, skewness and kurtosis between case group and control

group are equal.

Accordingly, bsxi
~

Pm
j~1 (xij{�xxi)

3

(s2
xi

)3=2
~NN(0,6=m) is the skewness

of xi1,xi2, � � � ,xim, which is appropriated to normal distribution

with mean as 0 and variance 6/m. bkxi
~

Pm
j~1 (xij{�xxi)

4

(s2
xi

)2

{3*N(0,24=m) is the kurtosis of xi1,xi2, � � � ,xim, which is

appropriated to normal distribution (mean = 0, variance = 24/m)

[22], [45]. Similarly, bsyi
~

Pn
j~1 (yij{�yyi)

3

(s2
yi

)3=2
*N(0,6=m) is the

skewness of yi1,yi2, � � � ,yin, which is appropriated to normal

distribution (mean = 0, variance = 6/n). bkyi
~

Pn
j~1 (yij{�yyi)

4

(s2
yi

)2

{3*N(0,24=n) is the kurtosis of yi1,yi2, � � � ,yin, which is

appropriated to normal distribution with mean as 0 and variance

as 24/n. It can be proven that the kurtosis and skewness are

independent of the mean and variance (File S1). Therefore, it is

necessary to consider the skewness and kurtosis simultaneously

when applying statistical methods to select the DEGs.

In real biological system, many regulatory mechanisms, like

positive and negative feedback loops have great impact on the

gene expression levels. The effect of perturbing the expression of

any one gene will most likely lead to a cascade throughout the

transcriptional regulatory network, affecting the expression of

many other genes. Subsequently, changes of other genes in

expression would conversely have the effect on the expression level

of the perturbed gene due to the potential feedback control

mechanism [46], [47]. Eventually, the feedback regulatory loops

will make the perturbation of those genes convergent, and the

microarray data is actually a snapshot that catches the homeostasis

of an organism or cells at such specific time point; this leads to the

microarray data not being the index of the initial differential

expression for the given set of genes. Instead, it reflects the

consequence of interactions among the genes which is composed

of their initial expression level, the fluctuation of their expression,

and the interaction among the functional related genes. We can

construct a nonlinear gene interaction model for this scenario as

follows,

OI~EIz
X

Geneset=I

f (fEo (EIzaI ))z
X

Geneset=I

f (gao (EIzaI ))zaI ð5Þ
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where I represents the initial perturbed gene(s) in a biological

system under experimental condition, OI is the observed or

measured expression value of the I gene(s) on microarray, EI

means the initial expression value of the I gene(s), f (fEo (EIzaI ))

indicates the function of the I gene(s) expression caused by

expression of other genes that have been affected by the expression

and fluctuation of the I gene(s), f (gao (EIzaI )) refers to the

function of the I gene(s) expression caused by the fluctuation of

other genes that have been affected by expression and fluctuation

of the I gene(s), aI is the fluctuation of the I gene(s) and follows a

normal distribution, Genes=I means the complementary set of I,

which is also a set of all genes except I.

For normal distribution whose kernel is exp ({((x{mu)=
sigma)2), we assume that f (fEo

(EIzaI )) and f (gao
(EIzaI )) are

nonlinear function because gene expression regulations are non-

linear [48]. For simplicity, we can use quadratic function to

construct a model for gene interactions. The function (11) in File
S1 indicates that from the biology view, it is not sufficient to only

consider the differences between means or variances during DEGs

detection.

When mean, variance, skewness, and kurtosis of gene

expressions are the same, the genes can be regarded as not

differentially expressed. We transform the estimation of central

moments to raw moments through the functions 6–10 (File S1).

The raw moments could be unbiasedly estimated by mapping to

their corresponding to sample raw moments for any sample sizes

greater than 4 [22]. Hence, the null hypothesis is that the mean,

the average of squares, third moment, and fourth moment of gene

expression between case group and control group are equal.

Based on the hypothesis, we can deduce a new null hypothesis

that the one to four raw moment(s) of both the case and the

control are equal which means H0: s1,case~s1,control ,s2,case~

s2,control ,s3,case~s3,control ,s4,case~s4,control (File S1). Here, s1, s2,

s3, and s4 are raw moments. The first four raw moments of any

sampling distribution can be separately estimated in an unbiased

manner but all of them can not take the expected values

simultaneously [22]. For central-moments like mean, variance,

skewness and kurtosis, and raw moments, the sample size should

be greater than 4 when estimating the first four central and raw

moments unbiasedly [22]. In the Pearson distribution family, a

reliable estimator of kurtosis can be obtained at relatively small

sample sizes [24]. Under the derived null hypothesis, we can

construct the SWang test which can be proven to appropriately

follow F distribution whose one freedom is k and the other is n+m-

k-1. The k is the kth raw moments and n is the sample size in case

group while m is the sample size in control group. First, we let

some notions on the SWang test as:

Xi~

xi1 xi2 � � � xim

x2
i1 x2

i2 � � � x2
im

� � � � � � � � � � � �
xk

i1 xk
i2 � � � xk

im

2
6664

3
7775

k|m

, Yi~

yi1 yi2 � � � yin

y2
i1 y2

i2 � � � y2
in

� � � � � � � � � � � �
yk

i1 yk
i2 � � � yk

in

2
6664

3
7775

k|n

ð7Þ

Xi is the matrix of 1st-kth power of a gene expression in case group,

Yi is the matrix of 1st-kth power of its expression in control group,

xk
ij is a k power of the i gene expression value that is transformed

using the base 2 logarithm for control, x is the gene expression of

case group, j represents the sample. Similarly, yk
ij is a k power of

the i gene expression value that is transformed using the base 2

logarithm for case, y gene expression of control group, j represents

the sample.

According to the Statistics and Matrix theory, the mean of �XXi

and �YYi can be inferred as:

�XXi~

x1
i

x2
i

..

.

xk
i

2
666664

3
777775

, �YYi~

y1
i

y2
i

..

.

yk
i

2
666664

3
777775

ð8Þ

Where xk
i ~

1
m

Pm
j~1

xk
ij and yk

i ~
1
n

Pn
j~1

yk
ij . The deviation matrix D1

and D2 of the samples can be calculated as:

DXi~
Xm

j~1

(Xij{ �XX i)(Xij{ �XXi)’, DYi~
Xn

j~1

(Yij{ �YY i)(Yij{ �YYi)’ ð9Þ

Where Xij~½x1
ij ,x

2
ij , � � � ,xk

ij �’, Yij~½y1
ij ,y

2
ij , � � � ,yk

ij �’.
According to the multivariate test [49], [50], [51], [52] which is

a multivariate mean vector test while the X are drawn from

multinormal distribution whose mean is m1
p and p6p covariance

matrix is S that is unknown, Y are drawn from multinormal

distribution whose mean is m2
p

and covariance matrix is also S. The

multivariate test can be presented as:

T2~
nm

nzm
( �XX{ �YY )’(

A1zA2

nzm{2
){1( �XX{ �YY ) ð10Þ

where A1 and A2 are the deviation matrix.

Like the multivariate test, the SWang test is,

SWang~
(nzm{k{1)nm

(nzm)k
( �XX1{ �XX2)’(D1zD2){1( �XX1{ �XX2)ð11Þ

SWang test can be transformed to be appropriate to F-distribution

with two freedom k and n+m-k-1(Proof in File S2).

However it is not always clear whether the matrix is nonsingular

or not, so we utilize the generalized inverse of matrix rather than

the inverse of matrix [11] to calculate SWang.

SWang~
(nzm{k{1)nm

(nzm)k
( �XX1{ �XX2)’(D1zD2){( �XX1{ �XX2) ð12Þ

Since there exists different permutation for different moments, the

SWang can also be signified as SWang(h,k), where h is the lowest

moment and k is the highest moment. SWang(h,k) utilizes the

information from h moment to k moment, such as SWang(1,3) use

the information from the first moment to third moment. Since the

selection of the moments depends on distribution and sample size,

we recommend h to be 1 and k to be 4. However, if the k is equal to

1, SWang(1,1) is a square of T-test (File S3), else if k is greater than

2, the test is not a general test. Our statistical package is available

upon requested.

According to the theorem 2.3.11 [24], when FX(x) and FY(y) are

two cumulative distribution functions in which all moments exist,

and X and Y have bounded support, then FX(u) equals to FY(u) for

all u if and only if E(Xr) = E(Yr) for all integers r = 0, 1, 2,….

Besides, the distribution of microarrays is assumed to be of the

Pearson distribution family whose highest moment is kurtosis.

Since SWang incorporate the first four moments, SWang can be

used to test whether the distributions of case and control are the

same and detect DEGs.

A Simultaneous Test on Moments

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13721



Supporting Information

File S1 Formula of T-test and F-test, proof of independence

between skewness, kurtosis, mean, and variance, transform of

moments, biological model

Found at: doi:10.1371/journal.pone.0013721.s001 (0.23 MB

DOC)

File S2 Proof of SWang test

Found at: doi:10.1371/journal.pone.0013721.s002 (0.06 MB

DOC)

File S3 General inverse of matrix,relation between SWang test

and T-test

Found at: doi:10.1371/journal.pone.0013721.s003 (0.05 MB

DOC)

File S4 The pseudo codes of simulation on SWang test, T-test,

F-test, SAM, Fold-change to calculate false positive rate and

statistics power, and the SAS/iml code for calculate SWang

Found at: doi:10.1371/journal.pone.0013721.s004 (0.05 MB

DOC)

File S5 This file contains supporting information tables and a list

of reference

Found at: doi:10.1371/journal.pone.0013721.s005 (0.18 MB

DOC)

Figure S1 False positive rate of T-test, F-test, Fold-change,

SAM(0.3), and SWang respectively, with 5 Case-control Samples

from Uniform distribution. Under Complex distribution for case

and control. A: False positive rate of SWang(1,2) and other

methods. B: False positive rate of SWang(1,3) and other methods.

C: False positive rate of SWang(1,4) and other methods. D: False

positive rate of SWang(2,3) and other methods. E: False positive

rate of SWang(2,4) and other methods. F: False positive rate of

SWang(1,3) and other methods. The false positive rate of T-

test(black spotline), F-test(gray spotline), Fold change(green spot-

line), SWang(blue spotline), and SAM(0.3)(red spotline) with cutoff

of p-value.

Found at: doi:10.1371/journal.pone.0013721.s006 (4.80 MB TIF)

Figure S2 False positive rate of T-test, F-test, Fold-change,

SAM(0.3), and SWang, respectively, with 5 Case-control Samples

from complex distribution, respectively. Under Normal distribu-

tion for case and control. A: False positive rate of SWang(1,2) and

other methods. B: False positive rate of SWang(1,3) and other

methods. C: False positive rate of SWang(1,4) and other methods.

D: False positive rate of SWang(2,3) and other methods. E: False

positive rate of SWang(2,4) and other methods. F: False positive

rate of SWang(1,3) and other methods. The false positive rate of

T-test(black spotline), F-test(gray spotline), Fold change(green

spotline), SWang(blue spotline), and SAM(0.3)(red spotline) with

cutoff of p-value.

Found at: doi:10.1371/journal.pone.0013721.s007 (4.80 MB TIF)

Figure S3 False positive rate of T-test, F-test, Fold-change,

SAM(0.3), and SWang, respectively, with different Samples from

Uniform distribution. Under Uniform distribution for case and

control. A: False positive rate of SWang(1,2) and other methods. B:

False positive rate of SWang(1,3) and other methods. C: False

positive rate of SWang(1,4) and other methods. D: False positive

rate of SWang(2,3) and other methods. E: False positive rate of

SWang(2,4) and other methods. F: False positive rate of

SWang(1,3) and other methods. SS = 3, 6, 8, 12, 20, 40, 100,

and 200 mean that there exist 3, 6, 8, 12, 20, 40, 100, and 200

case-control samples, respectively. The false positive rate of T-

test(black spotline), F-test(gray spotline), Fold change(green spot-

line), SWang(blue spotline), and SAM(0.3)(red spotline) with cutoff

of p-value. (Note: FPR of SAM and Fold-change for large sample

sizes are similar to those of SAM and Fold-change for 3 samples.

To better display the FPR of methods, the graphs will not plot the

FPR of SAM and Fold-change when the sample size is greater

than 3.)

Found at: doi:10.1371/journal.pone.0013721.s008 (9.06 MB

Figure S4 False positive rate of T-test, F-test, Fold-change,

SAM(0.3), and SWang, respectively, with different Samples from

Normal distribution. Under Normal distribution for case and

control. A: False positive rate of SWang(1,2) and other methods. B:

False positive rate of SWang(1,3) and other methods. C: False

positive rate of SWang(1,4) and other methods. D: False positive

rate of SWang(2,3) and other methods. E: False positive rate of

SWang(2,4) and other methods. F: False positive rate of

SWang(1,3) and other methods. SS = 3, 6, 8, 12, 20, 40, 100,

and 200 mean that there exist 3, 6, 8, 12, 20, 40, 100, and 200

case-control samples, respectively. The false positive rate of T-

test(black spotline), F-test(gray spotline), Fold change(green spot-

line), SWang(blue spotline), and SAM(0.3)(red spotline) with cutoff

of p-value.

Found at: doi:10.1371/journal.pone.0013721.s009 (9.06 MB TIF)

Figure S5 False positive rate of T-test, F-test, Fold-change,

SAM(0.3), and SWang, respectively, with different Samples from

Complex distribution. Under complex distribution for case and

control. A: False positive rate of SWang(1,2) and other methods. B:

False positive rate of SWang(1,3) and other methods. C: False

positive rate of SWang(1,4) and other methods. D: False positive

rate of SWang(2,3) and other methods. E: False positive rate of

SWang(2,4) and other methods. F: False positive rate of

SWang(1,3) and other methods. SS = 3, 6, 8, 12, 20, 40, 100,

and 200 mean that there exist 3, 6, 8, 12, 20, 40, 100, and 200

case-control samples, respectively. The false positive rate of T-

test(black spotline), F-test(gray spotline), Fold change(green spot-

line), SWang(blue spotline), and SAM(0.3)(red spotline) with cutoff

of p-value.

Found at: doi:10.1371/journal.pone.0013721.s010 (9.06 MB TIF)

Figure S6 False positive rate of T-test, F-test, Fold-change,

SAM(0.3), and SWang, respectively, with different Samples from

Exponential distribution. Under Exponential distribution for case

and control. A: False positive rate of SWang(1,2) and other

methods. B: False positive rate of SWang(1,3) and other methods.

C: False positive rate of SWang(1,4) and other methods. D: False

positive rate of SWang(2,3) and other methods. E: False positive

rate of SWang(2,4) and other methods. F: False positive rate of

SWang(1,3) and other methods. SS = 3, 6, 8, 12, 20, 40, 100, and

200 mean that there exist 3, 6, 8, 12, 20, 40, 100, and 200 case-

control samples, respectively. The false positive rate of T-test(black

spotline), F-test(gray spotline), Fold change(green spotline),

SWang(blue spotline), and SAM(0.3)(red spotline) with cutoff of

p-value.

Found at: doi:10.1371/journal.pone.0013721.s011 (9.06 MB TIF)

Figure S7 False positive rate of T-test, F-test, Fold-change,

SAM(0.3), and SWang, respectively, with different Samples from

Cauchy distribution. Under Cauchy distribution for case and

control. A: False positive rate of SWang(1,2) and other methods. B:

False positive rate of SWang(1,3) and other methods. C: False

positive rate of SWang(1,4) and other methods. D: False positive

rate of SWang(2,3) and other methods. E: False positive rate of

SWang(2,4) and other methods. F: False positive rate of

SWang(1,3) and other methods. SS = 3, 6, 8, 12, 20, 40, 100,
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and 200 mean that there exist 3, 6, 8, 12, 20, 40, 100, and 200

case-control samples, respectively. The false positive rate of T-

test(black spotline), F-test(gray spotline), Fold change(green spot-

line), SWang(blue spotline), and SAM(0.3)(red spotline) with cutoff

of p-value.

Found at: doi:10.1371/journal.pone.0013721.s012 (9.06 MB TIF)

Figure S8 False positive rate of T-test, F-test, Fold-change,

SAM(0.3) in ‘Spike-in’ dataset. A: False positive rate of SWang(1,2)

and other methods. B: False positive rate of SWang(1,3) and other

methods. C: False positive rate of SWang(1,4) and other methods.

D: False positive rate of SWang(2,3) and other methods. E: False

positive rate of SWang(2,4) and other methods. F: False positive

rate of SWang(1,3) and other methods. The false positive rate of

T-test(black spotline), F-test(grey spotline), Fold change(yellow

spotline), SWang(blue spotline), and SAM(0.3)(red spotline) with

cutoff of p-value.

Found at: doi:10.1371/journal.pone.0013721.s013 (6.41 MB TIF)

Figure S9 Statistical power of T-test, F-test, Fold change,

SAM(0.3), and SWang(1,4) with small sample sizes. A: Statistics

power of those methods are under Normal distribution for case. B:

under Exponetial distribution for case. C: under Uniform

distribution for case. D: under Gamma distribution for case. E:

under mixture of gamma and normal distribution of case group. F:

under complex distribution which is a combination of various

distribution for case.The statistical power of T-test (black spotline),

F-test(gray spotline), Fold change(green spotline), SWang(blue

spotline), and SAM(0.3)(red spotline) under simulation. (Note: the

Size is equal to product of (Total-2)*m+n-3*Total+4, the total is

the largest sample size is simulation.)

Found at: doi:10.1371/journal.pone.0013721.s014 (9.06 MB TIF)

Figure S10 Statistical power of T-test, F-test, Fold change,

SWang (1, 4), SAM(0.3) on Normal distribution and Normal

distribution. The statistical power of T-test (black spotline), F-

test(gray spotline), Fold change(green spotline), SWang(blue spot-

line), and SAM(0.3)(red spotline) under simulation. A: SWang(1,2),

T-test, F-test, SAM(0.3) and Fold change. B: SWang(1,3), T-test,

F-test, SAM(0.3) and Fold change. C: SWang(1,4), T-test, F-test,

SAM(0.3) and Fold change; D: SWang(2,3), T-test, F-test,

SAM(0.3) and Fold change. E: SWang(2,4), T-test, F-test,

SAM(0.3) and Fold change. F: SWang(3, 4), T-test, F-test,

SAM(0.3) and Fold change. (Note: the Size is equal to product

of (Total-2)*m+n-3*Total+4, the total is the largest sample size is

simulation.)

Found at: doi:10.1371/journal.pone.0013721.s015 (9.06 MB TIF)

Figure S11 Statistical power of T-test, F-test, Fold change,

SAM(0.3), and SWang based on Normal distribution and Normal

distribution with small sample size. The statistical power of T-test

(black spotline), F-test(gray spotline), Fold change(green spotline),

SWang(blue spotline), and SAM(0.3)(red spotline) under simula-

tion. A: SWang(1,2), T-test, F-test, SAM(0.3) and Fold change. B:

SWang(1,3), T-test, F-test, SAM(0.3) and Fold change. C:

SWang(1,4), T-test, F-test, SAM(0.3) and Fold change; D:

SWang(2,3), T-test, F-test, SAM(0.3) and Fold change. E:

SWang(2,4), T-test, F-test, SAM(0.3) and Fold change. F:

SWang(3, 4), T-test, F-test, SAM(0.3) and Fold change. (Note:

the Size is equal to the product of (Total-2)*m+n-3*Total+4, the

total is the largest sample size is simulation.)

Found at: doi:10.1371/journal.pone.0013721.s016 (9.06 MB TIF)

Figure S12 Statistical power of T-test, F-test, Fold-change,

SWang (1, 4), SAM(0.3) on Exponential distribution and Normal

distribution. The statistical power of T-test (black spotline), F-

test(gray spotline), Fold change(green spotline), SWang(blue spot-

line), and SAM(0.3)(red spotline) under simulation. A: SWang(1,2),

T-test, F-test, SAM(0.3) and Fold change. B: SWang(1,3), T-test,

F-test, SAM(0.3) and Fold change. C: SWang(1,4), T-test, F-test,

SAM(0.3) and Fold change; D: SWang(2,3), T-test, F-test,

SAM(0.3) and Fold change. E: SWang(2,4), T-test, F-test,

SAM(0.3) and Fold change. F: SWang(3, 4), T-test, F-test,

SAM(0.3) and Fold-change. (Note: the Size is equal to the product

of (Total-2)*m+n-3*Total+4, the total is the largest sample size is

simulation.)

Found at: doi:10.1371/journal.pone.0013721.s017 (9.06 MB TIF)

Figure S13 Statistical power of T-test, F-test, Fold change,

SWang (1, 4), SAM(0.3) under Uniform distribution and Normal

distribution. The statistical power of T-test (black spotline), F-

test(gray spotline), Fold change(green spotline), SWang(blue spot-

line), and SAM(0.3)(red spotline) under simulation. A: SWang(1,2),

T-test, F-test, SAM(0.3) and Fold change. B: SWang(1,3), T-test,

F-test, SAM(0.3) and Fold change. C: SWang(1,4), T-test, F-test,

SAM(0.3) and Fold change; D: SWang(2,3), T-test, F-test,

SAM(0.3) and Fold change. E: SWang(2,4), T-test, F-test,

SAM(0.3) and Fold change. F: SWang(3, 4), T-test, F-test,

SAM(0.3) and Fold change. From figures, it shows that when

the distribution of the case group’s gene expression is complex

distributions which is simple addition of Normal, Uniform, and

Triangual distribution, the statistics power of SWang are

decentralized. (Note: the Size is equal to the product of (Total-

2)*m+n-3*Total+4, the total is the largest sample size is

simulation.)

Found at: doi:10.1371/journal.pone.0013721.s018 (9.06 MB TIF)

Figure S14 Statistical power of T-test, F-test, Fold change,

SWang (1, 4), SAM(0.3) under Gamm distribution and Normal

distribution. The statistical power of T-test (black spotline), F-

test(gray spotline), Fold change(green spotline), SWang(blue spot-

line), and SAM(0.3)(red spotline) under simulation. A: SWang(1,2),

T-test, F-test, SAM(0.3) and Fold change. B: SWang(1,3), T-test,

F-test, SAM(0.3) and Fold change. C: SWang(1,4), T-test, F-test,

SAM(0.3) and Fold change; D: SWang(2,3), T-test, F-test,

SAM(0.3) and Fold change. E: SWang(2,4), T-test, F-test,

SAM(0.3) and Fold change. F: SWang(3, 4), T-test, F-test,

SAM(0.3) and Fold change. (Note: the Size is equal to the product

of (Total-2)*m+n-3*Total+4, the total is the largest sample size is

simulation.)

Found at: doi:10.1371/journal.pone.0013721.s019 (9.06 MB

Figure S15 Statistical power of T-test, F-test, Fold change,

SWang (1, 4), SAM(0.3) under mixture of Gamm & Normal

distribution and Normal distribution. The statistical power of T-

test (black spotline), F-test(gray spotline), Fold change(green

spotline), SWang(blue spotline), and SAM(0.3)(red spotline) under

simulation. A: SWang(1,2), T-test, F-test, SAM(0.3) and Fold

change. B: SWang(1,3), T-test, F-test, SAM(0.3) and Fold change.

C: SWang(1,4), T-test, F-test, SAM(0.3) and Fold change; D:

SWang(2,3), T-test, F-test, SAM(0.3) and Fold change. E:

SWang(2,4), T-test, F-test, SAM(0.3) and Fold change. F:

SWang(3, 4), T-test, F-test, SAM(0.3) and Fold change. (Note:

the Size is equal to the product of (Total-2)*m+n-3*Total+4, the

total is the largest sample size is simulation.)

Found at: doi:10.1371/journal.pone.0013721.s020 (9.06 MB TIF)

Figure S16 Statistical power of T-test, F-test, Fold change,

SWang (1, 4), SAM(0.3) under complex distribution and Normal

distribution. The statistical power of T-test (black spotline), F-

test(gray spotline), Fold change(green spotline), SWang(blue spot-

line), and SAM(0.3)(red spotline) under simulation. A: SWang(1,2),
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T-test, F-test, SAM(0.3) and Fold change. B: SWang(1,3), T-test,

F-test, SAM(0.3) and Fold change. C: SWang(1,4), T-test, F-test,

SAM(0.3) and Fold change; D: SWang(2,3), T-test, F-test,

SAM(0.3) and Fold change. E: SWang(2,4), T-test, F-test,

SAM(0.3) and Fold change. F: SWang(3, 4), T-test, F-test,

SAM(0.3) and Fold change. (Note: the Size is equal to the product

of (Total-2)*m+n-3*Total+4, the total is the largest sample size is

simulation.)

Found at: doi:10.1371/journal.pone.0013721.s021 (9.06 MB TIF)

Figure S17 WNT Signal Pathway. The genes detected by

SWang test but not by T-test, F-test, Fold-change, and SAM in

Wnt signaling pathway based on KEGG. The genes in pink are

the genes selected with our method.

Found at: doi:10.1371/journal.pone.0013721.s022 (6.98 MB TIF)

Figure S18 5-venn diagram in dataset1. The cut-off of p-value

of T-test, F-test, SAM(0.3), and SWang is 0.05, the cut-off of Fold-

change is 2.

Found at: doi:10.1371/journal.pone.0013721.s023 (8.71 MB TIF)

Figure S19 5-venn diagram in dataset2. The cut-off of p-value

of T-test, F-test, SAM (0.3), and SWang is 0.05, while the cut-off of

Fold-change is 2.

Found at: doi:10.1371/journal.pone.0013721.s024 (8.75 MB TIF)

Figure S20 Semiquantative RT-PCR comparision. The genes

which could not be detected by Swang test but were by the others

are randomly selected. MCF-10A cells were cultured in DMEM/

F12 with 10%FBS, 20ng/ml EGF, 0.5ug/ml Hydrocortisone,

0.01ug/ml Insulin and 0.1ug/ml Cholera toxin. MCF-7, SK-BR-

3, MDA-MB-453 and MDA-MB-231 were maintained in DMEM

with 10%FBS. PCR products were run on 2% agarose gel and

then stained with ethidium bromide. Stained bands were

visualized under UV light and photographed. The beta-actin

used as an internal control.

Found at: doi:10.1371/journal.pone.0013721.s025 (1.90 MB TIF)
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