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Abstract
The second messengers, cAMP and cGMP, regulate a number of physiological processes in the
myocardium, from acute contraction/relaxation to chronic gene expression and cardiac structural
remodeling. Emerging evidence suggests that multiple spatiotemporally distinct pools of cyclic
nucleotides can discriminate specific cellular functions from a given cyclic nucleotide-mediated
signal. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing intracellular cyclic AMP and/
or cyclic GMP, control the amplitude, duration, and compartmentation of cyclic nucleotide signaling.
To date, more than 60 different isoforms have been described and grouped into 11 broad families
(PDE1–PDE11) based on differences in their structure, kinetic and regulatory properties, as well as
sensitivity to chemical inhibitors. In the heart, PDE isozymes from at least six families have been
investigated. Studies using selective PDE inhibitors and/or genetically manipulated animals have
demonstrated that individual PDE isozymes play distinct roles in the heart by regulating unique cyclic
nucleotide signaling microdomains. Alterations of PDE activity and/or expression have also been
observed in various cardiac disease models, which may contribute to disease progression. Several
family-selective PDE inhibitors have been used clinically or pre-clinically for the treatment of cardiac
or vascular-related diseases. In this review, we will highlight both recent advances and discrepancies
relevant to cardiovascular PDE expression, pathophysiological function, and regulation. In particular,
we will emphasize how these properties influence current and future development of PDE inhibitors
for the treatment of pathological cardiac remodeling and dysfunction.
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Introduction
Cyclic adenosine 3′,5′-monophosphate (cAMP) and cyclic guanosine 3′,5′-monophosphate
(cGMP) are two critical intracellular second messengers regulating fundamental cellular
processes in the cardiovascular system, from acute effects on muscle contraction/relaxation to
chronic effects on gene expression and cell growth/survival. Phosphodiesterases (PDEs), by
catalyzing the hydrolysis of cAMP and cGMP to 5′AMP and 5′GMP, limit the diffusion of
cyclic nucleotide and thus regulate the amplitude, duration, and compartmentation of cyclic
nucleotide signaling. Recent data suggest that specific cyclic nucleotide-mediated functions
depend on the assembly of multiple divergent macromolecular complexes containing unique
cyclases, PDEs, kinases, and anchoring proteins [1]. PDEs constitute a superfamily with

Correspondence to: Chen Yan, Chen_Yan@urmc.rochester.edu.

NIH Public Access
Author Manuscript
J Cardiovasc Transl Res. Author manuscript; available in PMC 2011 October 1.

Published in final edited form as:
J Cardiovasc Transl Res. 2010 October ; 3(5): 507–515. doi:10.1007/s12265-010-9203-9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



multiple isoforms that differ in tissue distribution, biochemical properties, and sensitivity to
chemical inhibitors. At least 22 genes encoding more than 60 different PDE isoforms have
been identified and grouped into 11 broad families (PDE1–PDE11). Alternate splicing and
transcription start sites also contribute multiple different isoforms, many of which possess
species-specific tissue and/or cellular distribution. In the myocardium, at least six different
PDE families have been described, including PDE1, 2, 3, 4, 5, and 8. PDE1, 2, and 3 are dual-
specific PDEs that can hydrolyze either cAMP or cGMP, whereas PDE4 and 8 specifically
hydrolyze cAMP and PDE5 specifically hydrolyzes cGMP. The relative contribution of each
PDE family may vary depending upon the species, developmental stage, cell type, and degree
of stress on the heart. Given that PDEs are associated with many physiological functions that
may become impaired during disease, it is feasible to target particular pathological conditions
by modulating individual PDEs.

Several family-selective PDE inhibitors have been used clinically or are currently being
investigated in clinical trials for the treatment of various cardiovascular diseases. For example,
PDE3 inhibitors such as amrinone, enoximone, and milrinone have been used to treat
congestive heart failure (CHF) [2]. Short-term therapy has improved hemodynamics in more
severe CHF patients via positive inotropic effects on the heart and vasodilatory effects on
peripheral vasculature [3]. However, chronic treatment with PDE3 inhibitors resulted in
increased mortality, primarily as a result of arrhythmias and sudden death [2]. While PDE5
inhibitors have recently been used in treating pulmonary hypertension by reducing pulmonary
vascular resistance [4,5], their direct effects on the myocardium have been debated. Growing
evidence suggests that PDE5 inhibitors such as sildenafil have beneficial effects in various
experimental models of ischemia–reperfusion, left and right ventricular hypertrophy, and
congestive heart failure [6,7]. Currently, a multicenter, NIH-funded clinical trial
NCT00763867 (RELAX) is aimed at evaluating the effects of chronic sildenafil treatment on
improving health outcomes and exercise capacity in patients with diastolic heart failure
(http://clinicaltrials.gov/ct2/show/NCT00763867). To date, small-molecule inhibitors are only
available for PDE5 as therapeutics, and clearly more in vivo studies using selective compounds
against other family members are needed. The in vivo studies for PDE1, 2, and 8 have been
limited due to a lack of selective inhibitors. This review will discuss the regulation and function
of several myocardial PDE isozymes and their therapeutic implications in chronic heart failure.

Myocardial PDE Expression, Regulation, and Function
PDE1

Ca2+/calmodulin-stimulated PDEs (PDE1) constitute a large family of enzymes, encoded by
three genes, PDE1A, PDE1B, and PDE1C, which include multiple splice variants. In vitro, the
activity of PDE1 family members can be stimulated up to tenfold by Ca2+/calmodulin [8].
Thus, PDE1 isozymes are believed to be important in the crosstalk of second messenger
Ca2+ and cyclic nucleotide signaling [9]. However, they differ in their regulatory properties,
substrate affinities, specific activities, Ca2+ sensitivities, and tissue/cell distribution. PDE1
family members are considered dual-substrate enzymes. In vitro, PDE1A and PDE1B isozymes
hydrolyze cGMP with much higher affinity than cAMP, and PDE1C isozymes hydrolyze both
cAMP and cGMP with equally high affinity. In vivo, several studies demonstrated that PDE1A
and PDE1B primarily regulate cGMP [10–12]. PDE1C has been shown to regulate intracellular
cAMP levels in various cell types [13–15]; however, a role in cGMP regulation has not been
described in vivo.

It has been reported that Ca2+/CaM-stimulated PDE1 represents the majority of cGMP-
hydrolyzing activity in the human myocardium, although the identity of PDE1 isoform and
cell type(s) responsible for this PDE activity was not characterized in these studies [16,17].
PDE1A mRNA expression and/or activity has been described in cardiac tissue from several
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species including human [18], bovine [8], canine [19], and rat [20]. Early studies suggested
that Ca2+/CaM-stimulated PDE1 activity was absent from cardiomyocytes and restricted to
non-myocytes in the adult rat heart [21]. However, we recently reported that PDE1A mRNA
and protein were detected not only in human, rat, and mouse hearts but also in isolated neonatal
and adult rat ventricular myocytes [12]. Furthermore, PDE1A protein expression was
significantly upregulated in hearts and cardiomyocytes from various pathological hypertrophy
animal models and in isolated neonatal and adult rat ventricular myocytes treated with
neurohumoral stimuli angiotensin II (Ang II) and isoproterenol [12]. Using various loss-of-
function strategies in isolated neonatal and adult rat ventricular myocytes, we demonstrated
that PDE1A regulates cardiomyocyte hypertrophy [12]. In contrast, it was also previously
reported that PDE1A protein was not detected in the human heart [17], whereas PDE1C protein
was highly expressed in human cardiomyocytes and localized along the Z-lines and M-lines
of cardiomyocytes [17]. PDE1C expression was also found in mouse hearts and/or
cardiomyocytes [12,22,23]. However, there were no significant changes in PDE1C protein
levels observed in a pressure overload mouse model of cardiac remodeling [22]. In the rat heart,
PDE1C expression level was much lower, and it appears that PDE1C expression levels are
varied with species (human>mouse>rat) [12]. The expression level of PDE1B in normal hearts
appeared very low or not detectable [12]. The discrepancy of PDE1 protein expression in the
heart and cardiomyocytes may be rationalized by differences in antibody species cross-
reactivity, tissue/cell preparation, or the degree of stress/stimulation.

Interestingly, IC86340, a selective PDE1 inhibitor, was able to reduce myocyte hypertrophy
in an isoproterenol-induced hypertrophy mouse model [12]. Because IC86340 inhibits all
PDE1 isozymes and both PDE1A and PDE1C are expressed in the mouse heart, it is uncertain
which PDE1 isozyme(s) confers the anti-hypertrophic effects of IC86340. Nevertheless, these
findings demonstrate that PDE1 isozymes play a critical role in regulating cardiac myocye
hypertrophy and myocardial remodeling. PDE1 isozymes are also present in vascular smooth
muscle cells, and PDE1C and PDE1A were upregulated in idiopathic pulmonary arterial
hypertension (PAH) and experimental models of PAH [24]. Chronic infusion of the PDE1
inhibitor 8MM-IBMX reversed hypoxia and monocrotaline-induced pathological lung
remodeling and normalized pulmonary arterial pressure [24]. Further investigation using
genetically manipulated models targeting specific PDE1 isozymes in the heart are needed to
address the potential contribution of PDE1 family in heart failure (Table 1).

PDE2
PDE2 is able to hydrolyze both cAMP and cGMP with high affinities, and cGMP by binding
to its N-terminal GAF domains greatly stimulates its catalytic activity. For this reason, PDE2
family members are also referred to as cGMP-stimulated PDEs. PDE2 has been found in both
atrial and ventricular myocytes in various different species, from frog to human. The biological
function of PDE2 mainly involves a cGMP-mediated activation of PDE2 and subsequent
decrease in cAMP. For example, in frog ventricular myocytes [25,26] and human atrial
myocytes [27], NO depressed the isoproterenol-mediated stimulation of L-type Ca2+ channel
[I(Ca2+)] via cGMP activation of PDE2 and inhibition of cAMP-stimulated I(Ca) current
[25]. However, the NO inhibitory effect appears to be mediated by PKG but not PDE2 in other
mammalian ventricular myocytes such as rat, rabbit, and human [28,29], implying species
specificity. Real-time cyclic nucleotide monitoring in cardiomyocytes determined that PDE2
is tightly coupled to β-AR stimulated pool of adenylyl cyclase. Thus, PDE2 shapes the cAMP
response (via β1/β2) to catecholamines via β3-AR activation and subsequent NO/cGMP
production to suppress myocyte inotropy [30]. PDE2 also primarily modulates the particulate
guanylyl cyclase (pGC) pool of cGMP at the sarcolemmal membrane in adult rat ventricular
myocytes [31]. While most studies of PDE2 function have relied on the PDE2 inhibitor,
erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), this weakly potent compound also inhibits
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adenosine deamidase. Novel selective PDE2 inhibitors such as 9-(6-phenyl-2-oxohex-3-yl)-2-
(3,4-dimethoxybenzyl)-purin-6one (PDP), with nanomolar potency, have recently been
employed in functional studies in other tissues [32]. Given the dual role of PDE2 in myocyte
cGMP and cAMP compartmentation, the potential therapeutic effects of targeting myocardial
PDE2 remain to be determined.

PDE3
The PDE3 gene family contains two subfamilies, PDE3A and PDE3B. PDE3A is relatively
abundant in cardiomyocytes, VSMCs, and platelets, whereas PDE3B is predominantly
expressed in adipocytes, hepatocytes, and pancreatic cells [33,34]. It has long been considered
that PDE3A represents the major PDE3 activity in myocardium [35]; however, a recent study
demonstrated that PDE3B accounts for ≈30% of the total PDE3 cAMP-hydrolyzing activity
in mouse hearts [36]. PDE3B associates with PI3Kγ in a macromolecular complex, which is
critical for regulating local cAMP homeostasis and may play an important role in regulating
cardiac function [36,37]. Studies of PDE3A−/− and PDE3B−/− mice demonstrated that PDE3A
is the major PDE3 subtype responsible for the functional cardiac effects of PDE3 inhibition
[38].

PDE3 inhibitors, via increasing cAMP in cardiac muscle, enhance the rate and magnitude of
developed contraction and relaxation. Concurrently, in vascular smooth muscle, elevated
cAMP via PDE3 inhibition reduces total vascular resistance and enhances coronary blood flow.
These inotropic and vasodilatory actions justified the development and clinical use of PDE3
inhibitors for the acute treatment of CHF [3,39,40]. However, increased mortality due to
arrhythmias and sudden death has been found in many clinical trials [2,41]. Thus, PDE3
inhibitors are currently used mainly as adjunct therapy to treat patients in cardiogenic shock.
The observations from chronic PDE3 inhibitor clinical trials closely resemble chronic β-AR
agonist therapy that also increased mortality in heart failure patients [42,43].

Studies in isolated cardiomyocytes showed that chronic inhibition or downregulation of PDE3
significantly increased cardiomyocyte apoptosis similar to that observed with chronic β-AR
and angiotensin II stimulation [44,45]. The proapoptotic effect of PDE3 inhibition on
cardiomyocyte is likely mediated by localized cAMP involved in the sustained induction of
transcription repressor ICER (inducible cAMP early repressor). ICER-mediated apoptosis
occurs in part through the inhibition of CREB-mediated transcription and downregulation of
Bcl-2 [44,46]. Under physiological conditions, ICER expression is transiently induced [47,
48]; however, sustained elevation of ICER has been shown to induce cell death in neurons
[48] and cardiomyocytes [44,46]. Chronic induction of ICER is controlled by an autoregulatory
positive feedback loop (called PDE3A-ICER feedback loop) where PDE3A appears to be a
key mediator [49]. Catecholamine stimulation and/or PDE3 inhibition may trigger the PDE3A-
ICER feedback loop, which is essential in maintaining ICER induction and subsequent
cardiomyocyte apoptosis. These findings suggest that strategies that block the PDE3A-ICER
feedback loop will reduce cardiomyocyte apoptosis and also provide insights on the adverse
effects observed with chronic PDE3 inhibition in CHF patients [41,50].

It is not surprising that PDE3A protein and activity was significantly reduced in human failing
hearts with both dilated and ischemic cardiomyopathy [44]. Similarly, dowregulation of
PDE3A protein expression was also seen in mouse hearts with cardiac dysfunction induced by
chronic pressure overload and doxorubicin [51], as well as in hypertrophied rat hearts [52].
Concomitantly, a reciprocal upregulation of ICER was observed in these failing human and
animal hearts [44]. In contrast, PDE3A-ICER feedback loop triggered via pressure overload
or doxorubicin was prevented in transgenic mice expressing myocyte-specific constitutively
active form of MEK5a (CA-MEK5a) [51]. Similarly, in a rat model of myocardial infarction,
PDE3A-ICER-associated increase in myocyte apoptosis and cardiac dysfunction was
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prevented with valsartan treatment [53]. These results suggest that the PDE3A-ICER feedback
regulation may represent a common mechanism of cAMP signaling in the pathologic
progression of heart failure of various etiologies.

PDE4
PDE4 belongs to a large family of enzymes that specifically hydrolyze cAMP with high
affinity. Four PDE4 genes (PDE4A, B, C, and D) encoding more than 20 variants have been
identified. Recent reports suggest that senescent PDE4D−/− mice develop progressive
cardiomyopathy and accelerated heart failure after myocardial infarction (MI) [54]. These
effects in PDE4D−/− mice were attributed to the loss of PDE4D3 from the macromolecular
complex of sarcolemmal ryanodine receptor (RyR2). Loss of PDE4D3 in the RyR2 complex
leads to PKA hyperphosphorylation of RyR2, causing a “leaky” receptor [54]. Decreased
association of PDE4D3 with RyR2 macrocomplex and PKA hyperphosphorylation was also
observed in human failing hearts [54]. This suggests that reduced PDE4D3 in heart failure may
contribute to RyR2 PKA hyperphosphorylation and diastolic SR Ca2+ leak observed in failing
hearts, which are also correlated to exercise-induced arrhythmia and sudden death [55].
Exercise-induced sustained and non-sustained ventricular arrhythmias were observed in
PDE4D knockout mice and upon PDE4 inhibition with rolipram, which were prevented in
RyR2-S2808A knock-in mice lacking RyR2 hyperphosphorylation [55]. These findings shed
light on the potential adverse cardiac effects that PDE4 inhibitors may have on chronic
treatment of asthma and stroke. Other cardiac functions of PDE4 isoforms include tethering
of PDE4D3 and PDE4D5 to mAKAP and β-arrestin, respectively, to control local cAMP
involved in myocyte hypertrophy and β2-AR desensitization [56].

PDE5
PDE5 is a cGMP-specific hydrolyzing PDE and consists of a single gene (PDE5A). Recently,
there has been renewed interest in investigating the role of PDE5 inhibition in the heart. Many
of the functional studies using PDE5 inhibitors such as sildenafil have elicited beneficial
effects, i.e., preventing acute ischemia–reperfusion injury and chronic pressure overload
induced remodeling and systolic dysfunction in animal models [6,57,58]. The acute and/or
chronic protective effects of sildenafil are linked to various known regulators of cardiovascular
function, such as endothelial nitric oxide synthase and inducible NOS [59–61], mitochondrial
ATP-sensitive potassium channels (mitoKATP) [62], and more recently the regulator of G
protein signaling 2 (RGS2) [63], which often involve PKG activation. However, it has been
debated whether PDE5 inhibitors mediate cardioprotective effects directly though PDE5
expressed in the myocardium. Early studies reported that PDE5 expression is nearly
undetectable in human myocardium under basal conditions [16,64]. Several studies have since
demonstrated increased PDE5A activity and protein expression in failing human and mouse
myocardium [60,65] and to a greater extent in mouse hearts [65]. PDE5A expression was also
confirmed in isolated cardiomyocytes by combining immunoblotting/immunostaining with
PDE5A gene silencing [66]. Despite this, a recent study failed to detect PDE5A expression
and activity in isolated cardiomyocytes from hypertrophied mouse hearts [22]. The discrepancy
of PDE5A expression in the heart may be attributed to differences in the magnitude of injury,
antibody cross reactivity, and/or interspecies variation.

A few reports have suggested that the PDE5 inhibitor sildenafil may elicit non-selective PDE1
inhibition in the heart [65] or lung [67]. While the plasma concentration of sildenafil is rarely
measured in vivo, there is evidence in normal and PAH patients that peak plasma levels reached
∼1 μM from a 100-mg oral dose of sildenafil [68]
(www.pfizer.com/files/products/uspi_viagra.pdf). In vitro, sildenafil inhibits PDE1/5/6 with
IC50 values of 280, 3.5, and 37 nM, respectively [16], and 1 μM sildenafil significantly inhibited
PDE1 cGMP-hydrolytic activity in mouse hearts in vitro [65]. Whether this concentration
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inhibits PDE1 in intact cells remains speculative. In contrast, sildenafil modulates acute β-AR-
induced contractile responses in human hearts with measured plasma levels ∼50 nM [69],
which is below the IC50 for PDE1. Chronic anti-hypertrophic effects of sildenafil have also
been observed in which free plasma levels of ∼10 nM were reported [70]. Tadalafil, the more
selective PDE5 inhibitor with less potency for PDE1, also protects hearts from ischemia–
reperfusion injury [71]. Recently, myocyte-specific PDE5A overexpression exacerbated MI-
induced cardiac dysfunction in mice [72]. Taken together, with the observations that sildenafil
efficacy depends on PDE5 translocation to z-disks [58] and that PDE1 and PDE5 inhibitors
have additive anti-hypertrophic effects in myocytes [12], there is growing evidence of
myocyte-specific PDE5A regulation of acute and chronic cardiac function.

The cardiac protective effects of sildenafil obtained in rodent models await confirmation in
human patients. The National Heart Lung and Blood Institute sponsored clinical trial RELAX
(http://clinicaltrials.gov/ct2/show/NCT00763867) is currently evaluating the effects of chronic
sildenafil treatment on cardiopulmonary performance and left ventricular function in elderly
patients with normal LV ejection fraction or diastolic heart failure [8]. It should be noted that
the potential cardioprotective effects of PDE5 inhibition via sildenafil, tadalafil, or vardenafil
in CHF may involve indirect beneficial effects on the pulmonary and systemic vasculature.
There is convincing evidence that sildenafil lowers pulmonary vascular resistance, thus
preventing pulmonary remodeling and dysfunction by directly targeting PDE5A in the
pulmonary microvasculature [5]. However, one study reported that sildenafil had positive
inotropic effects in hypertrophied rat RV via indirect PDE3A inhibition and cAMP elevation
[73]. This may warrant consideration with the development of PDE5 inhibitor therapy in heart
failure, given the potential risks of chronic inotropic stimulation in CHF, as with PDE3
inhibition [41]. However, most reports implicate that the sildenafil effects on LV remodeling
are mediated by cGMP/PKG signaling [58]. The cause for such discrepancy on the right and
left heart remains unknown.

PDE5 inhibitors may have limited effects on vascular tone in humans, which indirectly
contribute to the cardioprotective effects. For instance, sildenafil improved hemodynamics in
preventing ischemia–reperfusion injury [62] and increased coronary vasodilation and coronary
blood flow in canine coronary stenosis [74] and in humans [75]. Moreover, sildenafil improved
hemodynamics in patients with ischemic and dilated cardiomyopathies [76]. However, the
vascular hemodynamic effects may not contribute to the potent cardiac protective effects of
PDE5 inhibitors in the experimental animal models in which ventricular loading is not altered
due to proximal fixed obstruction. Finally, PDE5 inhibitors, sildenafil and vardenafil, have
also been implicated in stimulating ischemia-induced angiogenesis in mice [77,78].
Nonetheless, PDE5 inhibition may elicit protective signaling in the vasculature and promote
changes in vascular tone and angiogenesis, which may indirectly affect cardiac performance
during heart failure of various etiologies.

PDE8
PDE8 specifically hydrolyzes cAMP with high affinity. Two PDE8 genes (PDE8A and 8B)
have been identified. A unique property of PDE8 is the insensitivity to general PDE inhibitor
IBMX. PDE8A is highly abundant in testis, but is also present in human and mouse hearts
[79]. A recent study with PDE8A knockout mice demonstrated that PDE8A is expressed in
ventricular myocytes of mouse hearts [23]. Myocytes from PDE8 KO hearts elicited greater
ISO-induced increases in [Ca2+] transients, L-type Ca2+ channel currents (ICa), and Ca2+ spark
activity, suggesting that PDE8A controls cAMP involved in Ca2+ handling in cardiomyocytes
[23]. Interestingly, PDE8A deletion resulted in leaky RyR channels observed by a
compensatory increase in SR Ca2+ refilling [23]. The mechanism for these effects is currently
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being studied. The effect of PDE8A deficiency on chronic pathological cardiac remodeling
and cardiac dysfunction also deserve further investigation.

Conclusion and Perspective
Cardiomyocytes express multiple structurally and functionally distinct PDE isozymes. Most
of our knowledge regarding PDE regulation and function in cardiomyocytes is limited to five
PDE family members (PDE1, 2, 3, 4, and 5). The development of more selective
pharmacological tools and cell-specific genetic models will undoubtedly accelerate the
discovery of novel isoforms in regulating cardiac function applicable to therapeutic
intervention. It is now evident that cyclic nucleotide signaling is regulated in discrete
compartments to maintain homeostasis and simultaneously control diverse cellular functions.
Alterations of PDE expression or activity may disrupt the fine balance of cAMP and cGMP,
contributing to the progression of cardiovascular diseases. For instance, PDE1A and PDE5A
are upregulated in various models of cardiac disease [12,72,73], and PDE1 and PDE5 inhibitors
show beneficial effects in experimental animals [12,70,80]. Conversely, downregulation of
PDE3A and PDE4D expression may be responsible for the deleterious cardiac effects of
chronic PDE3 or PDE4 inhibitors in the heart [44,54]. Therefore, understanding the regulation
and function of individual PDE isoforms in normal and diseased hearts will be important not
only for the development of novel therapeutics but also to predict the potential cardiovascular
toxicity of PDE inhibitors used for the treatment of other diseases.
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