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When NRF2 Talks, Who’s Listening?
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Abstract

Activation of the KEAP1-NRF2 signaling pathway is an adaptive response to environmental and endogenous
stresses and serves to render animals resistant to chemical carcinogenesis and other forms of toxicity, whereas
disruption of the pathway exacerbates these outcomes. This pathway, which can be activated by sulfhydryl-
reactive, small-molecule pharmacologic agents, regulates the inducible expression of an extended battery of
cytoprotective genes, often by direct binding of the transcription factor to antioxidant response elements in the
promoter regions of target genes. However, it is becoming evident that some of the protective effects may be
mediated indirectly through cross talk with additional pathways affecting cell survival and other aspects of cell
fate. These interactions provide a multi-tiered, integrated response to chemical stresses. This review highlights
recent observations on the molecular interactions and their functional consequences between NRF2 and the
arylhydrocarbon receptor (AhR), NF-kB, p53, and Notch1 signaling pathways. Antioxid. Redox Signal. 13, 1649–
1663.

Introduction

NRF2 (NF-E2-related factor 2, NFE2L2) is a transcrip-
tion factor that mediates a broad-based set of adaptive

responses to intrinsic and extrinsic cellular stresses (73). As
such, NRF2 influences sensitivity to physiologic and patho-
logic processes affected by oxidative and electrophilic stres-
ses, such as those imposed by inflammation and exposures to
environmental toxicants. Carcinogenesis, chronic obstructive
pulmonary disease, obesogenesis, and neurodegeneration are
known to be affected by the Nrf2 genotype in murine models
(73).

Molecular details of the NRF2 signaling pathway have
emerged over the past decade, as reviewed elsewhere in this
issue. Notably, definition of the interacting partners of NRF2,
such as KEAP1 (Kelch-like ECH-associated protein 1), and the
means by which they sense and transduce chemical signals of
stress are under intense investigation in many laboratories
(48). Characterization of the immediate downstream target
genes of NRF2 has also been well enumerated, although
features that define the tissue and cell-type specificity in re-
sponses are poorly understood. The gene-expression re-
sponses to activation of NRF2 signaling, mediated through
interactions of NRF2 and the antioxidant response element(s)
(ARE: 50-NTGAG=CNNNGC-30) in the regulatory domains of
its target genes, result in a distinctive cytoprotective response.
Beyond the now-seminal response of catalyzing the detoxifi-

cation of carcinogens and other xenobiotics through conju-
gation and trapping processes, genomic analyses indicated
that gene families affected by Nrf2 (a) provide direct antiox-
idants; (b) encode enzymes that directly inactivate oxidants;
(c) increase levels of glutathione synthesis and regeneration;
(d) stimulate NADPH synthesis; (e) enhance toxin export
through the multidrug-response transporters; (f ) enhance the
recognition, repair, and removal of damaged proteins; (g)
elevate nucleotide excision repair; (h) regulate expression of
other transcription factors, growth factors and receptors, and
molecular chaperones; and (i) inhibit cytokine-mediated in-
flammation (48, 73).

It also is clear, though, that these direct genomic responses
do not account for all of the actions of pharmacologic agents
that activate NRF2 signaling, nor do they explain the range of
stress-response phenotypes observed when components of
the pathway, notably, Nrf2 or Keap1, have been genetically
disrupted in mice (162). Analyses of global transcriptional
responses have hinted toward interactions between NRF2
signaling and other prominent signaling pathways. These
interactions can occur in multiple forms. Post-translational
modifications such as phosphorylation play a major role in the
regulation of gene expression and function. These covalent
modifications control intracellular distribution, transcrip-
tional activity, and stability of transcription factors, including
NRF2 (81, 143). Some transcription factors can antagonize
NRF2 either by competing for binding to AREs or by
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inhibiting NRF2 through a physical association. Small MAF
proteins, BACH1, and the immediate early proteins c-FOS
and FRA1 can compete with NRF2 for binding to AREs (103,
151). Furthermore, several transcription factors, including
activating transcription factor 3, proliferator-activated recep-
tor (PPAR)g, and retinoic acid receptor a have been reported
to form inhibitory complexes with NRF2 (6, 13, 59, 155, 168).
In this review, we focus on recent evidence for transcriptional
cross-talk between NRF2 and the arylhydrocarbon receptor
(AhR), NF-kB, p53, and Notch pathways, as summarized
schematically in Fig. 1.

NRF2 Interactions with AhR Signaling

The aryl hydrocarbon receptor is a ligand-activated mem-
ber of the bHLH=PAS (basic helix-loop-helix=Per-Arnt-Sim)
family of transcription factors that mediates the biologic and
toxic effects of its xenobiotic ligands (44). When bound by
polycyclic aromatic hydrocarbons such as dioxins (TCDD),
AhR translocates from the cytoplasm to the nucleus, hetero-
dimerizes with AhR nuclear translocator (ARNT), and
activates transcription through the xenobiotic-responsive
element (XRE). The XRE consists of a canonic motif of
50-TNGCGTG-30. After nuclear export, AhR is degraded through
the 26S proteasome pathway. It is well recognized that both
AhR and NRF2 signaling regulate the expression of genes
affecting the metabolism of xenobiotics. In some instances, the
response elements recognizing these transcription factors can
be found in the regulatory domains of the same target genes,
such as Nqo1 (104). Ma et al. (95) reported that the inducible
expression of NQO1 by the potent AhR ligand TCDD de-
pends on both AhR and NRF2. Genetic experiments using
Ahr-, Arnt-, or Nrf2-deficient cells revealed that induction of
NQO1 by TCDD depended on the presence of AhR and

ARNT, whereas the basal and inducible expression required a
functional NRF2 pathway. Yaeger et al. (163) extended these
findings by using Nrf2-deficient mice to demonstrate the re-
quirement of NRF2 for the induction of Nqo1, Ugt1a6, and
Gsta1 transcripts, among other genes, by TCDD in mouse
liver. AhR–Nrf2 compound null mutant mice respond to nei-
ther AhR ligands nor prototypical NRF2 activators with target
genes, such as Nqo1 (105). A functional collaboration between
these pathways is also highlighted by the earlier findings of
Talalay and colleagues (115), in which they described the roles
of ‘‘monofunctional’’ and ‘‘bifunctional’’ activators of NRF2
signaling. ‘‘Monofunctional’’ inducers affect only NRF2 sig-
naling. ‘‘Bifunctional inducers,’’ such as b-napthoflavone,
may interact with the AhR directly to activate AhR-regulated
genes, such as Cyp1a1, Cyp1a2, and Cyp1b1, and then undergo
transformation by these enzymes to reactive intermediates
that then trigger NRF2 signaling (see Fig. 2). In this way, a
comprehensive set of responses to xenobiotic challenges can
be mounted (79).

The mechanisms underlying the linkages between AhR and
NRF2 signaling need further investigation. Miao et al. (98)
demonstrated that Nrf2 gene transcription is directly modu-
lated by AhR activation. DNA sequence analyses of the mu-
rine Nrf2 promoter revealed an XRE located at �712 bp and
two additional XRE-like motifs located further upstream.
Direct binding of AhR to the Nrf2 promoter was observed.
Moreover, silencing of AhR expression with siRNA obviated
induction of Nrf2 mRNA by TCDD. NRF2 also autoregulates
its own expression through an ARE-like element located in the
proximal region of its promoter, leading to persistent nuclear
accumulation of NRF2 and protracted induction of its target
genes (83).

NRF2 also directly modulates AhR signaling, highlighting
bidirectional interactions of these pathways (138). Constitutive
expression of AhR was affected by Nrf2 genotype. Moreover,
a pharmacologic activator of NRF2 signaling, CDDO-Im
{1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole}, in-
duced Ahr, Cyp1a1, and Cyp1b1 transcription in Nrf2þ=þ mouse
embryonic fibroblasts (MEFs) but not in Nrf2-=- MEFs. Reporter
analysis and chromatin immunoprecipitation assays revealed
that NRF2 directly binds to one ARE found in the �230 bp
region of the promoter of Ahr. Better understanding of this
bidirectional regulation of AhR and NRF2 pathways should
provide clues on the roles of NRF2 in complex diseases and in
uncharacterized phenotypes.

Cell-culture studies and knockout mouse models have
shown that, in addition to controlling the xenobiotic detoxi-
fication response, AhR activation leads to G0=G1 arrest, di-
minished capacity for DNA replication, inhibition of cell
proliferation, and impaired cell differentiation. AhR may
function also as a tumor-suppressor gene that becomes si-
lenced during the process of tumor formation (32). Tran-
scriptional responses to ligand-dependent activation of AhR
signaling vary across cell types and by species, but consis-
tently influence cytochrome P450 and other monooxygenase
activities (17). Ligand-dependent and -independent AhR
signaling influences (a) positive regulation of transcription,
vascular development, organ morphogenesis, and metabolic
processes; (b) processes related to mRNA processing and
transport; (c) processes related to cell death, proliferation, and
regulation of apoptosis; (d) mitotic cell cycle; and (e) embry-
onic and other developmental processes (132).

FIG. 1. Possible means for regulation of cell survival and
other cell-fate responses through interactions of NRF2 with
additional cell-signaling pathways, including AhR, NF-jB,
p53, and Notch1. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version
of this article at www.liebertonline.com=ars).
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Ahr-null mice and Nrf2-null mice share some common
phenotypes. These transcription factors appear to function as
cell-survival factors; both types of knockout mice exhibit in-
creased sensitivity to infection (75, 147), carcinogenesis (32, 72,
117), altered responses to wounding (12, 18), and metabolic
syndrome (137, 144). Studies on responses to adipogenic
stimuli in vitro and high-fat stress diets in vivo have provided
some opportunities for evaluating the physiological interac-
tions between these pathways.

Shimba et al. (136) observed that TCDD treatment sup-
presses the conversion of 3T3-L1 cells into adipocytes. By
using MEF cell lines derived from Ahr-knockout mice,
Alexander et al. (5) reported that the AhR is a constitutive
inhibitor of triglyceride synthesis and an early regulator of
adipocyte differentiation. In addition, one of the phenotypes
of Ahr-null mice is transient fatty liver (133), implying an
in vivo regulatory role of AhR in the adipogenic process.
Shin et al. (138) postulated that NRF2 would inhibit adipo-
genesis through the interaction with the AhR pathway.
Nrf2-=- MEFs showed markedly accelerated adipogenesis on
stimulation, whereas Keap1-=- MEFs (which exhibit higher
NRF2 signaling) differentiated slowly compared with their
congenic wild-type MEFs. Ectopic expression of AhR and
dominant-positive Nrf2 in Nrf2-=- MEFs also substantially
delayed differentiation. To evaluate how NRF2 regulates
adipogenesis, differentiation markers involved at multiple
stages of adipogenesis were analyzed. CEBPs (CCAAT-
enhancer–binding proteins) and PPARs are the two families
of transcription factors that play critical roles in adipogen-
esis (159). CEBPb and CEBPd function at an early phase of
the differentiation process by sensing adipogenic stimuli
and initiating expression of CEBPa and PPARg (122). CEBPa
and PPARg play roles at a later stage by inducing and
maintaining expression of adipocyte-specific genes, such as
Fabp4. The elevation of CEBPb on adipogenic stimulation is
transient, whereas CEBPa and PPARg remain upregulated
for the duration of adipogenesis. Although the mechanism
by which AhR regulates adipogenesis has not been fully

characterized, recent work suggests that AhR affects dif-
ferentiation stages that follow CEBPb activation (i.e., CEBPa
or PPARg upregulation. In 3T3-L1 preadipocytes, forced
expression of AhR resulted in lower induction of Fabp4 and
Cebpa upon differentiation than did that in control cells,
whereas the induction of Pparg was not affected (136). Pparg
expression could be induced by differentiation in Ahr-=-

MEFs, but levels were lower than those in Ahrþ=þ MEFs (5).
Similarly, mRNA levels of Cebpa and Fabp4 were higher in
Nrf2-=- MEFs than in Nrf2þ=þ MEFs, both before and after
differentiation, whereas induction of Pparg2 was not af-
fected by the Nrf2 genotype. mRNA levels of Cebpb were
lower in Nrf2-=- MEFs than in Nrf2þ=þ MEFs. In primary
Keap1-=- MEFs, disruption of Keap1 resulted in minimal in-
duction of Cebpa, Fabp4, and Pparg2 upon differentiation.
Cebpb mRNA levels remained higher in Keap1-=- MEFs than
in Keap1þ=þ MEFs, both before and after induction of adi-
pogenesis. Thus, NRF2 negatively modulates expression of
Cebpa and Pparg2 but not Cebpb during the course of adi-
pogenesis. The stages of differentiation that are affected by
NRF2 directly overlap with those affected by AhR, thereby
supporting the hypothesis that NRF2 inhibits adipogenesis
through cross talk with AhR signaling (see Fig. 3).

Treatment with CDDO-Im effectively prevented high-fat
diet–induced increases in body weight, adipose mass, and
hepatic lipid accumulation in Nrf2 wild-type mice but not in
Nrf2-disrupted mice (137). Wild-type mice on a high-fat diet
and treated with CDDO-Im exhibited higher oxygen con-
sumption and energy expenditure than did vehicle-treated
mice, whereas food intake was lower in CDDO-Im–treated
than in vehicle-treated mice. Levels of gene transcripts for
fatty acid synthesis enzymes were downregulated after
CDDO-Im treatment in the liver of wild-type mice. This in-
hibitory effect of CDDO-Im on lipogenic gene expression was
significantly reduced in Nrf2-disrupted mice. However, the
extent to which this pharmacologic activation of Nrf2 to
produce an anti-obesogenic effect is mediated through AhR, if
at all, is unclear.

FIG. 2. Regulation of xenobiotic me-
tabolism by AhR and NRF2. Xenobiotics
are metabolized by cytochrome P450s
(CYPs) into intermediates that are reactive
or nonreactive. Reactive intermediates can
be metabolized by cytoprotective enzymes
into less-toxic and often readily excretable
products. When activated by a ligand,
AhR in the cytoplasm complexes with
ARNT and translocates into the nucleus
and induces the transcription of CYPs by
binding to the xenobiotic response ele-
ments (XREs) in the promoters of target
genes. NRF2 bound to KEAP1 in the cy-
toplasm translocates into the nucleus
when the pathway is activated by exoge-
nous or endogenous electrophilic or free
radical stresses, and binds to the antioxi-
dant response elements (AREs) to induce
transcription of cytoprotective genes.
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As with many transcription factors, the actions of the direct
target genes of AhR alone do not fully explain its toxicologic
and physiologic effects. In addition to interactions with NRF2
signaling, AhR extends its regulatory sweep by modulating
the function of other transcription factors, including estrogen
receptor (ERa and ERb) and androgen receptor (AR). These
cross-talk pathways are important mediators of the functions
of endogenous and exogenous AhR ligands. The liganded
AhR recently was shown to promote the ubiquitination and
proteasomal degradation of ERs and AR by assembling a
ubiquitin ligase complex, CUL4BAHR (108). Thus, complexes
of the AhR with ERs or AR appear to regulate transcription as
functional units by multiple mechanisms. As depicted in
Fig. 4, KEAP1 also serves as an adaptor protein for an E3
ubiquitin ligase complex (78). Thus, broad similarities exist in
the ways these pathways sense and respond to stresses. In-
deed, other stress response–signaling pathways such as
HIF-1a and NF-kB also interact with ubiquitin ligase systems
to facilitate proteolytic turnover of signaling components (109).

Direct and Indirect NRF2–NF-kB Interactions

Cross talk between NRF2 and nuclear factor k-light-chain-
enhancer of activated B cells (NF-kB) is an area of extensive
interest. NF-kB proteins are a family of transcription factors
involved in several processes such as inflammation, immune
response, apoptosis, development, and cell growth. Targets of
NF-kB include genes classified as chemokines, cytokines,
immunoreceptors, cell-adhesion molecules, stress-response
genes, regulators of apoptosis, growth factors, and tran-
scription factors, among many others. Tumor necrosis factor a
(TNF-a), inducible NOS (iNOS), interleukin-1 (IL-1), intra-

cellular adhesion molecule-1, and cyclooxygenase (COX-2)
have all been shown to be induced by NF-kB (112). Patholo-
gies related to alterations of the NF-kB pathway include al-
lergies (25), Alzheimer disease (97), autoimmunity (46),
obesity (40), atherosclerosis (125), arthritis (123), cancer (41),
Crohn’s disease (114), diabetes (164), and stroke (51).

All NF-kB proteins contain a conserved Rel homology do-
main responsible for dimerization and DNA binding to the
consensus sequence GGGRNNYYCC, (R¼purine, N¼ any
base, Y¼pyrimidine). The NF-kB family of proteins can be
divided into two distinct groups based on the presence of a
transactivation domain. RelA (p65), RelB, and c-Rel all con-
tain transactivation domains, whereas p50 and p52 do not,
and they require heterodimerization with the Rel proteins to
activate transcription. Inactive NF-kB is located in the cyto-
plasm associated with the negative regulator IkB, which can
conceal the nuclear-localization sequence or DNA-binding
domain of NF-kB to prevent transcription (148, 157, 165).
Activation of NF-kB is accomplished through phosphoryla-
tion of IkB by IkB kinases (IKKs), which leads to the release
and nuclear translocation of NF-kB (22, 28, 150). A wide range
of agents have the ability to stimulate IKK to activate NF-kB,
including H2O2, TNF-a, IL-1, phorbol esters, hypoxia fol-
lowed by reoxygenation, ultraviolet radiation, or microbial
infection (112).

The NRF2 and NF-kB signaling pathways interface at
several points to control the transcription or function of
downstream target proteins. Many examples exist in which
activation and repression occur between members of the two
pathways through mechanisms of regulation ranging from
direct effects on the transcription factors themselves to pro-
tein–protein interactions and second-messenger effects on
target genes. Several cancer chemopreventive agents trigger
NRF2 signaling with a concomitant repression of NF-kB

FIG. 3. Schematic representation of stages of adipogen-
esis regulated by AhR and NRF2. Adipogenic stimuli such
as dexamethasone and isobutylmethylxanthine induce ex-
pression of the early markers CEBPb and CEBPd, which
leads to induction of PPARg and CEBPa. NRF2 induces ex-
pression of Ahr mRNA by directly binding to the promoter
of the Ahr gene. AhR inhibits differentiation stages that fol-
low CEBPb activation (i.e., CEBPa or PPARg upregulation).

FIG. 4. E3 ubiquitin ligase activities of KEAP1 and AHR.
KEAP1 binds with CUL3, RBX1, and E2 to facilitate the
ubiquitination of NRF2, leading its enhanced degradation by
the proteasome. Ligand-bound AhR assembles a CUL4B-
based E3 ubiquitin ligase complex to mediate a nongenomic
signaling pathway for influencing estrogen and androgen
actions. ER, estrogen receptor; AR, androgen receptor.
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and its target genes. As examples, sulforaphane [(-)-1-
isothiocyanato-(4R)-methylsulfinyl)butane] reduces DNA
binding of NF-kB and decreases generation of NO, PGE2, and
TNF-a in Raw 264.7 macrophages without affecting IkB or
nuclear translocation of the transcription factor (50). 3H-1,2-
Dithiole-3-thione reduces the nuclear translocation and DNA
binding of NF-kB, along with changes in phosphorylation of
IkB in the hepatocytes of lipopolysaccharide (LPS)-treated
rats (69). Epigallocatechin-3-gallate induces NRF2 and re-
duces NF-kB, TNF-a and IL-1b in the lungs of bleomycin-
treated rats (140). Chalcone has been shown to induce NRF2
and inhibit the activation of NF-kB in endothelial cells (94).
The synthetic triterpenoid CDDO-Me can inhibit NF-kB ac-
tivity through repression of IKKb (1). Curcumin is able to
inhibit NF-kB by blocking phosphorylation and degradation
of IkB in macrophages challenged with LPS (113).

NRF2 and NF-kB can interact to have direct effects on gene
expression. NRF2 and NF-kB mediate the activation of
IkB and ARE sites, respectively, through antagonism of
transcription-factor binding to DNA. NF-kB was recently
shown to prevent the transcription of NRF2-dependent genes
by reducing available co-activator levels and promoting re-
cruitment of a co-repressor. p65 and Nrf2 both bind to the
CH1-KIX domain of CREB-binding protein (CBP), and after
phosphorylation of p65 at Ser276, NF-kB is able to suppress
transcription of ARE-dependent genes by preventing CBP
from binding to Nrf2 (93). A second mechanism of p65 tran-
scriptional repression of the ARE involving histone deacety-
lase 3 (HDAC3) has also been described. Overexpression of
p65 causes the recruitment of HDAC3 to the ARE by binding
to CBP or MafK. HDAC3 was shown to bind MafK in the
NRF2 dimerization region and to prevent the acetylation of
MafK by CBP (93). Further experiments showed that p65 is
able to affect NRF2-dependent transcription through the re-
cruitment of HDAC3 to the ARE by binding to CBP. HDAC3
was previously shown to bind and deacetylate CBP, resulting
in reduced CBP-mediated transcriptional coactivation (24). A
model for effects of reduced coactivator and recruitment of a
co-repressor is depicted in Fig. 5. Phosphorylation of p65 on
Ser276 reduces the available coactivator levels of CBP from
NRF2, which causes decreased transcription through the ARE
and also allows HDAC3 to bind CBP. The loss of CBP from the
MafK-NRF2 heterodimer may then cause destabilization and
allow HDAC3 to bind and deacetylate MafK. The HDAC
could be then be recruited to the ARE through the action of the
CBP-bound HDAC or a MafK homodimer–bound HDAC3
(93). Interestingly, this mechanism may be countered by in-
duction of NRF2, which leads to increased cytoplasmic-to-
nuclear translocation of the transcription factor. Experiments
have shown that repression of NRF2-dependent transcription
was eliminated by transfection of a dominant negative NRF2
that does not undergo cytoplasmic sequestration (93).

Several experiments have shown increased NF-kB activa-
tion in Nrf2-=- mice when compared with wild-type after
stimuli such as traumatic brain injury (65), LPS (147), TNF-a
(147), ovalbumin (119), and respiratory syncytial virus (23).
NRF2 has been implicated in NF-kB control through attenu-
ation of phosphorylated IkB, which causes NF-kB degrada-
tion. Nrf2 -=- MEFs have higher levels of phosphorylated IkB
and greater IKK kinase activity when compared with Nrf2 þ=þ

MEFs after challenge with LPS or TNF-a (147). Interestingly,
overexpression of NRF2 seems to change only downstream

NF-kB targets, not NF-kB or IkB (21, 68, 90). Overexpression
of NRF2 in human aortic endothelial cells by using an ade-
noviral vector did not inhibit TNF-a–induced NF-kB activity
or IkB degradation, but induction of monocyte chemoat-
tractant protein-1 and VCAM-1 with TNF-a were inhibited
(20). These inconsistencies could be due to the loss of NRF2,
creating an environment with a diminished capacity to scav-
enge reactive oxygen species (ROS). The impaired expression
of antioxidative genes could potentially lead to increased ac-
tivation of the NF-kB pathway. Alternatively, enhancement of
NF-kB due to direct transcriptional action of NRF2 may occur.
In genetic studies, Nrf2-=- fibroblasts have shown reduced
steady-state protein levels of p50 and p65 when compared
with wild-type, whereas in vivo studies revealed that livers of
Nrf2-=- mice exhibited greatly reduced transcript levels of p65
(161). By contrast, TNF-a or LPS stimulation of Nrf2-=- fibro-
blasts caused increased activation of NF-kB (147). Enhance-
ment of NF-kB by NRF2 may be coordinated in a subset of the
NF-kB family members to drive expression of specific genes.
In Nrf2-=- fibroblasts p50 and p65 show reduced steady-state
protein levels to 30% of wild type, whereas c-Rel protein levels
were increased 400% (161). It is unknown whether NRF2 is
able specifically to control expression of NF-kB proteins that
lack a transactivation domain to repress transcription of NF-
kB target proteins (88, 91). The enhancement of NRF2 due to
direct transcriptional action of NF-kB may also be possible.
In silico transcription factor–binding site analysis has identi-
fied an NF-kB consensus binding site in the murine promoter
of NRF2 (102), which may increase transcription of NRF2 to
blunt prolonged NF-kB activity. As multiple agents and
stimuli such as ROS, LPS, flow shear stress, oxidized low-
density lipoprotein, and cigarette smoke have been shown to
induce both NRF2 and NF-kB activity (2, 7, 16, 42, 56, 77, 127),
a completely antagonistic effect of the two transcription fac-
tors against one another in all situations is unlikely.

Interactions between downstream targets of NRF2 and NF-
kB that ultimately lead to modulation of transcription factor
activity have been discovered, which adds complexity to the
two pathways. Three examples of NRF2 target genes that are
able to influence NF-kB activity are heme oxygenase-1 (HO-
1), NAD(P)H:quinone oxidoreductase (NQO1), and thior-
edoxin (TRX). HO-1, which breaks down heme to produce
biliverdin, CO, and free iron, is able to modulate activation of
NF-kB through the action of bilirubin and free iron (3, 66, 111,
135, 139, 145) (see Fig. 6). HO-1 has been shown specifically to
prevent phosphorylation of RelA through the action of free
iron at a site required for TNF-a–dependent NF-kB activation
(135). Induction of HO-1 can inhibit IkB degradation, whereas
inhibition of HO-1 increases p65 activity in HT-29 cells and
colonic mucosa after treatment with TNF-a or IL-1ß (66).
NQO1 has both positive and negative effects on NF-kB.
NQO1 overexpression reduces LPS-induced expression of the
downstream inflammatory genes TNF-a and IL-1 in THP-1
cells independent of NF-kB (128). Mice deficient of NQO1 in
bone marrow, spleen, and thymus showed reduced NF-kB
DNA binding under basal or LPS-treated conditions (61). TRX
also has both positive and negative effects on NF-kB. TRX can
modulate NF-kB activity through the reduction of cysteine
residues (26, 36, 47, 74, 96, 116). Nuclear TRX is required for
the reduction of cysteine residues on p50 to allow binding to
DNA, whereas cytoplasmic TRX is able to block the degra-
dation of IkB (54).
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Target proteins of the NRF2 and NF-kB pathways and their
products can also interact to regulate enzyme activity. The
NF-kB target IL-10 (15) has been shown to induce HO-1 in
murine macrophages and in vivo (87). A feedback loop is
present between HO-1 and iNOS in macrophages to protect
the cell against injury due to excess NO. Expression of iNOS,
which leads to overproduction of NO, causes induction of
HO-1 (34, 60). HO-1 is then able to inhibit iNOS through the
action of free iron (156) and CO (131), as well as through the
overall reduction of heme (4) to prevent further production of
NO (141). Interestingly, NO can be scavenged by biliverdin
and bilirubin to further entangle the signaling pathways (71)
(Fig. 6). HO-1 has also been shown negatively to affect
VCAM-1 expression (9). Additional interactions between HO-
1 and the NF-kB pathway can be seen with the HO-1 product
CO. CO can repress the formation of TNF-a, IL-1b, and
macrophage inflammatory protein-1b and increase IL-10 after
LPS stimulation (110).

An NF-kB target that has been shown to influence NRF2
activity is COX-2 and its downstream product 15-deoxy
D(12,14) prostaglandin J2 (15d-PGJ2). Induction of COX-2 by
shear stress has been shown to inhibit phosphatidylinositol 3-
kinase activity, causing reduction of the transcription of
NRF2, NQO1, HO-1, GCLR, and GSTM1 in human chon-
drocytes. Restoration of NRF2-dependent induction of the

genes was seen on treatment with the COX-2–specific inhib-
itors CAY10404 and NS398 (49). 15d-PGJ2 has been shown to
play a role in NRF2 modulation by binding to KEAP1 and
causing nuclear translocation of NRF2 in macrophages (63).
Further evidence of a direct effect of 15d-PGJ2 on NRF2 acti-
vation was found in vivo by using Nrf2-=- mice and the COX-2–
selective inhibitor NS-398 (99). 15d-PGJ2 has also been shown
to provide negative feedback through its own pathway by
binding IKK to prevent the activation of NF-kB in HeLa cells
and appears to do the same in human peripheral blood
monocytes (126).

NRF2 and NF-kB have a subset of target genes that are
regulated through the actions of both transcription factors on
ARE and kB sites. HO-1 has been shown to have a functional
ARE that can be activated by NRF2 (3), as well as a functional
NF-kB site, by using EMSA and DNase I footprinting analysis
(86). Glutamate-cysteine ligase catalytic subunit (GCLC) can
be activated by NRF2 through an ARE (101) or by NF-kB
through a kB site after ethanol exposure (76). The inhibitory G
protein, Gai2, is another example of a gene activated by both
NF-kB and NRF2 (8). Expression of the chemokine IL-8 can be
increased by both NRF2 and NF-kB, but not through the usual
mechanisms. NF-kB activates transcription of IL-8 by binding
to the kB site (82), whereas NRF2 instead uses a mechanism
that stabilizes IL-8 mRNA (166).

p53 and NRF2: Cooperation and Antagonism
in Protection Against Cancer

The examination of p53 after its discovery in 1979 (92) has
been extensive, with approximately 52,000 articles acces-
sioned when ‘‘p53’’ is searched on PubMed. This investigative
interest is not without reason, inasmuch as p53 is mutated in
upward of 50% of human cancers through single, compound,
or deletion mutations (55). This common frequency of muta-
tions makes p53 an attractive target for chemotherapeutics. If
p53 is to be targeted, however, the body of knowledge sur-
rounding the protein should be expanded to provide full
understanding of the interactions of p53 with other signaling
molecules and networks.

p53 regulates a host of processes within the cell, both di-
rectly, including the induction of apoptosis through the per-
meabilization of the outer mitochondrial membrane through
interaction with proapoptotic factors (43, 89, 100), and indi-
rectly, through the transcription of genes that effect changes
on the cell. Examples include both pro- and antiapoptotic
responses, the induction of cellular senescence, and the repair
of genotoxic damage (39). These various activities of p53 make
it an integral part of the cellular defense against transforma-

FIG. 5. Repression of NRF2
signaling by members of the
NF-jB pathway. p65 represses
NRF2-dependent transcription at
the ARE when phosphorylated
on S276 by either competition for
coactivator binding proteins or
by recruiting HDAC to the ARE,
which can deacetylate histone H4
and MafK.

FIG. 6. The interactions of the NRF2 and NF-jB target
proteins HO-1 and iNOS and their products can regulate
the activity of each other in macrophages to protect against
an overabundance of NO. Excess NO acts as a signal to
increase HO-1, which is able to scavenge NO and block the
activity of iNOS to prevent further production.
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tion: p53 controls cell fates by regulating the activation of
apoptosis to remove a heavily damaged cell, induces terminal
differentiation to remove the threat of a moderately damaged
cell, or induces the transcription of cellular scavenging pro-
teins to reestablish cellular homeostasis.

Iida et al. (58) showed that Nrf2 and p53 collaborate to
protect against carcinogenesis (58), with the demonstrations
that, compared with wild-type mice, either Nrf2 knockout
mice or p53 heterozygotic mice are more susceptible to
nitrosamine-induced bladder carcinogenesis, and that the
Nrf2-=-::p53þ=- compound knockout mice are even more sus-
ceptible. This interaction is not unexpected, as when either the
cytoprotective response system of NRF2, or p53, a cell-fate
decision molecule is removed, the incidence of cancer in-
creases after carcinogen challenge (117, 146). Although broad
explanations based on general understandings of pathways
can be posited, the actual interactions between NRF2 and p53
in this setting and the collective effects on the expression and
function of their downstream target genes remain to be
established.

In a more-direct examination of the interaction between
p53 and NRF2, p53 has been shown to influence NRF2-based
transcription by Cimino and colleagues (33). Specifically, p53
suppresses the transcription of three NRF2 target genes dri-
ven through the ARE. These genes, x-ct, Nqo1, and Gst1a1, are
all involved in mounting an antioxidant response within the
cell, specifically neutralizing ROS. In the study, various cell
lines were transfected with expression vectors containing Nrf2
or p53. In all circumstances, the transformation with both Nrf2
and p53 results in a reduction of transcript levels of the target
genes when compared with cells transformed with Nrf2 alone.
This, in combination with experiments in which cells were
exposed to etoposide (a topoisomerase II–inhibiting chemo-
therapeutic drug) also shows that p53 has the ability to reg-
ulate negatively the NRF2 target gene transcripts. When p53 is
highly upregulated, through either overexpression or a strong
DNA-damaging agent, antioxidant response genes are
downregulated through p53-mediated disruption. Whether
or to what extent NRF2 regulates p53 signaling is not clear.
Transcriptome analyses, along with unpublished observa-
tions (M.K. Kwak and N. Wakabayashi), suggest that NRF2
contributes to the basal expression of MDM2, an inhibitor of
p53 (85). The potential additional level of p53 regulation
through NRF2 allows the dampening of MDM2-based pro-
teasomal degradation of p53 in circumstances in which p53
may be modulating the expression of NRF2 target genes.
Dampening of Mdm2 would allow an enhanced p53 signal.
This effect makes intuitive sense, as if p53 were mediating an
apoptotic response through ROS production, NRF2-driven
gene expression of anti-ROS enzymes would be counterpro-
ductive. This observation, however, is confounded by a recent
article examining the relation between p21, a direct down-
stream target of p53, and NRF2 (19).

p21 is involved with many different cellular processes, in-
cluding cell-cycle arrest, cell differentiation, senescence, apo-
ptosis and DNA replication and repair, and oxidative stress
(29, 31, 38, 86, 107). Chen et al. (19) recently showed a direct
interaction between p21 and NRF2, which may explain the
cytoprotective properties of p21 when faced with oxidative
stress. These investigators demonstrated in vitro that p21 is
able to interact with the DLG motif within NRF2, thereby
attenuating KEAP1-based ubiquitination and subsequent

proteasomal degradation. The antioxidative properties of p21
rely on the presence of NRF2, as an increase in p21 concen-
tration leads to increased transcript levels of ARE-regulated
genes, and the presence of p21 within cells yields an increase
in the half-life of NRF2. Additionally, it was observed in vivo
that both basal and induced levels of NRF2 protein are higher
in p21 wild-type mice than in p21-null mice, with induced
levels of NRF2 target gene proteins NQO1 and HO-1 being
higher in p21 wild-type mice. This discovery contributes sig-
nificantly to appreciation of the emerging network of signal-
ing between p53 and NRF2 by demonstrating that a direct
target of p53 upregulates NRF2 levels and activity.

The three puzzle pieces presented here come together in an
intricate fashion, demonstrating a tunable response by p53 to
induction by any number of stimuli, as shown in Fig. 7. When
p53 is strongly induced, the induction of apoptosis through
the expression of proapoptotic proteins through the genera-
tion of intracellular ROS is secured by the suppression of
antioxidant gene expression regulated by Nrf2, as well as the
suppression of basal levels of Mdm2, to ensure the strongest
possible cell-death signal both through direct levels of p53
and by its direct activities remaining uncompromised. The
upregulation of proapoptotic factors by p53 may rely on in-
creased levels of intracellular ROS production for signaling. In
this setting, ROS is not neutralized by NRF2 target genes such
as Nqo1 and Gst1a1 because of transcriptional interference by
p53 (33), and the proteasomal degradation of p53 is hampered
because of the reduction in MDM2 levels.

On the other extreme, in the face of weak p53 induction, p21
is activated, stalling the cell cycle at the G1=S-phase check-
point (30, 45, 160) This stalling allows the induction of DNA
damage-repair functions by p53, the expression of proteins in
an attempt to lower intracellular ROS (10, 129), and the sta-
bilization of NRF2 by p21, thereby disrupting proteasomal
degradation of NRF2 by KEAP1. This disruption of NRF2
turnover allows the nuclear translocation of NRF2, and the
subsequent transcription of ARE-driven genes, leading to a
general cytoprotective response. The collective actions of p53
and NRF2 lead to the repair of the cell and evasion of apo-
ptosis. Links between NRF2 and the oxidative-stress–induced
inhibition of proliferation have been well described (120, 121);
in some instances, they may operate independent of p53.

The circumstance of a moderate induction of p53 allows
some speculation that a middle ground exists between the
promotion of programmed cell death and full cell repair and
restoration of homeostasis, namely, that of cellular senescence
through terminal differentiation. This balance is achieved
through p21 activation after p53 induction through signaling.
p21 blocks the cell cycle by stopping progression through the
G1=S checkpoint (30, 45, 160), and allows the stabilization of
NRF2 and an increased level of detoxification enzymes (19).
p53 almost certainly plays a role in activating additional
proteins that contribute to the process of rescuing a damaged
cell that may be useful in a state of terminal differentiation but
has experienced some insult that renders the cell a liability
when used for mitotic purposes.

This system of dynamic response to cellular stresses by p53,
p21, and NRF2 demonstrates a powerful mechanism for cel-
lular and organismal maintenance, through the repair, dif-
ferentiation, or destruction of damaged cells. In the case of
mild damage, NRF2-mediated detoxification of carcinogens
combined with a p21-mediated pause in the cell cycle and a
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p53=p21-mediated induction of DNA damage-repair en-
zymes salvages cells from damage, whereas in the case of
extensive damage to a cell, p53 mediates the disruption of
NRF2-mediated antioxidant response proteins, allowing p53-
driven apoptosis, in toto reflecting a tunable response to en-
vironmental stresses.

NRF2 and NOTCH Signaling:
Cell-Survival Factor Meets Cell-Fate Factor

Several lines of differential microarray analyses using
RNAs isolated from MEFs prepared from Nrf2-=- and wild-
type mice have shown that Notch1 and its direct downstream
genes (Hes, Herp) (62) displayed decreased expression in
Nrf2-=- MEF. Studies from our laboratory demonstrate that
Notch1 signaling triggered through its activating ligands,
DLL1 and JAG1, is dependent on Nrf2 genotype. Moreover,
one or more functional ARE sequences exist in the promoter of
Notch1. Therefore, it appears that NRF2 directly regulates
Notch1 gene expression (153). It is now well established that
signals through the NOTCH receptor are involved in the de-
velopment of several cell types and that the modulation of
these signals can markedly affect differentiation, prolifera-
tion, and apoptotic events. Genetic ablation studies indicate
that Notch1 is crucial for early development and regrowth in a
variety of tissues (57, 154). Activation of the pathway has been
shown to be a potent inhibitor of differentiation in different
developmental contexts and has been associated with the
amplification of certain somatic stem cells (27, 35, 64, 80, 134,
142). Considering the significance of the NOTCH1 signal
cascade in developmental biology, this indicated the possi-
bility that NRF2 could be a key molecule affecting both em-
bryonic and adult tissue stem cell renewal, as well as cell fate.
Of course, this cross talk might not only be mediated by
transcriptional machinery, as NOTCH signaling is regulated
by various dynamic mechanisms, including posttranslational
modifications (149). Critical to the evaluation of cross talk
between transcription factors are assessments of their func-
tional consequences. Several physiological lines of evidence
support functional interactions between NRF2 and Notch1:
liver regeneration, keratinogenesis, osteoblastogenesis, and
adipogenesis (Fig. 8).

Nrf2-=- mice display an interesting phenotype in the process
of liver regeneration (11). Nrf2-=- mice have been challenged
with a two-thirds partial hepatectomy to view the impact of
genotype on the kinetics of liver regeneration. These knockout
mice showed a significant delay in the recovery of liver mass
after partial hepatectomy. We have observed that this regen-
eration-defective phenotype is rescued by hepatocyte-specific
expression of the NOTCH1 intracellular domain (NICD) in
Nrf2-=- mice. NICD functions as a transcription co-factor of
RBPJ. This finding provides clear evidence for the existence
of NRF2-Notch1 cross talk within the damaged liver, and
within the process of liver regeneration (153). In a rat model
in which siRNAs against NOTCH1 and JAG1 (a NOTCH1
ligand) were injected into the superior mesenteric vein before
the two-thirds partial hepatectomy, significantly suppressed
proliferation of hepatocytes was reported at days 2 to 4 of the
regenerative response (80). Apparently, the NRF2-NOTCH1
signaling pathway may be activated during liver regeneration
and is potentially contributing to signals affecting cell growth
and differentiation.

Keap1 -=- mice, which exhibit hyperactivated NRF2 signal-
ing, have a thickened cornified layer on the suprabasal layer of
the esophagus (152), with a huge keratin mass derived from
the cornified layer around the limiting ridge and cardia. All
Keap1-null mice die within 3 weeks of malnutrition caused
from esophageal and forestomach obstruction. Through mi-
croscopic observation, a clear difference is noted between the

FIG. 7. p53 modulates a
gradient of responses to cel-
lular stress. When the cell is
exposed to a high level of
stress, p53 acts in a proa-
poptotic fashion, modulating
multiple pathways to secure a
full commitment to cell death,
whereas with a low level of
cellular stress, p53 modifies
gene expression to ensure cy-
toprotection after removal of
the stress. The intermediate re-
sponse is also possible, with p53
retaining the ability to induce
cellular senescence through exit
of the cell cycle and induction
of terminal differentiation with
a concurrent cytoprotective
response.

FIG. 8. Possible effects of NRF2–Notch interactions on
cell fate.
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processes of cornified layer thickening in the esophagus ver-
sus the foregut. In the case of the esophagus, cell numbers in
the basal layer seem to be unchanged, with the cornified layer
exhibiting thickening. This appears to be a prodifferentiation
mode of hyperkeratosis. Within the limiting ridge of the
greater curvature and the cardiac portion of the forestomach,
however, a proliferative form of hyperkeratosis is observed,
with proliferation of undifferentiated cells. This phenotype
might be explained by the excess Notch signaling produced by
excessive NRF2 activation. NOTCH signaling is expressed in
the gastrointestinal tract. Specifically, in both the esophagus
and forestomach, NOTCH1 and JAG2 display the highest
levels of expression within their families in the basal layer (70),
where stem and progenitor cells are located (130). Progenitor
cells are differentiated to keratinocytes in the suprabasal layer
and denucleated in the cornified layer, with Notch signaling
being weakly expressed in the suprabasal layer. Interestingly,
NOTCH signaling induces terminal differentiation to activate
p21 gene expression directly in keratinocytes (118, 158). This
function of the NOTCH signal might be stronger in the
esophagus and forestomach of Keap1-null mice.

Hinoi et al. (52) demonstrated that NRF2 negatively regu-
lates osteoblast differentiation in the MC3T3-E1 cell system.
They also showed that NRF2 might inhibit cellular differen-
tiation and maturation in chondrocytes by using the pre-
chondrogenic cell line ATDC5, derived from the mouse
teratocarcinoma AT805 (53). As a proposed mechanism of
these phenomena, they conjectured that the inhibition of
RUNX2 (one of the essential factors for bone formation and
chondral maturation) was caused by either direct or indirect
interaction with NRF2. Conversely, Notch-signaling directly
influences osteogenesis and chondrogenesis (14). Interestingly,
these phenomena are all related to bHLH-transcription factors,
especially HES and HERP, which are primary target genes of
NOTCH signaling. These proteins function as negative regu-
lators of target gene expression through direct cis-element
(E-box, N-box)–binding machinery. They also facilitate pro-
teasomal degradation through heterodimerization with other
bHLH transcription factors. The heterodimer partners of HES
or HERP primarily promote differentiation. Thus, they can lead
to maintenance of current cell status. HES1 directly binds to the
osteocalcin promoter and represses osteocalcin gene expression
(167). Additionally, HES1=HERP2 physically interacts with
RUNX2 in osteoblasts (37). It is also possible that NOTCH1
expression in osteoblasts is influenced by the NRF2 transcrip-
tion factor, much as NOTCH1 is in MEF.

As discussed earlier, AhR and its downstream gene ex-
pression is reduced in Nrf2-=- MEF (138). This dampened gene
expression impairs adipocyte differentiation from MEF. Nrf -=-

MEF show markedly accelerated adipogenesis on stimula-
tion, whereas Keap1-=- MEF, which demonstrate higher levels
of NRF2 signaling, differentiate slowly compared with their
congenic wild-type MEF. Within this system, ectopic expres-
sion of AhR rescues adipogenesis seen in Nrf2-=- MEF.
However, recently Ross et al. (124) reported that HES1, a
primary downstream gene product of NOTCH1 signaling,
inhibits the differentiation of adipocytes from 3T3-L1 cells.
They also demonstrated that both the bHLH and the WRPW
(67) [which is a co-repressor (GROUCHO=TLE) binding
motif ] domains in HES1 are required for its inhibitory effect.
This study raised the possibility that the enhanced adipo-
genesis shown in Nrf2-=- MEF is caused by a weaker output

of both NOTCH1 and AhR signaling than within wild-type
MEF.

Conclusions

The NRF2 pathway has been studied in diverse contexts
because of potential roles in stroke recovery, neurodegen-
eration, chronic obstructive pulmonary disease, and cancer
prevention in multiple organs. The profiling of gene-expression
changes mediated by the NRF2 pathway has been well
documented. The interpretation of such studies, however, has
been hampered by the inability to distinguish genes modu-
lated directly by NRF2 from genes induced secondarily by
NRF2-sensitive transcription factors and the mitigating im-
pacts of tissue-specific responses. Nonetheless, it is clear that
the protective effects of upregulation of NRF2 signaling can
take several forms. Protection can be immediate, reflecting in-
duction of genes directly regulated through NRF2 binding to
AREs in target genes (e.g., the innate immune response and
elevated cytoprotective responses to blunt cytokine surges or
detoxify reactive intermediates, respectively) (73). The pro-
tective effects can be secondary through induction of macro-
molecular damage repair=removal systems (proteasome,
DNA repair) (84, 106). Last, the protective effects can be ter-
tiary through activation of tissue repair=regeneration path-
ways. In these latter cases, involvement in cross talk with
additional pathways affecting cell survival and other aspects
of cell fate most certainly play important collaborating roles.
This review has highlighted several such collaborators (and
sometime competitors): AhR, NF-kB, p53, and Notch1. Future
studies evaluating the concordance between global mRNA
expression profiles at the transcriptomic levels (i.e., oligonu-
cleotide microarray analyses) and genome-wide NRF2-DNA
binding analysis using high-throughput methods (i.e., chro-
matin-immunoprecipitation with parallel sequencing) should
better establish a systems-level view of NRF2-dependent
processes occurring within cells. Functional importance will
require well-crafted molecular genetic studies in cell culture,
and more important, in vivo, to define the critical cross-talk
interactions between NRF2 and other transcription factors.
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Abbreviations Used

15d-PGJ2¼ 15-deoxy D(12,14) prostaglandin J2
AhR¼ arylhydrocarbon receptor
ARE¼ antioxidant response element

ARNT¼AhR nuclear translocator
CBP¼CREB-binding protein

CDDO-Im¼ 1-(2-cyano-3,12-dioxooleana-1,9[11]-
dien-28-oyl)imidazole

CEBPs¼CCAAT-enhancer-binding proteins
COX-2¼ cyclooxygenase-2

GST¼ glutathione S-transferase
HO-1¼heme oxygenase-1

IKK¼ IkB kinase
IL-1¼ interleukin-1

iNOS¼ inducible NOS
KEAP1¼Kelch-like ECH-associated protein 1

LPS¼ lipopolysaccharide
MEF¼mouse embryonic fibroblast

NF-kB¼nuclear factor kappa-light-chain-enhancer
of activated B cells

NICD¼notch1 intracellular domain
NQO1¼NAD(P)H: quinone-acceptor 1
NRF2¼NF-E2–related factor 2
PPAR¼peroxisome proliferator-activated

receptor
ROS¼ reactive oxygen species

Sulforaphane¼ (-)-1-isothiocyanato-(4R)-
methylsulfinyl)butane

TNF-a¼ tumor necrosis factor a
TRX¼ thioredoxin
XRE¼ xenobiotic-responsive element
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