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The movement of blood or of material in the blood through a given segment of the
circulation can be defined in terms of a “transport function” which describes completely the
delay and dispersion occurring in the flowing blood. For any inert, indestructible,
nondiffusible indicator in the blood, the convolution integral of the transport function and
the indicator concentration-time curve at the upstream end of a segment should exactly equal
the concentration-time curve at the downstream end of the segment. The transfer function is
defined simply as a distribution of transit times. It is the purpose of this paper to provide
some insight into the meaning and utility of the process of convolution by using simple
examples to illustrate the fundamental principles on which all dye-dilution techniques
depend.

All of the illustrations shown in this paper are idealized curves generated in and plotted by a
digital computer. However, the form of the injection and the transport functions of the
circulatory and sampling systems are all representative of an abundance of actual
experimental situations.1–4 Because of the fluctuations in aortic or peripheral blood flow
occurring randomly and with each cardiac and respiratory cycle, a sequence of injections of
different form could not, except by rare chance, have yielded responses (dye curves) that
could be closely compared to one another. Therefore, the theoretical curves are preferable
for this presentation since they are free of noise and are unmarred by biologic and
experimental aberration.

A segment of the circulatory system can be represented as in Figure 1. The concentration-
time curve of an injected indicator or of a normal blood constituent at the upstream end of
the segment can be treated as the input, f(t). The transport function, h(t), is defined for
circulatory transport as the frequency distribution of transit times for particles to travel from
the beginning to the end of the segment. The concentration-time curve at the downstream
end of the segment, g(t), is the “convolution” of the input curve, f(t), and the transport
function, h(t). This relationship is expressed in abbreviated form as:

(equation 1a)

or

(equation 1b) *
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or, more formally, as:

(equation 1c)

which is the convolution integral, where λ is a variable whose values run from 0 to t for
computing the integral. The asterisks in equations la and lb represent the process of
convolution; the equivalence of the two equations indicates that the operation is
commutative (just as a·b = b·a)—either f(t) or h(t) can be considered as input to the other;
this will be illustrated later.

BASIC ASSUMPTIONS
The assumptions that Stewart5 made 70 years ago still form the basis of our usual methods
for estimating cardiac output and mean transit times in the circulation. The indicator was
assumed6 to (1) mix with the blood at the injection site and (2) move in the same manner as
the blood. It is also assumed that (3) the distribution of transit times of the blood through
various pathways does not change (stationarity of flow) and (4) the volume of blood
sampled from high-velocity streamlines is in the same proportion of the total volume flow in
those streamlines as is the volume sampled from low-velocity streamlines. None of these
basic assumptions is completely valid, but the calculations of flow and mean transit time in
the circulation are not much in error.

These requirements are fulfilled if the circulation is a mathematically linear, lumped system
or if, because of the labelling and sampling requirements, the three-dimensional, complex,
tubular, vascular system can be considered analogous to a one-dimensional line along which
particles move at varying rates, as Zierler6 has assumed. Formally, a system whose output
response is g(t) to an input, f(t), is linear when the response to [a1 f(t) + a2 f(t−t0)] is [a1g(t)
+ a2g (t−t0)]. The transport function is a frequency distribution (as in Figure 2, left panel)
giving the relative number of particles (ordinate), h(t), requiring a certain time (abscissa), t,
to travel through the segment. Existence of a transport function for a segment of the arterial
system requires only that assumption 3 be true, but, in order to investigate transport
functions, one must label the blood appropriately (assumption 2) and sample the stream
appropriately (assumption 4). Assumption 3 implies constant blood flow, but the pulsatile
nature of arterial flow does not vitiate the use of transport functions because, when the
pulsations recur frequently within the passage time of the transport function, they may be
considered simply as noise. For example, at a heart rate of 80/min, about 15 beats would
have occurred in the 11 sec between the transit times of the fastest particles (6 sec) and the
slowest (17 sec) indicated in Figure 2.

THE IDEALIZED DYE CURVE
In order to obtain the idealized dye curve, it is assumed that the injection is instantaneous
and does not disturb the flow but yet the indicator mixes with or labels the blood in each part
of the cross section in proportion to the flow through that part of the stream (“flow-tagging”
according to González-Fernández).7 This is the ideal delta function, δ(t), or impulse input,
but it is not achievable experimentally. It must be also assumed that the concentration of
indicator at the sampling site can be recognized without any delay and that the flow is
steady. The result is the idealized indicator-dilution curve seen in Figure 2, left panel; when
one unit of dye is injected as a single pulse at time zero and there is no recirculation of
indicator, the recorded concentration-time curve is proportional to the frequency distribution
of transit times between the injection and sampling sites (Fig. 2 left panel). This is the
transport function, h(t), of that segment of circulation. The mean transit time of this
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particular transport function is 10.0 sec, its standard deviation (dispersion) is 1.74 sec, and
its skewness* is 1.2. This transport function shows that, for example, 8.34% of the dye
particles arrive at the sampling point between 6.0 and 8.0 sec after injection (first shaded
area, Fig. 2) and 31% between 10 and 12 sec (second shaded area, Fig. 2).

For computational purposes, unless an analog computer or a planimeter is used, the curve is
treated statistically as a frequency histogram. Grouping at large intervals provides a poor
representation of the form of the curve and results in overestimation of mean transit time,
dispersion, and skewness (2-sec intervals, Fig. 2 middle panel). When the groups are small,
the error is reduced and the form is improved. A transport function of the form shown in the
right panel of Figure 2 (0.4-sec intervals) was used for the computations resulting in the
following figures. Parenthetically, since the ideal injection is not achievable, recorded dye
curves do not represent the transport function. However, the transport function can be
determined experimentally by injecting somewhere upstream from the input to the segment
and sampling simultaneously at the beginning and end of the segment to obtain f(t) and g(t),
from which h(t) can be computed by a variety of methods. These include (1) assumption of a
transport function, h(t), computation of f(t).h(t), comparison of the result with the observed
g(t), readjustment of h(t), and repetition of computation of f(t).h(t) until a close
approximation to g(t) is obtained in either an analog or a digital computer;3, 4 (2) use of the
inverse of the convolution integral; (3) use of the finite Fourier series transforms of f(t) and
g(t) to calculate h(t)1; and (4) solutions of sets of simultaneous linear differential equations
after assuming a transport function of a chosen order.

Influence of the Form of Injection on the Primary Curve
The data of Figure 3 concern the response of the segment of the arterial system to different
constant-rate injections of a total of 10 mg of indicator when the flow rate is 100 ml/sec. The
transport function of the segment is that shown in Figure 2. In all panels the area of the input
(stippled) is the same as the area of the output response (circles) and is 100 mg sec/liter.

If the injection were very rapid (0.4 sec) the output concentration-time curve, g(t), would be
essentially the same as the transport function (Fig. 3 upper left panel). Such a pulse injection
is unattainable and an impulse input, δ(t), is even more unrealistic. Although the injection
rate (250 mg/sec) is achievable, high injection rates cause dispersion in the blood in the
region of the catheter tip and may actually cause more longitudinal spread of the indicator
than will occur with a more prolonged injection into the flowing stream.

An injection of 2-sec duration (Fig. 3 upper middle panel) may be considered to be five
pulses, each of which is 2.0 mg and lasts 0.4 sec, and, assuming idealized mixing (flow-
tagging), results in a concentration of 50 mg/liter at the injection site during the period of the
injection. The response of the vascular segment to each of these pulses is theoretically the
same as in the upper left panel except that the amplitude is one fifth; these five responses are
shown as five curves, each having a peak concentration of 5.7 mg/liter. The actual output
response or dye curve (circles) is the sum of the five and approximates the convolution
integral, which is merely the sum of a sequence of responses to impulse inputs. This output
curve is broader and has a lower peak than that for the single pulse type of injection (upper
left panel).

Halving of the injection rate to 2.5 mg/sec for 4 sec (Fig. 3 upper right panel) is equivalent
to providing as input a sequence of 10 pulses, each having an area of 10 mg sec/liter. The
individual responses to the 10 input pulses have the same shape as before but with

*Skewness is unitless and is defined as π3/π23/2 where π2 and π3 are the second and third moments, respectively.
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diminished amplitude, and their sum, g(t), the convolution integral (circles), is a still broader
output curve.

With an 8-sec injection period (Fig. 3 lower left panel) the individual responses to each 0.4-
sec pulse have a peak concentration of only 1.5 mg/liter, and the summed (output) curve is
very flattened. It is apparent that an injection of only slightly greater duration would have
resulted in a plateaued output curve.

The evolution to the constant-rate indicator-dilution technique is completed in the lower
right panel by using a prolonged injection (0.625 mg/sec for 16 sec) which is equivalent to
40 0.4-sec pulses containing 0.25 mg each. The flow through the vascular segment may be
calculated from the output curve by using either the plateau concentration of 6.25 mg/liter or
the total area. The plateau concentration is reached only when the slowest indicator particle
from the first pulse has reached the sampling site. Therefore, when recirculation occurs in
the body, the plateau concentration can be used to estimate flow only when recirculation
begins so long after the completion of the response to the first pulse that the existence of a
plateau can be recognized. Generally, therefore, it is most useful when the response to a
short slug-injection shows complete clearance to the base line before recirculation occurs.

Calculations based on the hypothetical data of Figure 3 will serve to illustrate the standard
formulae. For any of the injection forms, flow (liters/sec) equals amount injected (10 mg)
divided by the area (100 mg sec/liter) or 0.1 liter/sec. For the prolonged injections of the
lower right panel, flow equals injection rate (0.625 mg/sec) divided by the plateau
concentration (6.25 mg/liter) or 0.1 liter/sec. It is emphasized that the basic assumptions of
the constant-rate dye-injection method are no different from those governing the slug-
injection method. The 16-sec injection (lower right panel) has the practical disadvantage
that, in animals, recirculation would have occurred and obscured the plateau and the tail of
the curve.

The mean transit times of the input and output curves of the five panels are related8 by:

(equation 2)

where t̄f, t̄h, and t̄g are the mean transit times for f(t), h(t), and g(t), respectively, as
calculated by the standard formula for the first moment:

(equation 3)

(equation 4)

Equation 4 is valid when ti–ti-1 is a constant time interval. In Figure 3, the midpoint of each
stippled area, f(t), is its mean transit time, t̄f; t̄g may be found either from equation 4 or by
adding t̄h (10.0 sec in this case) to t̄f as in equation 2.

Influence of Sampling System on Recorded Curves
The sampling of the blood through a catheter or needle at a constant rate results in further
dispersion of the indicator in the sampled blood. This effect is characterized precisely by the
transport function of the catheter, the form of which is dependent on flow rate (Fig. 4). The
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curves are idealized but typical of those obtained in this laboratory. At slow sampling flow
rates, the transport function has greater temporal dispersion than at fast rates—that is, the
pulse response is more spread out.

A given sampling system has much more effect on an arterial dilution curve with rapid time
components than on a slower curve (Fig. 5 lower panel) and the distortion is much greater
when the sampling rate is slow or the volume of the sampling system is large. In a practical
sense, the sampling system is a low-pass filter: low-frequency, gradual concentration
changes are little affected in shape and are merely delayed, but rapid changes in
concentration (high-frequency information) are greatly attenuated or lost altogether. In a
similar fashion, the high-frequency step-changes in concentration that occur with ventricular
injection are quite smoothed out a few inches downstream in the aorta.

CONVOLUTION IS COMMUTATIVE
Equations la and lb imply that it does not matter whether one considers the input curve as
being distorted by the sampling system or the impulse response (transport function) of the
sampling system as being acted on by a changing concentration at the tip; the operation is
commutative. The details can be seen in Figure 6; the same result, g(t), is obtained whether
the arterial curve is called f(t) and the sampling-system transport function, h(t), or vice
versa. This result can also be proved mathematically.8

FREQUENCY RESPONSE OF THE CIRCULATORY SYSTEM
In Figure 7 are illustrated indicator-dilution curves representing what occurs with
sinusoidally varying injection rates. The smooth lines, f(t), in each panel represent the
concentration at the injection site, assuming complete mixing at this site, when the injection
rate is 0.6 + 0.4 sin 2π Ft in mg/sec and the flow (cardiac output) is constant at 100 ml/sec. F
is frequency in cycles/sec. The injections are stopped at either 30 or 20 sec. These curves are
inputs, f(t), to the vascular segment; the same vascular transport function, h(t), as before
(Fig. 2 right panel and used for the convolutions of Fig. 3) was used to compute the
downstream or output curves, g(t), by convolution of f(t) and h(t). f(t) and h(t) are
considered as sequences of pulses of varying amplitude and fixed duration, Δt. (In order to
use smooth curves, smaller Δt’s were necessary with higher frequency sine waves. Δt was
0.2 for frequencies of 0.05, 0.1, and 0.2 cps, 0.15 for 0.3 cps, and 0.1 for 0.4 cps.) The
individual responses of the vascular segment to the input pulses are shown at the bottom of
each panel and are difficult to distinguish when the injection rate varies slowly (Fig. 7 upper
left panel) and when the pulse duration, and therefore amplitude of response, is small (Fig. 7
lower right panel).

When sufficient time after the start of injection has elapsed for all the indicator from the first
input pulse to pass by the downstream detection point, the output curve, g(t), also becomes
sinusoidal. The duration of this transient period would be expected to be 17 sec—that is, the
time for the slowest particle to traverse the system (from Fig. 2)—and it may be seen that
the peaks of g(t) in the lower panels of Figure 7 are at a constant concentration after this
period has passed. The steady-state response is maintained until the first un-labelled blood
reaches the downstream point after the end of injection. Again, from Figure 2, it is apparent
that this takes a little less than 7 sec. Likewise, this is most apparent in the lower panels of
Figure 7 where it is seen that deviation from the sine wave begins during the twenty-seventh
second.

As expected, the amplitude of the sinusoidal portion of g(t) is always less than that of f(t).
The attenuation is greatest at high frequencies, and at very low frequencies there will be no
attenuation. This relationship is shown in Figure 8, where the dots represent the relative
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amplitude of output and input for each frequency as calculated theoretically with a Fourier
transform. The plus signs represent the data of Figure 7. For example, when the frequency is
0.1 cps (Fig. 7 upper right panel), the amplitude of g(t) is 8.5 – 3.5 = 5.0 and that of the f (t)
is 10.0 – 2.0 = 8.0. The relative amplitude is therefore 5.0/8.0 = 0.62, which is plotted as a
plus sign in Figure 8 (left panel).

g(t) is delayed from f(t) by a certain time, the mean transit time, t̄h of the transport function,
h(t). With sine waves, this delay time is usually expressed as a phase lag (as the number of
cycles at the frequency being observed). For a system with a constant delay, the relationship
is: phase angle (radians) = 2π Ft̄h, where F is the frequency in cps; phase angle in degrees =
2π Ft̄h 180/π = 360 Ft̄h. This is the relationship given by the dashed line in Figure 8 (right
panel). The delays observed in Figure 7 are shown as plus signs. The phase angle is linear
with respect to frequency, however, not only because of the delay but also because the
dispersion in the circulation is nearly Gaussian, and deviation from the linear relationship at
higher frequencies reflects the fact that the distribution of transit times is somewhat skewed.
The dead time, or pure delay preceding the appearance time, 6.5 sec, comprises a large
portion of the phase angle.

Thus, the circulatory transport function can be said to filter out high-frequency information
regarding concentration of material and can be characterized completely by phase and
amplitude plots versus frequency.1

This concept of the circulation as an “information filter” can be applied to reduce errors
inherent in the dye-dilution technique. For example, when there are cyclic variations in flow
rate, the concentration-time curve obtained with a constant-rate injection will be cyclic and
the response to a slug injection will be irregularly shaped. It may be seen from Figure 8 that
the relative amplitude is less than 2% of the maximum when the frequency is greater than
0.4 cps or, in general, greater than 4/t̄h cps. For example, in the aorta where the average
blood velocity might be 20 cm/sec, if the sampling site is 40 cm from the injection site, t̄h is
2.0 sec and frequencies greater than 2 cps will have no significant effect on the resultant dye
curve and the flow calculated from it.

FORMATION OF THE RECORDED DYE CURVE
The primary indictator-dilution curve recorded via a densitometer will be the result of the
three dispersing processes discussed above: dispersion at the injection site, dispersion in the
circulation, and dispersion by the sampling system. A fourth dispersing process, the
recirculation of indicator, influences later parts of the recorded curve.

For purposes of discussion, let us treat an injection of 2.0 sec as five pulses of equal
magnitude and 0.4-sec duration (shaded area, Fig. 9 upper left panel). With computation
based on the circulatory transport function of Figure 2, the sum of the responses of the
circulatory segment to these five pulses is the primary arterial dye curve (circles), which is
the same as the upper middle panel of Figure 3. The transport function of the whole
circulation (Fig. 9 upper right panel) is shown in a simplified fashion as being comprised of
only two families of transit time (lines). The first hump represents 45% of the total in
accordance with the observation of Nicholes and co-workers.9 The second hump should
perhaps be more prolonged. The total area of the transport function is not 1.0 but is
arbitrarily given a value of 0.95 to represent the fact that a portion of the indicator—in this
example, 5%—is lost from the circulation in each complete passage. The convolution of the
primary curve with the transport function representing the whole circulation is computed
and the output (Fig. 9 middle panel, circles) is convoluted again with the whole circulation
transport function to form the second recirculation (Fig. 9 middle panel, continuous line).
The arterial concentration-time curve is the sum of the primary curve and an infinite number
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of recirculations of which only two are used in this illustration (Fig. 9 lower panel,
continuous line). The concentration-time curve existent within the artery cannot be observed
because it is distorted by the sampling system. With the sampling system transport function
shown as curve 1 of Figure 4 (a flow of 1 ml/sec through a volume of 2 ml), the form of the
recorded curve (circles) is determined by the convolution of this transport function with the
arterial input to the sampling catheter. The output of this convolution is terminated in the
dashed line because the third and subsequent recirculations were not included.

When there is no loss of recirculated indicator, the terminal concentration will be constant
when circulatory mixing is complete. Then, the amount of indicator injected divided by this
concentration gives the volume of distribution of the indicator—that is, the blood volume, if
the indicator remains within the vascular system. When indicator is lost from the blood
during each recirculation, if the rate of loss is proportional to concentration, the
concentration diminishes exponentially after the first few minutes. In order to calculate
blood volume by using such an indicator, it has been customary to extrapolate this
exponential curve hack to the time of injection on the assumption that the concentration
value at time zero represented that which would have existed if no indicator had been lost.
The assumption is invalid, of course, because mixing throughout the circulation is far from
instantaneous, and no indicator at all is lost until the first molecules reach the site of loss
from the circulation. The correct time to which to extrapolate depends on a large number of
factors but, for adult humans, is between 15 and 45 sec after the time of injection. This
correction is significant for indicators which leave the circulation relatively rapidly, such as
indocyanine green. Without the correction, blood volume may be underestimated by more
than 10% when the half-time of disappearance is 4 min.

COMMENT
The purpose of this study was to illustrate the components forming the recorded dye-dilution
curve, which cannot be done experimentally. Because of continuous variations of blood flow
in the mammalian circulation, it is difficult to obtain experimentally even a comparable set
of recorded curves having varied injection forms, and, for the purpose of exposition of the
subject of convolution, it was deemed desirable to present ideal curves. Even so, the ideal
curves discussed are all representative of actual experimental data obtained in this laboratory
in physiologic studies. Marshall10 has also presented data obtained on dogs which illustrate
the series of responses to progressively longer injections and which are basically similar to
those of Figure 3.

These concepts, illustrated for the circulation and fluid systems, have applications of great
generality. Circulatory transport functions can represent the movement of hormone or
foodstuff from one organ to another. The convolution of the concentration-time curve at a
source organ with the appropriate circulatory transport function results in the concentration-
time curve at the receptor organ. The concept of transport function can equally well
represent transformation of material—for example, sucrose in the stomach to glucose in the
portal vein. It can also represent response of a different sort such as the relationship between
glucose in the pancreatic artery and insulin in the portal vein. The convolution integral
applies equally well to all of these, subject to the limitations that the system must be
mathematically linear and must exhibit stationarity. In biologic systems one expects
continuous variation (lack of stationarity) but when the frequency of variation is high this
can be considered as noise and is disturbing to the investigator only when its amplitude is
large compared to the average state.
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SUMMARY
The convolution integral is the computation of the response, g(t), of a system to a given
input, f(t), when the system’s transport function, h(t), is known. g(t) can be considered as the
sum of the responses to the large number of impulses which, in sequence, form f(t). In
circulatory studies, a recorded indicator-dilution curve is the result of: (1) dispersion at the
injection site due to noninstantaneous injection and to the turbulence caused by the injection,
(2) transformation of the form of the bolus of indicator during circulatory transit to the
sampling site, (3) recirculation of indicator through the whole circulation such that the most
rapidly recirculated indicator may sum with that passing the sampling site for the first time,
and (4) distortion by the sampling system. With the probable exception of the first, these
processes can be mathematically characterized, allowing the events within the vascular
system to be simulated by a linear system wherein the convolution of these four processes
one upon another results in reasonable approximation to the biologic and experimental
events.
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APPENDIX: NUMERICAL EXPRESSION OF THE CONVOLUTION INTEGRAL
When f, g, and h are considered as sequences of pulses of duration Δt, where fn is f[(n−1) ·
Δt] and similarly for hn and gn, then equation lb (see text) must be rephrased:
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(equation 5)

where gn is the general term. The computation of equation 5 is easily programmed in
Fortran. By avoiding computation when f or h has zero value, the time requirements may be
halved, hi is dimensionless when it is normalized for the appropriate Δt; and the Δt’s, by
which both gi and fi are multiplied to obtain the area of the pulse, cancel out to give equation
5. g1 is the first part of the response to the first input pulse, f1. The whole of the response to
f1 would be given by the sequence f1h1, f1h2, f1h3, … f1hz, where hz is the last point of the h
array; or, as drawn in upper left panel of Figure 3, the response to f1 is f1h(t), using h(t) as a
continuous function. The second input pulse, f2, is delayed Δt from f1 and therefore the
response, delayed by the same Δt, is f2h(t – Δt). The nth response is fnh[t– (n-l) · Δt].

The development to this point may be aided by reference to the upper middle panel of
Figure 3. The input function, f(t), consists of five pulses beginning at time zero; the
amplitudes of f1, f2, … f5 are all 50 mg/liter and the areas are 20 mg sec/liter. The five
responses are shown, each delayed Δt more than its predecessor. The output,

(equation 6)

which is the curve represented by the circles.

Equation 6 may be written for any number of input pulses:

(equation 7)

This is usually expressed differently by introducing another time variable, λ, where λ = i· Δt,
and Δλ = Δt. Since f1 = f(i· Δt) =f(λ) and f1 represented f(0), equation 7 becomes:

(equation 8)

which in turn becomes the convolution integral (equation 1c) when Δλ is very small.
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Fig. 1.
Block diagram of a linear system. When the input is an ideal impulse, δ(t), the response is
the transport function, h(t). The ideal impulse, δ(t) or delta function, has area of one unit at
time zero and the input is zero at all other times—that is, it is a tall, slim spike. This is
illustrated in the left upper panel of Figure 3. When the input is any function which is not an
impulse, f(t), the output, g(t), is formed by the convolution of f(t) and h(t). The asterisk
denotes the process of convolution.
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Fig. 2.
Example of transport function of the arterial system. The ideal curve (see text) is shown in
the left panel. The rectangular areas show the form of this curve if the sampling periods had
been 2 sec (middle panel) or 0.4 sec (right panel). The total area of each transport function is
1.0 and therefore the ordinate scale is shown as dependent on the number of readings per
second. The area of the curve can be represented accurately by the frequency histograms of
the center and right panels, but the actual shape, mean transit time, and standard deviation
of the curve cannot. The representation is improved by decreasing the time interval between
readings. For example, the mean transit time, t̄, for the histogram of the center panel is 10.1
sec instead of the correct value, 10.0 sec. The error would be greater if the curve were more
skewed to the right. For the histogram of the right panel, t̄ = 10.01 sec.
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Fig. 3.
Responses of model of vascular segment to injection of same total amount (10 mg) of
indicator at different constant rates. The total flow through the vascular segment, 100 ml/
sec, was constant during injection and during inscription of each curve. Each injection was
considered as a sequence of 0.4-sec pulses, the amplitudes of which were inversely related
to the number of pulses required to inject the 10 mg. In the five panels, there were 1, 5, 10,
20, and 40 pulses so that the injection rates were 25.0, 5.0, 2.5, 1.25, and 0.625 mg/sec,
respectively. On the assumption that the input has ideal mixing at the injection site, the
curves at the arterial end of the segment are represented by the stippled rectangular areas.
The responses to each of these pulses individually have the shape of the transport function
and are shown by the continuous lines in each panel. The sum of these responses (circles) is
the output curve, g(t), resulting from the convolution. The slower injection rates resulted in
primary concentration-times curves, g(t), from which flow can be estimated by either the
constant-rate or sudden-single injection methods.
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Fig. 4.
Transport function typical of a catheter-densitometer system at various flow rates. Sampling
system volume = 2.0 ml. Sampling flow rates were: curve 1, 60 ml/min; curve 2, 30 ml/min;
curve 3, 20 ml/min; curve 4, 15 ml/min; and curve 5, 12 ml/min.
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Fig. 5.
Distortion of arterial curves at various flow rates through the sampling system. Upper Panel,
Ten milligrams of indicator injected; cardiac output = 100 ml/sec; volume between injection
and sampling sites = 1.0 liter; f (t) = arterial curve at tip of sampling catheter; and g1(t) =
curve recorded at densitometer when flow rate through the catheter was 1 ml/sec (curve 1,
Fig. 4). For g2(t), rate was 0.5 ml/sec and for g3(t), it was 0.25 ml/sec or 15 ml/min. Each
g(t) has the same area as f(t) (100 mg sec/liter). Lower Panel, Ten milligrams of indicator
injected; cardiac output = 50 ml/sec; the volume between injection site and sampling sites =
500 ml. The results of convolution of f(t) with transport functions shown as curves 1, 2, and
4 of Figure 4 are labelled g1(t), g2(t), and g3(t). This slower arterial curve is distorted much
less by the sampling system than is the f (t) of the upper panel.
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Fig. 6.
The convolution integral is commutative. Left Panel, When the arterial curve is considered
as f(t) and the sampling-system transport function as h(t) (similar to curve 1 of Figure 4 and
shown as f (t) of the right panel), the output of the convolution, g(t), represents the recorded
curve (the same curve as g1(t), Fig. 5, upper panel) and is the sum of the sampling system
responses (at bottom of graph) to the sequence of pulses of varying amplitude forming f(t).
Right Panel, The sampling-system transport function scaled to the same area as the arterial
curve is used as f(t) in the integration. The arterial curve is scaled to unit area to serve as
h(t). The responses to each pulse of f(t) are now seen to have the form of the arterial curve
(the same shape as f(t) of the left panel). Their sum results in a recorded curve, g(t), which is
identical to that of the left panel.
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Fig. 7.
Response of vascular segment to sinusoidal injection rates; cardiac output = 100 ml/sec and
injection rate r= 0.6 mg/sec + 0.4 sin 2π Ft. In each panel is shown an input function, f(t), for
which the sine wave starts at t = 0, ends at t =. 30 or 20 sec, and abruptly goes to zero when
it ends. The input function is treated as a sequence of pulses of varying amplitude but
constant duration. The arterial transport function illustrated in Figure 2 right panel was used
as h(t) in all cases. The individual responses of the segment to each input pulse are drawn in
each panel but cannot be easily distinguished when the input frequency is low or when the
time interval used in the computation is short. The output of the convolution (circles), g(t),
representing the response of the vascular segment has an amplitude which is less than that of
the input because of the dispersion, and the attenuation is greater at higher frequencies. This
illustrates that the circulatory segment acts as a low-pass filter.
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Fig. 8.
Amplitude and phase plots for the transfer function in Figure 2. Left Panel, Amplitude of the
response, g(t), at the output of the vascular segment when there is a sinusoidally varying
infusion resulting in a concentration f (t) at the input to the segment. The relative amplitudes
at the frequencies depicted in Figure 7 are shown by the plus signs. Right Panel, Phase lag at
each frequency. Phase lags estimated from Figure 7 are given by the plus signs.
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Fig. 9.
Formation of a recorded dye-dilution curve. Upper Left Panel, The stippled area
representing the concentration-time curve at the injection site is spread out over 2 sec to
indicate that injection is not instantaneous or that even if it were very rapid the energy of
injection would produce longitudinal mixing resulting in dispersion which could be similar
to that shown. Upper Right Panel, The circles represent the frequency distribution of transit
times from a point in the central circulation through the systemic and pulmonary circulations
back to the same point. Middle Panel, The primary arterial curve (stippled) is input, the
circles represent this curve distorted by passage once around the whole circulation, and the
line represents two passages. Lower Panel, The line represents the arterial dye concentration
at the tip of the sampling catheter and is the sum of the three curves of the middle panel. It is
treated as a sequence of 0.4-sec pulses, and the small curves at the bottom of the panel
represent the individual responses of the sampling system to each pulse. The sum of these
responses is the recorded indicator-dilution curve (circles).
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