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Abstract
Background—It has not been well established whether genetic variations can be biomarkers for
clinical outcome of gemcitabine therapy. The purpose of this study was to identify single
nucleotide polymorphisms (SNPs) of gemcitabine metabolic and transporter genes that are
associated with toxicity and efficacy of gemcitabine-based therapy in patients with locally
advanced pancreatic cancer (LAPC).

Methods—We evaluated 17 SNPs of the CDA, dCK, DCTD, RRM1, hCNT1-3, and hENT1 genes
in 149 patients with LAPC who underwent gemcitabine-based chemoradiotherapy. The
association of genotypes with neutropenia, tumor response to therapy, overall survival (OS), and
progression-free survival (PFS) was analyzed by logistic regression, log-rank test, Kaplan-Meier
plot, and Cox proportional hazards regression.

Results—The CDA A-76C, dCK C-1205T, RRM1 A33G, and hENT1 C913T genotypes were
significantly associated with grade 3-4 neutropenia (P = .020, .015, .003, and .017, respectively).
The CDA A-76C and hENT1 A-201G genotypes were significantly associated with tumor
response to therapy (P = .017 and P = .019). A combined genotype effect of CDA A-76C, RRM1
A33G, RRM1 C-27A, and hENT1 A-201G on PFS was observed. Patients carrying 0–1 (n = 64), 2
(n = 50), or 3–4 (n = 17) at-risk genotypes had median PFS times of 8.3, 6.0, and 4.2 months,
respectively (P = .002).

Conclusions—Our results indicate that some polymorphic variations of drug metabolic and
transporter genes may be potential biomarkers for clinical outcome of gemcitabine-based therapy
in patients with LAPC.
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Introduction
Pancreatic cancer is the third most common gastrointestinal malignancy and the fourth
leading cause of cancer deaths in the United States.1 At diagnosis, only 20% of patients have
a surgically resectable tumor, 30% have a locally advanced tumor, and 50% present with
distant metastasis.2 Over the past decade, gemcitabine (2′,2′-difluorodeoxycytidine, dFdC)
has been the standard agent for first-line chemotherapy of advanced pancreatic cancer,
producing limited clinical benefit and improved overall survival (OS) as compared with 5-
fluorouracil (5-FU).3 Recent studies have reported the efficacy of a combination therapy of
gemcitabine plus radiation for unresectable locally advanced pancreatic cancer (LAPC).4, 5
However, factors that can predict tumor response and survival have not been well
elucidated.6 In addition, although one major side effect caused by gemcitabine is
hematological toxicity such as neutropenia, available biomarkers for severe toxicity have not
yet been established.

Gemcitabine is a specific analogue of the native pyrimidine nucleotide deoxycytidine and a
prodrug that requires cellular uptake and intracellular phosphorylation (Fig. 1).7-9

Gemcitabine intracellular uptake is mediated mainly by human equilibrative nucleoside
transporter (hENT1, aka solute carrier family 29 A1) and, to a lesser extent, by human
concentrative nucleoside transporters (hCNT) 1 and hCNT3 (aka solute carrier family 28 A1
or A3).9 Inside cells, gemcitabine is phosphorylated to its monophosphate form (dFdCMP)
by deoxycytidine kinase (dCK) and this step is essential for further phosphorylation to its
active triphosphate form (dFdCTP).10 The active diphosphate metabolite of gemcitabine
(dFdCDP) is also active and inhibits deoxyribonucleic acid (DNA) synthesis indirectly by
inhibiting ribonucleotide reductase (RRM1).8,11,12 Gemcitabine is inactivated primarily by
deoxycytidine deaminase (CDA) into 2′,2′-difluorodeoxyuridine (dFdU), and gemcitabine
monophosphate is inactivated by deoxycytidylate deaminase (DCTD) into dFdU
monophosphate form (dFdUMP).8,9

Previous studies have demonstrated the relationship between gemcitabine metabolic or
transport enzymes and clinical outcome. One study showed that low expression of CDA was
associated with severe hematologic toxicity of gemcitabine.13 Other studies in cell lines or
tumor tissues have established the association between resistance to gemcitabine and
decreased nucleoside transport into cells,14-16 decreased expression of activation enzymes
such as dCK,17-20 increased expression of degradation enzymes such as CDA and DCTD,
21,22 as well as increased expression of RRM1.23-26 In clinical studies of pancreatic cancer,
high expression of hENT1 in tumors has been associated with improved survival in patients
treated with gemcitabine.15,16,23,27

Single nucleotide polymorphisms (SNPs) of enzymes in gemcitabine's pharmacologic
pathway have been previously identified.8 The activity of these enzymes has been correlated
with polymorphic gene variations by in vivo and in vitro studies.9,28-30 However, only a few
clinical studies have shown a positive association between the enzyme SNPs and
gemcitabine toxicity.31-33 We have previously shown that genetic variations in gemcitabine
metabolism and transport are associated with drug toxicity and overall survival in patients
with resectable pancreatic cancer34. In the current study, we tried to validate the previous
findings in 149 patients with LAPC who had undergone gemcitabine-based therapy.

Materials and Methods
Patient Recruitment and Data Collection

A single institution retrospective analysis was completed. We identified 149 patients with
biopsy-confirmed LAPC at the time of diagnosis. LAPC was defined as unresectable tumors
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that extended to the celiac axis or the superior mesenteric artery or tumors that occluded the
superior mesenteric venous (SMV)-portal venous confluence based on a review of the
computed tomography (CT)35. All patients were required to be treatment naïve and
underwent gemcitabine-based chemotherapy as first-line therapy as a single agent or in
combination at The University of Texas M. D. Anderson Cancer Center (Houston, Texas)
from February 1999 to June 2007. The median dose of gemcitabine therapy was 750 mg/m2

(range, 450-1000 mg/m2). In 75 patients (50.3%), either cisplatin or oxaliplatin was
administered with gemcitabine. In 125 patients (83.9%), gemcitabine therapy was followed
by consolidative radiotherapy at a dose of 30 Gy. Patient observation continued through
June 2009. Information on treatment provided, toxicity, tumor response to therapy, tumor
progression, and survival time was collected by reviewing patients' medical records in an
electronic database. This study was approved by the institutional review board of M. D.
Anderson Cancer Center.

Neutropenia, the most common hematologic toxicity caused by gemcitabine, was graded
according to the National Cancer Institute Common Terminology Criteria for Adverse
Events (CTCAE), version 3.0. Tumor response to therapy was evaluated by comparing CT
at the time of diagnosis with CT at 6-8 weeks after chemoradiotherapy or chemotherapy, and
was defined according to the Response Evaluation Criteria in Solid Tumors (RECIST) as
partial response (PR), stable disease (SD), or progressive disease (PD). OS and progression-
free survival (PFS) were calculated from the date of diagnosis to the date of death and
progression or last follow-up date, respectively. Twelve patients were excluded from PFS
analysis because they were lost to follow-up on disease progression. Performance status was
evaluated by Eastern Cooperative Oncology Group (ECOG) criteria.

Extracting and Genotyping DNA
We selected 17 SNPs of the CDA, dCK, RRM1, DCTD, hCNT1-3, and hENT1 genes
according to the following criteria: 1) minor allele frequency of the SNP was greater than
10% among Caucasians, 2) coding SNPs including nonsynonymous or synonymous SNPs,
and 3) SNPs that have been associated with cancer risk or clinical outcome in prior studies.
Table 1 summarizes the genes, nucleotide substitutions, function (such as encoding amino
acid changes), reference SNP identification numbers, and minor allele frequencies of the 17
SNPs evaluated in this study.

Peripheral blood lymphocytes before chemotherapy were obtained from 149 LAPC patients
with informed consent, and DNA was extracted using Qiagen DNA isolation kits (Valencia,
CA). Taqman 5′ nuclease assay was performed to determine all genetic variants. Primers and
TaqMan MGB probes were provided by TaqMan SNP Genotyping Assay Services (Applied
Biosystems, Foster City, CA, USA). The probes were labeled with the fluorescent dye VIC
or FAM for each allele at the 5′ end. Polymerase chain reaction (PCR) was performed in a 5-
μl total volume consisted of TaqMan Universal PCR Master Mix, 20 ng of genomic DNA
(diluted with dH2O), and TaqMan SNP Genotyping Assay Mix. Allele discrimination was
accomplished by running end point detection using ABI Prism 7900HT Sequence Detection
System, and SDS 2.3 software (Applied Biosystems).

Statistical Methods
The genotype distribution was tested for Hardy-Weinberg equilibrium using the goodness-
of-fit χ2 test. The genotype association with grade 3-4 neutropenia toxicity and tumor
response to therapy was analyzed by logistic regression. Gemcitabine dose intensity by
genotype was compared using t test. OS and PFS were analyzed by log-rank test, Kaplan-
Meier plot, and Cox proportional hazards regression model. The heterozygous and
homozygous genotypes were combined in these analyses if the frequency of the
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homozygous mutant was low or if the homozygous and heterozygous genotypes had the
same direction of effect on toxicity, tumor response, or survival. Multivariate analyses were
performed with adjustment for clinical predictors that were statistically significant. All
statistical testing was conducted with SPSS software, version 17.0 (SPSS Inc, Chicago, IL),
and statistical significance and borderline significance were defined as P < .05 and P < .20,
respectively.

We estimated the false-positive report probability (FPRP) for the observed statistically
significant associations using the methods described by Wacholder et al.36 FPRP is the
probability of no true association between a genetic variant and a phenotype given a
statistically significant finding. FPRP is determined not only by the observed P value but
also by both the prior probability that the association between the genetic variant and the
phenotype is real and the statistical power of the test. In the current study, odds ratio (OR)
and hazard ratio (HR) values of 2.0 to 4.0 were considered as a likely threshold value. The
prior probability employed was 0.25 for all SNPs. The FPRP value for noteworthiness was
set at 0.2.

Results
Patients' Characteristics and Clinical Predictors

Table 2 shows the patients' characteristics, clinical features of their tumors, and treatment.
The median age of the 149 patients was 62 years (range, 38–86 years). Non-Hispanic whites
comprised 92% of the patients. After a median follow-up of 16.8 months (range, 2-60
months), the median survival time (MST) of all patients was 15.2 ± 0.8 months [95%
confidence interval (CI), 13.6–16.9]. Tumor response to therapy was significantly associated
with OS (P < .001). ECOG performance status and presence of diabetes as a comorbidity
had a borderline significant association with OS (P = .143 and P = .081) in log-rank test.
Although 24 patients (16.1%) had not undergone radiotherapy, that factor was not associated
with OS (P = .503). Concurrent therapy with a platinum drug also did not impact OS (P = .
745).

Genotype Frequencies
We successfully amplified the 17 genotypes in 97.3% to 100% of the samples.
Approximately 10% of total samples were analyzed in duplicate, and no discrepancies were
seen. Genotype frequencies of the 17 SNPs were found to be in Hardy-Weinberg
equilibrium (χ2 = 0.001–2.097, Ps =.148–.973). No significant racial differences in genotype
frequency were observed (data not shown). The two SNPs (IVS12 -201A>G and IVS2
-549T>C) of the hENT1 gene were in linkage disequilibrium (|D′ |=0.774, P < 0.01).

Association of Genotypes with Toxicity
None of the clinical factors including concurrent treatment with platinum drug (P = .457) or
radiotherapy (P = .126) was associated with neutropenia, the most common hematologic
toxicity caused by gemcitabine. The CDA A-76C, dCK C-1205T, RRM1 A33G, and hENT1
C913T genotypes, individually and jointly, were significantly associated with severe (grade
3-4) neutropenia (Table 3). For example, 39 (43.8%) of the CDA -76 AC/CC carriers
compared with only 15 (25.0%) of the AA carriers had severe neutropenia (P = .020).
Patients carrying 2 or 3–4 at-risk alleles had a significantly higher frequency of severe
neutropenia than did patients carrying only 0-1 at-risk alleles (OR = 3.24, 95% CI = 1.19–
8.82, P = .021; and OR = 11.0, 95% CI = 4.02–30.1, P < .001, respectively, Table 3). The
FPRP was 0.02 for patients carrying 3–4 at-risk genotypes, indicating noteworthiness. No
significant association of toxicity was observed in the remaining SNPs (data not shown).
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Association of Genotypes with Tumor Response to Therapy
149 LAPC patients were analyzed on treatment effect. Radiation therapy and platinum drug
use did not correlate with tumor response (P = .858 and P = .562). Two SNPs, CDA A-76C
and hENT1 A-201G, were significantly associated with tumor response in radiological
evaluation after adjusting for age (P = .017 and P = .019, Table 4). For example, 41 (48.2%)
of the CDA -76 AC/CC carriers compared with 16 (27.6%) of the AA carriers had a poor
response to gemcitabine-based chemotherapy. Patients carrying 1–2 at-risk alleles had a
significantly worse response to therapy than did patients carrying no at-risk alleles (OR =
3.40, 95% CI = 1.49–7.78, P = .004). The FPRP was 0.097 for patients carrying 1–2 at-risk
genotypes, indicating noteworthiness. Gemcitabine dose intensity was slightly lower in CDA
CC/AC variant carriers (683 ± 31 mg/m2) than that in the AA carriers (752 ± 46 mg/m2) but
the difference was not statistically significant (P = .217).

Genotype Frequency and its Association with OS and PFS
None of the examined 17 SNPs was associated with OS (data not shown). The data of 137
LAPC patients were available for PFS analysis. Individually, two SNPs (RRM1 A33G,
RRM1 C-27A) showed significant association with PFS (P = .048 and P = .042,
respectively, Table 5). In addition, when the CDA A-76C and hENT1 A-201G variants were
analyzed in combination with RRM1 A33G and RRM1 C-27A, a gene-dosage effect on PFS
was observed. As the number of at-risk alleles increased, the PFS decreased (Fig. 2).
Patients carrying 0–1 (n = 64), 2 (n = 50), or 3–4 (n = 17) at-risk alleles had median PFS
times of 8.3, 6.0, and 4.2 months (Table 5), as well as 6-month progression-free rate of
76.5%, 52.0%, and 29.4%, respectively. The HR (95% CI) of progression was 1.79 (1.20–
2.66) and 3.25 (1.79–5.90) for patients carrying 2 and 3–4 at-risk genotypes (P = .004 and P
< .001, Table 5), after adjusting for performance status and tumor size. The FPRPs for
patients carrying 2 and 3–4 at-risk genotypes were 0.017 and 0.006, respectively, indicating
noteworthiness.

Discussion
Our results in this study support the hypothesis that SNPs of gemcitabine metabolic and
transporter genes are associated with clinical outcome in patients with LAPC. The gene
variants of CDA A-76C, dCK C-1205T, RRM1 A33G, and hENT1 C913T correlated with
severe neutropenia. In addition, the CDA A-76C and hENT1 A-201G genotypes were
significantly associated with tumor response to gemcitabine-based therapy and were
marginally associated with PFS. These genotype effects remained significant after adjusting
for clinical predictors in statistics.

CDA is involved in the salvage pathway of pyrimidine and plays a key role in detoxifying
gemcitabine.9 Three main SNPs have been identified in the CDA gene: C111T (T145T),
A-76C (K27Q), and G208A (A70T).8,37,38 Although the CDA 208AA homozygote allele
and its related haplotype have been associated with severe drug toxicity in Japanese cancer
patients treated with gemcitabine plus cisplatin, we excluded this SNP from our study
because CDA G208A had not been detected in Caucasians.29,31,32 The CDA A-76C variant
C allele (Gln27) has been reported to have moderately or significantly lower deaminase
activity for gemcitabine or cytosine arabinoside (ara-C) than wild-type genotype.28,39 Our
data showed significantly higher toxicity in the CDA -76 CC/AC variant than in the AA
wild-type, suggesting lower deaminase activity of the C allele (Gln27) variant, which is
consistent with previously reported data from in vitro studies.28,39 Although our results
indicated that the CDA -76 CC/AC variant was also associated with poorer tumor response,
we do not feel this is due to dose reductions as there was no significant difference in the
gemcitabine dose intensity in the CDA -76 CC/AC variant carriers as compared with the AA
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carriers. Nevertheless, there were controversial findings on this SNP in previous studies. The
CDA A-76C variant A allele (Lys27) had significantly lower deaminase activity than the C
allele (Gln27) in a study conducted in 90 patients with lung cancer.40 The Lys27 haplotype
did not show any significant effect on gemcitabine pharmacokinetics in a study of 256
Japanese patients.32 Future studies are warranted to clarify the functional and clinical
importance of this SNP in gemcitabine therapy.

dCK is the rate-limiting enzyme for intracellular activation of gemcitabine and was therefore
thought to play an important role in sensitivity to gemcitabine.9 Some studies have shown
that the enzyme activity or expression level of dCK was associated with sensitivity to
gemcitabine and survival of pancreatic cancer patients.17,41 Shi et al reported that the
haplotype containing dCK C-360G and C-201T had a significant association with higher
levels of dCK mRNA and longer survival time of patients with acute myeloid leukemia
treated with ara-C.20 Our study showed a significantly higher toxicity in patients with the
dCK -1205 TT variant than the CC/CT variant. Because this SNP is located in intronic
region, it is not clear whether it directly affects dCK enzyme activity or whether it is in
linkage disequilibrium with other functional SNPs or other genes.

RRM1 is essential for DNA synthesis and repair.9 Davidson et al reported that the increased
mRNA level of RRM1 resulted in drug resistance.26 In a different study, Rha et al
demonstrated a strong association between gemcitabine-induced neutropenia and the RRM1
haplotype containing two SNPs (A2455G and G2464A).33 Our data showed that the RRM1
33 AA variant was significantly associated with severe toxicity, suggesting a high
susceptibility of this variant to gemcitabine. RRM1 A33G is a synonymous SNP (T741T)
that does not produce amino acid change. However, Kimchi-Sarfaty et al reported that a
synonymous SNP in the MDR1 gene yielded a protein product with altered drug and
inhibitor interactions.42 Thus, the functional consequence of RRM1 A33G SNP should be
further investigated.

Nucleoside transporters have been thought to have an important role in gemcitabine
cytotoxicity and efficacy.16 Gemcitabine intracellular uptake is mediated mainly by hENT1
and, to a lesser extent, by hCNT1 and hCNT3,9 supporting our current observations that the
hENT1 C913T genotype was significantly associated with neutropenia toxicity and the
hENT1 A-201G genotype with tumor response to gemcitabine and PFS. While two previous
studies on the nonsynonymous SNPs of hENT1 failed to demonstrate functional diversity,
43,44 it was reported that the CGG/CGC haplotypes of the hENT1 promoter region
containing the C-1345G, G-1050A, and G-706C SNPs showed moderately higher
expression of hENT1.45 The functional significance of the polymorphic variants investigated
in our current study has not yet been demonstrated. Considering that hENT1 expression has
been associated with survival of patients with pancreatic cancer,27 further genotype-
phenotype analysis would be needed to clarify whether the hENT1 genotype can be used as a
surrogate marker for hENT1 activity.

In this study, we focused on LAPC because metastatic pancreatic cancer is associated with
greater clinical and biological heterogeneity and in most instances, patients were seen in
consultation at our institute but their primary treatments for metastatic disease were
administered at other referring facilities. Comparing to findings of our previous study in
patients with potentially resectable pancreatic cancer who underwent neoadjuvant
gemcitabine-based chemoradiation34, although the clinical characteristics of the two study
populations are quite different, the association of dCK -1205 T allele with severe
gemcitabine toxicity and hENT1 -201 A allele with better survival were observed in both
studies, suggesting the robustness of these findings. In most LAPC cases, tissue samples are
unavailable for measurement of protein expression. Therefore, if genotyping data from
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peripheral blood DNA is validated and found to be a reliable predictor for gemcitabine
toxicity and efficacy, application of such data would be widely beneficial for patients with
unresectable advanced pancreatic cancer.

In conclusion, genotypes of gemcitabine metabolic and transporter genes have potential as
predictive biomarkers for toxicity and treatment effects of gemcitabine-based therapy in
LAPC patients. Our observations still need to be confirmed in separate and larger patient
populations. If confirmed, these findings may be helpful in stratifying patients to
individualized therapy.
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Figure 1.
Schematic description of gemcitabine (dFdC) transportation and metabolism. The boxed
letters indicate genes that are examined in this study.
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Figure 2.
Kaplan-Meier plot to assess the combined genotype effect of CDA -76AC/CC, RRM1 33AA,
RRM1 -27AC, and hENT1 -201GG on progression-free survival. The number of 0 to 4
indicates the number of at-risk genotypes associated with reduced progression-free survival
(Log-rank P = .002).
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Table 2
Patient characteristics and overall survival (n = 149)

Variable No. of patients No. of deaths (%) MST (months) Log-rank P

Age (years) .740

 ≤50 24 21 (87.5%) 15.5

 51-60 38 33 (86.8%) 17.2

 61-70 49 42 (85.7%) 13.8

 >70 38 33 (86.8%) 15.2

Sex .416

 Male 90 78 (86.6%) 14.2

 Female 59 51 (86.4%) 15.7

Race .241

 White 136 118 (86.7%) 14.5

 Hispanic 9 8 (88.8%) 19.8

 African American 2 1 (50.0%) 18.4

 Other 2 2 (100%) 8.8

Performance status .143

 0 30 25 (83.3%) 17.4

 1 98 86 (87.8%) 14.2

 2 12 11 (91.6%) 10.9

Diabetes status .081

 Negative 112 95 (84.8%) 15.5

 Positive 37 34 (91.9%) 15.2

Tumor site .644

 Head/neck 117 103 (88.0%) 14.8

 Body/tail 32 26 (81.3%) 17.2

Tumor size (cm) .398

 ≤5 114 99 (86.8%) 15.3

 >5 31 27 (87.1%) 13.6

CA19-9 (units/ml) .977

 ≤47 28 22 (78.6%) 15.6

 48-500 72 64 (88.9%) 15.2

 501-1,000 18 15 (83.3%) 11.5

 >1,000 30 28 (93.3%) 16.0

Tumor response <.001

 PR/SD 86 70 (81.4%) 19.3

 PD 57 53 (93.0%) 9.9

Platinum drug use .754

 yes 75 63 (84.0%) 16.2

 no 74 66 (89.2%) 13.6

Radiotherapy .503

 yes 125 110 (88.0%) 15.2
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Variable No. of patients No. of deaths (%) MST (months) Log-rank P

 no 24 19 (79.2%) 14.8

Abbreviations: MST, median survival time; PR, partial response; SD, stable disease; PD, progressive disease.
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Table 3
Neutropenia toxicity and genotype (n = 149)

Genotype Grade1-2 Grade 3-4

N (%) N (%) OR* (95% CI) P

CDA A-76C (K27Q)

 AA 45 (75.0) 15 (25.0) 1.0

 AC/CC 50 (56.2) 39 (43.8) 2.34 (1.14-4.80) .020

dCK C-1205T

 CC/CT 67 (71.3) 27 (28.7) 1.0

 TT 27 (50.9) 26 (49.1) 2.39 (1.19-4.81) .015

RRM1 A33G (T741T)

 AG/GG 76 (72.4) 29 (27.6) 1.0

 AA 18 (45.0) 22 (55.0) 3.20 (1.50-6.82) .003

hENT1 C913T

 CC 37 (77.1) 11 (22.9) 1.0

 CT/TT 56 (56.6) 43 (43.4) 2.58 (1.18-5.64) .017

No. of at-risk genotypes†

 0-1 44 (86.3) 7 (13.7) 1.0

 2 31 (66.0) 16 (34.0) 3.24 (1.19-8.82) .021

 3-4 16 (36.4) 28 (63.6) 11.00 (4.02-30.1) <.001

*
Crude odds ratio.

†
CDA -76AC/CC, dCK -1205TT, RRM1 33AA, and hENT1 913CT/TT.

Cancer. Author manuscript; available in PMC 2011 November 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Tanaka et al. Page 16

Table 4
Tumor response to therapy and genotype (n = 149)

Genotype PR/SD PD

N (%) N (%) OR* (95% CI) P

CDA A-76C (K27Q)

 AA 42 (72.4) 16 (27.6) 1.0

 AC/CC 44 (51.8) 41 (48.2) 2.50 (1.18-5.28) .017

hENT1 A-201G

 AA/AG 80 (65.0) 43 (35.0) 1.0

 GG 6 (33.3) 12 (66.7) 3.63 (1.23-10.7) .019

No. of at-risk genotypes†

 0 38 (77.6) 11 (22.4) 1.0

 1-2 48 (52.2) 44 (47.8) 3.40 (1.49-7.78) .004

Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease.

*
OR was adjusted for age.

†
CDA -76AC/CC and hENT1 -201GG.
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