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ABSTRACT

The distribution of optimal local alignment scores of
random sequences plays a vital role in evaluating the
statistical significance of sequence alignments.
These scores can be well described by an extreme-
value distribution. The distribution’s parameters
depend upon the scoring system employed and the
random letter frequencies; in general they cannot be
derived analytically, but must be estimated by curve
fitting. For obtaining accurate parameter estimates, a
form of the recently described ‘island’ method has
several advantages. We describe this method in
detail, and use it to investigate the functional
dependence of these parameters on finite-length
edge effects.

INTRODUCTION

Local sequence alignment is perhaps the most widely used tool
in computational molecular biology, with most protein and
DNA database search programs (1–4) implementing heuristic
versions of local alignment algorithms (5,6). These algorithms
seek the highest-scoring alignment of segments from the two
sequences being compared. An alignment’s score is calculated
by adding substitution scores, defined for each aligned pair of
letters, and gap scores for each run of letters in one segment
aligned with null characters inserted into the other.

A key question is what alignment scores may be expected to
occur purely by chance. This question is generally addressed
by analyzing the distribution of optimal alignment scores from
random or real but unrelated sequences. We confine attention
to random sequences, defined as strings of independent letters
chosen with fixed background probabilities, because they are
easier to control and study. Depending upon the details of the
alignment scoring system and the background letter probabilities,
the optimal score for the alignment of two random sequences
of length n tends to grow proportionally either to n or to log(n)
(7–10). The linear scoring regime corresponds to optimal
alignments that tend to involve virtually the entire sequences;
the logarithmic regime, with substitution and gap scores that
are on average more negative, corresponds to optimal alignments
that are relatively short. Many alignments representing true
biological relationships involve only segments of the

sequences compared, but these will tend to be outscored by
long ‘random alignments’ when a scoring system in the linear
regime is employed. Therefore, attention has focused primarily
on scoring systems in the logarithmic regime, and we deal here
exclusively with such scores.

In the asymptotic limit of long sequences, optimal local
alignment scores follow an extreme-value distribution (11),
described by two parameters λ and K. For the type of scoring
system in most general use, these parameters cannot be calculated
but must instead be estimated by random simulation. Most
directly, one may generate optimal alignment scores for a large
number of random sequence pairs, and fit an extreme-value
distribution to these scores. Recently, an alternative approach
has been described; it uses scores for local alignment ‘islands’
generated by a slight modification of the Smith–Waterman
algorithm (12). We will discuss in detail the implementation
and application of the island parameter estimation method, and
compare it to the direct method in several ways. The island
method has a number of useful features. (i) It renders explicit a
tradeoff between parameter estimate bias and stochastic error,
and allows this tradeoff to be easily controlled. (ii) It estimates
accurately the tail behavior of score distributions for small-length
comparisons. (iii) It allows parameter estimates to be obtained
for arbitrary length sequence comparisons, including the
infinite-length limit. In some circumstances, the first two of
these features can be transferred advantageously to the direct
method, appropriately modified. For asymptotic parameter
estimation, however, the island method has a clear speed
advantage.

THE DIRECT ESTIMATION OF STATISTICAL
PARAMETERS

An asymptotic theory for local alignment scores has been
developed for the case in which no gaps are permitted. In brief,
for the comparison of random sequences of sufficient lengths
m and n, the number of distinct local alignments with score at
least x is approximately Poisson distributed, with mean

E(x) ≈ Kmne–λx, 1

where λ and K are easily calculated parameters (13,14). This
implies that the optimal alignment score S′ approximately
follows an extreme-value distribution (11), with

Prob (S′ ≥ x) ≈ 1 – exp(–Kmne–λx). 2
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For local alignments that allow gaps, no asymptotic score
distribution has been established analytically. However,
computational experiments strongly suggest that equations 1
and 2 apply to this type of alignment as well (12,15–22). The
key to using equations 1 and 2 is the accurate estimation of the
statistical parameters λ and K. Perhaps the most direct approach to
estimating these parameters for a fixed scoring system and set
of background letter frequencies is to generate a large number
of pairs of random sequences of equal length n, and find the
optimal local alignment score for each pair. From these scores
one may calculate maximum-likelihood estimates and for
the statistical parameters in equation 2 (23). If R scores are
generated, the ratio /λ is approximately normally distributed,
with mean 1 and standard error 0.78/√R (23). Note that the esti-
mates developed by Lawless (23) assume continuous data,
whereas alignment scores are almost always discrete. If the
scale parameter λ times the lattice spacing of possible scores is
small, the error introduced by assuming continuous scores is
minor. One may, however, derive maximum-likelihood esti-
mates and that explicitly assume discrete scores
(Appendix).

Because λ enters equations 1 and 2 exponentially, accurate
estimates of λ are particularly important. Marginally signifi-
cant alignments from current database searches typically have
a scaled score λx > 25, for which even a 4% error in λ leads to
an estimated E-value in error by greater than a factor of 2.7.
Thus, standard errors of <2%, or even 1%, in may be desirable.

THE ISLAND METHOD

Recently, Olsen et al. (12) proposed the island method for
estimating λ and K; it is a variant of ideas introduced by
Waterman and Vingron (18,19) that translates into a very efficient
algorithm. Rather than finding optimal alignment scores for pairs
of random sequences, they propose generating scores for each
island (as defined below) in a path graph. To generate sufficiently
many scores for accurate parameter estimation, a single large or
multiple smaller pairwise comparisons may be used.

Briefly, the Smith–Waterman algorithm generates a score
for each cell C in a path graph, corresponding to the highest-
scoring local alignment ending at C (5). This local alignment
starts at a specific anchoring cell, and an island consists of all
cells with identical anchors (Fig. 1). The score assigned to an
island is the maximum score of the cells it contains. A simple
modification of the Smith–Waterman algorithm, involving
only a fixed amount of extra computation per cell, allows one
to record which island each cell belongs to, and to keep track
of each island’s score. Note also that as one moves row by row
through a path graph with n columns, there can be at most O(n)
islands represented on any given row. This allows one to tabulate
all island scores generated by an m × n path graph in O(mn)
time, and using only O(n) space.

Island scores correspond to distinct locally optimal alignments,
and thus the number of islands with score at least x should be
well described by equation 1 when x is sufficiently large. The
island method generates maximum-likelihood estimates of λ
and K from equation 1, while the direct method generates these
estimates from equation 2.

The concept of two or more local alignments being distinct is
a subtle one, and a variety of definitions have been proposed
(6,12,24,25). The differences among these definitions are

relevant more for the comparison of real than random
sequences. Because using any reasonable definition of distinct
alignments should yield equivalent statistical results, the
advantage of the ‘island’ (12) over the ‘declumping’ definition
(18,19,24,25) for parameter estimation is its algorithmic
efficiency.

In general, equation 1 becomes increasingly accurate for
larger values of x, so to obtain a good estimate for λ one should
confine attention to islands whose score attains at least some
threshold value c. Assume the set Ic of such islands has
cardinality Rc, and let be the mean score in excess of c of
these islands:

K̂ λ̂

λ̂

λ̂ K̂

λ̂

Figure 1. Islands in a local alignment path graph. (a) Schematic representation
of the path graph. In every cell C the red line recalls the choice made by the
optimization procedure of the Smith–Waterman algorithm. By these lines, all
the cells with non-zero scores are partitioned into islands according to which
anchoring points (circles) they are connected to. (b) Score landscape on a 50 ×
50 path graph. The score at every cell of the path graph is represented by its
height above the surface and color-coded with zero scores corresponding to
blue areas and increasingly red colors for higher scores. The example shown is
generated with a BLOSUM-62 scoring matrix, and a score –(11 + k) for each
gap of length k. The islands are easily seen.
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where S(i) is the score of island i. Then, assuming island scores
are integral, with unit lattice spacing, the maximum-likelihood
estimate (Appendix) for λ is

. 4

The standard error of /λ is

, 5

where the approximation holds to better than 0.05% for λ < 1.
If the island scores were continuous, the maximum-likelihood
estimate would instead be simply 1/ , and the standard
error of /λ would be 1/√Rc.

In conjunction with , the maximum-likelihood estimate
for K is

, 6

where A is the aggregate ‘area’ of the search space from which
the collection of islands were drawn. If a single pair of
sequences, of lengths m and n, were compared to generate the
islands, then A = mn; if B such comparisons were performed,
then A = Bmn.

The parameters λ and K of equations 1 and 2 properly apply
only in the limit of infinite-length sequences. If one uses either
the island or direct method to estimate λ for sequences of finite
length, one obtains estimates with an observable finite-length
bias. As will be discussed below, this bias can be explained in
terms of ‘edge effects’, for which a simple correction can be
applied to the lengths m and n in equations 1 and 2. The
resulting formulas retain the asymptotic values of λ and K, so
it is desirable to avoid any finite-length bias in the estimation
of these parameters. We note here that, by eliminating edge
effects, the island method can estimate asymptotic values of λ
and K directly. This is done by embedding a length n × n
sequence comparison within a larger (n + 2b) × (n + 2b)
comparison, with a border of length b on each side (Fig. 2). Only
islands anchored within the central n × n region are recorded.
When b is sufficiently large, edge effects are essentially
abolished.

THE TRADEOFF OF SPEED, BIAS AND PRECISION

Because of λ’s exponential role in equations 1 and 2, accurate
estimates for λ are far more important than those for K, and we
shall therefore focus on the estimation of λ. A key question for
applying the island method effectively is how to choose an
appropriate threshold parameter c for use in equation 4.

While we believe that the qualitative features presented here
are truly independent of the scoring system used, we will
illustrate below the issues involved in choosing c using a
specific example. To obtain extremely accurate parameter
estimates for this case study, we performed a massive random
simulation for a particular local alignment scoring system.
Specifically, we used a set of standard amino acid frequencies
for proteins (26) to generate over 92 000 pairs of length-7000
‘random amino acid sequences’. We compared each pair using
the BLOSUM-62 amino acid substitution matrix (27), in

conjunction with affine gap scores (28–31) of –(11 + k) for gaps
of length k. To suppress edge effects, scores were tabulated only
for islands anchored within the central 5000 × 5000 square of
each pairwise comparison; approximately 1012 total island
scores were recorded. Using equations 3–6, estimates of λ and
K were obtained from these data for a range of cutoff scores c;
the results are summarized in Table 1 and the values of are
plotted in Figure 3.

While the estimates of Table 1 should be essentially free
of edge-effect bias, there is another systematic and easily
understood bias (12) evident for small values of c. Optimal
local alignments with low score are unlikely to contain a gap,
as will be discussed further below, and for low thresholds is
therefore biased towards the higher λ applicable to local alignments
that exclude gaps. In this example, falls monotonically for
c ≥ 20, until it reaches the value 0.2670 at c = 37; thereafter,
appears to fluctuate randomly about this value. Of course a yet
larger simulation, yielding smaller stochastic errors, might
detect systematic bias even beyond c = 37.

There is a tension between the bias of and its precision,
for the larger the value of c chosen, the fewer the islands that
attain score c, and the larger the standard error of . To
illustrate the point, consider a realistically sized random
simulation, 10 000 times smaller than that shown in Table 1,
which would require ~2 min on a modern workstation. The
systematic bias in the from such a simulation should be the
same as seen in Table 1, but the standard errors will be 100
times larger. Table 2 shows the resulting tradeoff between bias
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Figure 2. Schematic representation of a path graph used to avoid edge effects
in the estimation of λ and K via the island method. The n × n scoring lattice
(gray square in the middle) is surrounded by a border of width b. Only islands
that are anchored within the central n × n area (shown in dark red) are counted.
Islands anchored outside this area (green) are ignored. Note that some of the
ignored islands reach into the inner area and some of the accepted islands reach
into the border region since the classification of an island depends only on the
position of its anchor (circles); borders thus are required on all sides to suppress
edge effects properly.

λ̂

λ̂c

λ̂c

λ̂c

λ̂c

λ̂c

λ̂c

λ̂c



354 Nucleic Acids Research, 2001, Vol. 29, No. 2

and precision. The best tradeoff probably occurs near c = 28,
where the sum (~2.2%) of the bias and the standard error are
minimized. As the size of the random simulation grows, the
bias at a given cutoff remains fixed, whereas the standard error
decreases. Thus in general the optimal tradeoff for larger
simulations will tend to occur at higher values of c.

For a given simulation one may estimate well the standard
error at any given c, but not the bias; if one could estimate bias,
one could correct for it. The analysis of a relatively small
simulation given in Table 2 is possible only because a much
larger simulation has in fact been performed. In practice, one
must choose the c at which to estimate λ without knowing to
any certainty how much bias it entails. We have investigated auto-
matic procedures for choosing c, and found several reasonable
methods, but none for which an argument of optimality can be
advanced. In outline, decreases systematically for increasing
c, until its increasing standard error obscures any further
change. It is at this point that the cutoff c should be chosen.

EDGE EFFECTS AND THEIR CORRECTION

Independently of the type of bias in estimating λ described
above, varies substantially as a function of m and n when λ
is estimated from traditional borderless (i.e. b = 0) m × n
sequence comparisons (20). One may therefore argue that
one’s estimate of λ and K should depend upon the lengths of
the real sequences to which they will be applied (22). We here
take the alternative view that the length-dependence of is
merely an artifact of finite-length sequence comparison edge
effects, and that a correction for these effects is best applied to
m and n in equations 1 and 2 rather than to λ and K.

The central idea of the ‘edge effect’ correction is that high-
scoring local alignments from the comparison of two random
sequences have an expected length l(x), dependent upon their
score x, and therefore cannot begin arbitrarily close to the end of
either sequence. Accordingly, in place of m and n in equations 1
and 2, the ‘effective’ lengths of the sequences should be taken
to be m′ = m – l(x) and n′ = n – l(x) (20).

Table 1. Island method estimates for λ and K

A total of 92 441 pairs of length 7000 random sequences were generated using
a set of standard amino acid frequencies (26). Island scores were generated for
each pair using an extension of the Smith–Waterman algorithm (5), modified
for affine gap scores (28). Substitutions were scored using the BLOSUM-62
matrix (27), and gaps of length k were assessed the score –(11 + k). Scores
were recorded only for islands anchored within the central 5000 × 5000 square
of each pairwise comparison. Maximum-likelihood estimates for λ and K
were obtained using equations 4–6.

c Rc λc Kc

20 508 087 143 0.2790 ± 0.0000 (0.00%) 0.058

21 382 046 389 0.2771 ± 0.0000 (0.01%) 0.056

22 288 047 946 0.2754 ± 0.0000 (0.01%) 0.053

23 217 666 586 0.2739 ± 0.0000 (0.01%) 0.051

24 164 854 001 0.2726 ± 0.0000 (0.01%) 0.050

25 125 090 432 0.2716 ± 0.0000 (0.01%) 0.048

26 95 080 777 0.2707 ± 0.0000 (0.01%) 0.047

27 72 367 615 0.2700 ± 0.0000 (0.01%) 0.046

28 55 135 823 0.2694 ± 0.0000 (0.01%) 0.045

29 42 040 928 0.2689 ± 0.0000 (0.02%) 0.044

30 32 087 753 0.2685 ± 0.0000 (0.02%) 0.044

31 24 502 349 0.2681 ± 0.0001 (0.02%) 0.043

32 18 721 366 0.2678 ± 0.0001 (0.02%) 0.043

33 14 312 497 0.2676 ± 0.0001 (0.03%) 0.042

34 10 945 852 0.2674 ± 0.0001 (0.03%) 0.042

35 8 372 081 0.2672 ± 0.0001 (0.03%) 0.042

36 6 407 611 0.2671 ± 0.0001 (0.04%) 0.042

37 4 904 102 0.2670 ± 0.0001 (0.05%) 0.041

38 3 755 281 0.2671 ± 0.0001 (0.05%) 0.042

39 2 874 422 0.2670 ± 0.0002 (0.06%) 0.041

40 2 201 167 0.2671 ± 0.0002 (0.07%) 0.042

41 1 684 893 0.2670 ± 0.0002 (0.08%) 0.041

42 1 289 490 0.2669 ± 0.0002 (0.09%) 0.041

43 986 932 0.2667 ± 0.0003 (0.10%) 0.041

44 756 060 0.2668 ± 0.0003 (0.12%) 0.041

45 579 087 0.2668 ± 0.0004 (0.13%) 0.041

46 443 934 0.2671 ± 0.0004 (0.15%) 0.042

47 339 913 0.2671 ± 0.0005 (0.17%) 0.042

48 260 519 0.2675 ± 0.0005 (0.20%) 0.042

49 199 117 0.2671 ± 0.0006 (0.22%) 0.042

50 152 595 0.2674 ± 0.0007 (0.26%) 0.042

51 116 705 0.2671 ± 0.0008 (0.29%) 0.042

52 89 323 0.2671 ± 0.0009 (0.34%) 0.042

53 68 605 0.2680 ± 0.0010 (0.38%) 0.044

54 52 570 0.2686 ± 0.0012 (0.44%) 0.045

55 40 242 0.2690 ± 0.0013 (0.50%) 0.046

56 30 746 0.2690 ± 0.0015 (0.57%) 0.046

57 23 481 0.2688 ± 0.0018 (0.65%) 0.046

58 17 888 0.2678 ± 0.0020 (0.75%) 0.043

59 13 662 0.2673 ± 0.0023 (0.86%) 0.042

60 10 427 0.2664 ± 0.0026 (0.98%) 0.039

Figure 3. Estimates obtained via the island method with different cutoffs c.
Standard errors for the estimates are shown with error bars. The plotted horizontal
line indicates the best estimate of the asymptotic λ. Details of the simulation
are given in the legend to Table 1.
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Empirically, the mean length l(x) of high-scoring random
alignments with sufficiently large score x depends linearly on x

l(x) = αx + β. 7

We will discuss in a later section the interpretation of α and β,
but note here that these parameters may be estimated by
recording the lengths as well as the scores of optimal island
alignments. The length of a gapped alignment is interpreted as
the average length of the two segments it involves.

For the island method, the way that edge effects bias is
easy to understand. The decay in the observed number of align-
ments with score at least x is steeper than would be estimated
from equation 1 because the effective lengths m′ and n′ shrink
with increasing x. Some simple calculus suggests the apparent
λ from the comparison of sequences of sufficient lengths m and
n should be given approximately by

. 8

For the specific scoring system studied in the massive random
simulation above, we estimate α = 1.90 ± 0.02 (see discussion
below). Therefore, we expect the apparent λ for n × n comparisons
to follow the equation

. 9

To test this theory, we used the island method to estimate λ
for the same scoring system studied in the simulation above.
We generated islands from many n × n random sequence
comparisons, but with no border for suppressing edge effects.
Sufficient comparisons were performed to yield over 106

islands with a score of at least 37 for each of the 12 lengths n
studied; as described above, using this threshold eliminates
almost all cutoff-based bias. The resulting maximum-likelihood

estimates (n,n) have a standard error of 0.1%, and are shown
as open circles in Figure 4. Given our small uncertainty in λ
and α, for n > 400 (1/n < 0.0025 in Fig. 4) the data fit the theory
of equation 9 to within stochastic error (i.e. two standard devia-
tions). Furthermore, (n,n) deviates from equation 9 by <0.5%
for n > 218 (1/n < 0.0045), and by <1% throughout the range
studied. For each n, we calculated a χ2 goodness-of-fit test to
the geometric distribution; in all 12 cases, the data fit the model
with a P-value > 0.09.

We emphasize that we do not argue that the line plotted in
Figure 4 is more accurate in describing score distribution tail
behavior than the experimental (n,n) produced by the island
method. Rather, the good agreement implies the correction we
recommend for finite lengths m and n should be sufficiently
accurate for comparing proteins of typical size. In evaluating
the statistical significance of actual sequence comparisons, one
may apply edge-effect corrections either to the sequence
lengths, as we suggest, or to λ, but one should not combine the
two corrections. We emphasize further that equation 8 does not
permit one to estimate λ accurately from a ‘finite-size’ simulation
that estimates (m,n) because such a simulation will not yield
an estimate of the asymptotic value of α.

The island method with borders allows one to estimate the
‘infinite-length’ or asymptotic parameters λ and K directly,
and simultaneously to estimate, as described below, the edge-
effect correction parameters α and β. A single simulation that
estimates these four parameters thus permits the statistical
evaluation of comparisons of sequences of arbitrary length.

COMPARISON OF THE DIRECT AND ISLAND
METHODS

For estimating the asymptotic parameters λ, K, α and β, the
island method has a distinct speed advantage over the direct
method, as we will discuss below. However, it is easiest first to

Table 2. Tradeoff between bias and precision in the estimation of λ

The bias in the estimation of λ is calculated from Table 1, assuming λ’s
true value is 0.2670. The standard error assumes an experiment generating
1/10 000 the number of island scores shown in Table 1.

c Bias (%) Standard error (%)

22 3.1 0.6

23 2.6 0.7

24 2.1 0.8

25 1.7 0.9

26 1.4 1.0

27 1.1 1.2

28 0.9 1.3

29 0.7 1.5

30 0.6 1.8

31 0.4 2.0

32 0.3 2.3

33 0.2 2.6

34 0.1 3.0

35 0.1 3.5

36 0.0 4.0

37 0.0 4.5

λ̂

λ̃ m n,( ) λ α 1
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n
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Figure 4. Estimates derived from borderless n × n sequence comparisons by
the island method as a function of 1/n. Approximately 1 000 000 islands with a
score of at least 37 were generated to produce the estimates, which thus have a
standard error of 0.1%; the size of the symbols represents one standard error.
The plotted line represents the theory of equation 9 for the apparent (n,n).
The scoring system and random sequence model are the same as those
described in the legend to Table 1.

λ̂

λ̃

λ̂

λ̂

λ̃



356 Nucleic Acids Research, 2001, Vol. 29, No. 2

compare the two methods on the problem of estimating (n,n)
studied in the previous section. In this ‘finite size’ case, the
methods have contrasting advantages. To achieve a standard
error σ in (n,n)/ (n,n), the island method must generate
approximately 1/σ2 data points (see equation 5), while the
direct method need generate only about 0.61/σ2 points (23).
Furthermore, the algorithm for generating island scores requires
more computation than that for generating maximal local align-
ment scores because it must keep track to which island the score
of each path graph cell belongs. Our implementation and timing
experiments show the direct method uses only ~70% of the
time per cell that the island method does. These two factors
combined yield a speed advantage of ~240% for the direct
method. On the other hand, the island method may generate
multiple data points from each n × n sequence comparison. The
expected number of such points depends both upon the length
of the sequences being compared and upon the threshold score
c as given by equation 1. The total speed advantage of the
island over the direct method is then Kn2e–λc/2.4. In our case
study we have been employing c = 37 and very many data
points to obtain extremely accurate parameter estimates, but as
stated above c = 28 would be appropriate for a comparison of
more typical accuracy. At this threshold, the comparison of
two sequences of length 340 yields about 2.4 islands on
average, counterbalancing the direct method’s speed advantages.
For comparisons larger than this, the island method will be
faster than the direct method, and slower for smaller compari-
sons.

This analysis, however, tells only part of the story, because
the biases of the direct and island methods in estimating (n,n)
vary with n. To study the extent of this bias, for each length n
considered in the previous section we generated sufficient data
points for both the direct method and the island method with c
= 28 to produce estimates (n,n) with a standard error of 0.1%.
We then compared these estimates to the independent and
effectively unbiased estimates (also with standard error 0.1%)
shown by the points plotted in Figure 4; the resulting estimates
of bias are given in Table 3. For sequence lengths n ≤ 343 the
direct method tends to overestimate (n,n) by >1%. Some
reflection reveals why this should be the case. For the scoring
system under study, ~81% of all optimal alignments from
343 × 343 comparisons have a score less than 37, and >7%
have a score less than 28. As we learned from our analysis of
the island method, including low scoring, largely ungapped,
alignments introduces noticeable bias into estimates of λ. The
problem is amplified for the direct method because, due to the
extremely fast decay of the left-hand tail of the extreme-value
distribution, the data points upon which the maximum-
likelihood estimate most strongly depends are those with
lowest score.

Borrowing from our analysis of the island method, it is
possible to greatly reduce the bias of the direct method by
basing its maximum-likelihood estimate only on those scores
that reach a minimum threshold c (23) (see Appendix). This
refinement is achieved at a cost in speed, however, because not
every n × n comparison will yield a data point, and because
such ‘censoring’ increases the number of data points required
to achieve a given standard error (23). For example, only 56%
of 200 × 200 comparisons have a maximal alignment score of
at least 28, and with this degree of censoring the number of
data points required for a given error increases by 40% (23).

For this size comparison, the censored direct method is thus
2.5 times slower than the unmodified method, while still 20%
faster than the island method. A fuller analysis gives the speed
advantage to the island over the censored method only for
comparisons larger than about 280 × 280. Of course as the size
of the comparisons grows, so does the island method’s relative
speed advantage (Table 3), reaching a factor greater than 3 for
comparisons of size 600 × 600.

The island method has a major speed advantage for compari-
sons of size ≥ 800 × 800, but it appears to have a corresponding
disadvantage with respect to bias (Table 3). This arises because
over 99.8% of the optimal alignment scores from 800 × 800
comparisons are at least 31, and at least 34 from 1200 × 1200
comparisons. Effectively, the score ‘threshold’ for the direct
method increases with comparison size, while we have used a
fixed score threshold of 28 for all the island comparisons in
Table 3. Were this threshold raised for large comparisons, it
would be possible to achieve equivalent bias to the direct
method, while retaining a >3-fold speed advantage. However,
for large comparisons, one has the option with the island
method to choose greater speed over smaller bias.

If all the island method had to offer were a 2–3-fold speed
advantage for comparisons in the size range 500 × 500 to
800 × 800, it would hardly constitute a significant advance.
However, our main point is that in lieu of estimating statistical
parameters for various finite-size comparisons, a single estimate
of the asymptotic λ and K along with the edge-effect correction

λ̃

λ̂ λ̃

λ̃

λ̂

λ̃

Table 3. Bias in the estimation of λ(n,n) of the island, direct and censored
direct methods, and their relative speeds

Maximum-likelihood estimates λ were derived using the island, direct and
censored methods from n × n sequence comparisons. For the island method
with cutoff score c = 28, approximately 106 scores were generated, yielding a
standard error of 0.1%. For the direct method, approximately 6.1 × 105 scores
were generated, yielding a standard error of 0.1%. For the censored method,
sufficient scores above the threshold c = 28 were generated to yield a standard
error of 0.1% (23); this number ranged from 6.1 × 105 for n = 2400 to 8.4 ×
105 for n = 200. Biases are calculated assuming the correct values for λ(n,n)
are those of the points plotted in Figure 4. Speed ratios are the computation
times required, respectively, by the direct and censored methods divided by
the time required by the island method; high speed ratios favor the island
method.

n Bias (%) Speed ratio

Island Direct Censored Island:direct Island:censored

2400 +0.9 –0.2 –0.2 60 60

1200 +0.7 0.0 0.0 14 14

800 +0.8 +0.4 +0.4 6 6

600 +0.6 +0.5 +0.5 3 3

480 +0.5 +0.8 +0.6 2 2

400 +0.4 +0.8 +0.3 1.4 1.5

343 +0.4 +1.2 +0.4 1.0 1.2

300 +0.3 +1.4 +0.5 0.8 1.1

267 +0.1 +1.4 +0.3 0.6 1.0

240 0.0 +1.6 +0.1 0.5 0.9

218 –0.1 +1.4 –0.1 0.4 0.8

200 0.0 +1.6 –0.1 0.3 0.8
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parameters α and β will suffice. In this context, the island
method has major advantages to the direct method. Most
simply, the island method can accurately estimate the asymptotic
λ by increasing the dimensions of its comparisons to such an
extent that finite-size effects become negligible. Because the
number of data points the island method generates grows in
proportion to the area of its comparisons, there is no loss in
speed. In contrast, as we have seen, the direct method pays a
heavy penalty in speed as the size of its comparisons grow.

To avoid unduly increasing the comparison size, one might
consider adding borders to direct method comparisons, as
described above for the island method (Fig. 2). This, however,
imposes substantial computational overheads. First, one must
record where local alignments are ‘rooted’, to avoid counting
local alignments rooted outside the central square. The extra
computation per cell is similar to keeping track of which island
a cell belongs to and increases run time by a factor greater than
1.4. Second, borders can greatly increase the computational
area of medium-sized comparisons. For example, a border of
moderate length 200 (see the next section) increases the area of
a 600 × 600 comparison by a factor of 2.8. The two effects
combined would slow such a comparison down by a factor
close to 4. In contrast, for asymptotic parameter estimation,
borders may be added to the island method comparisons at
essentially no computational cost: first because the island
method must record the roots of local alignments in any case;

second because the comparisons’ underlying dimensions may
be enlarged arbitrarily, rendering inconsequential the additional
area entailed by the inclusion of borders.

In conclusion, for finite-size parameter estimation, the island
method begins to have a speed advantage only for the comparison
of sequences of moderate length. However, for the asymptotic
parameter estimation we recommend, the island method has a
speed advantage to the direct method approaching an order of
magnitude.

THE ESTIMATION OF α AND β

For optimal local alignments of a given score x, the standard
deviation in the distribution of alignment lengths is large:
about the same as the mean length. Nevertheless, the mean
length can be seen to grow approximately linearly with x, as
illustrated by data from the massive simulation above, plotted
in Figure 5. The slope of this dependence does not approach its
asymptotic value until x is sufficiently large. Therefore, as with
estimates of λ, estimates of the parameters α and β in equation
7 are best calculated by confining attention to alignments with
a score greater than or equal to a threshold value c. In Table 4
we give, for various thresholds, estimates of α and β obtained by
linear regression on the lengths of the optimal island alignments.
Once again, choosing a threshold that balances bias and
stochastic error is to some degree arbitrary. We show in Figure
5 the line implied by the estimates = 1.90 and = –30,
yielded by the threshold c = 47. These estimates agree within
stochastic error to those for all c ≥ 44.

While the standard error for is 1% at c = 47, one is forced
to settle for much larger errors in simulations of more realistic
size. However, α and β are used only to correct the lengths of
the sequences being compared, and the significance of alignment
scores depends only linearly upon these lengths. Therefore it is
generally quite acceptable to estimate α to within 10 or even 20%.
The data generated to provide reasonably accurate estimates of

Table 4. The estimation of α and β

Estimates for α and β were obtained by linear regression of
alignment length versus score for islands with score at least c.
Details of the simulation are given in the legend to Table 1.

c αc βc

33 1.840 ± 0.002 –26.9 ± 0.1

34 1.847 ± 0.002 –27.2 ± 0.1

35 1.852 ± 0.002 –27.4 ± 0.1

36 1.858 ± 0.003 –27.7 ± 0.1

37 1.864 ± 0.003 –27.9 ± 0.1

38 1.869 ± 0.004 –28.2 ± 0.2

39 1.873 ± 0.005 –28.4 ± 0.2

40 1.877 ± 0.005 –28.5 ± 0.2

41 1.874 ± 0.006 –28.4 ± 0.3

42 1.877 ± 0.007 –28.5 ± 0.3

43 1.88 ± 0.01 –28.8 ± 0.4

44 1.89 ± 0.01 –29.0 ± 0.5

45 1.89 ± 0.01 –29.3 ± 0.6

46 1.91 ± 0.01 –30.2 ± 0.7

47 1.90 ± 0.02 –30 ± 1

48 1.89 ± 0.02 –29 ± 1

49 1.88 ± 0.02 –29 ± 1

50 1.91 ± 0.03 –30 ± 1

51 1.89 ± 0.03 –29 ± 2

52 1.90 ± 0.03 –30 ± 2

53 1.94 ± 0.04 –32 ± 2

54 1.96 ± 0.05 –33 ± 3

Figure 5. The mean length l(x) of optimal island alignments, as a function of
the alignment score x. Error bars, representing one standard error, grow with
score primarily because the number of alignments on which the mean length
estimates are based decreases. The plotted line represents a linear regression
on the data for scores ≥47. Details of the simulation are given in the legend to
Table 1.

α̂ β̂

α̂
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the far more important parameter λ easily suffice for this
purpose.

At a score of 95, the highest score achieved in this simulation,
the predicted mean length is less than 150. Therefore, even
though the standard deviation of the alignment length is
approximately equal to the mean length, the border of length
1000 used in our simulation should be much more than sufficient
for estimating the asymptotic values of the parameters λ, K, α
and β, corresponding to ‘infinite length’ comparisons. For
comparisons performed without borders, or with borders of
insufficient length, estimates of α and β deviate from the
asymptotic values, just as estimates of λ were shown to deviate
above.

The expected length of gapped alignments with a high score
clearly places limits on the applicability of equations 1 and 2 to
the comparison of short sequences, even after edge effects
have been corrected for. Specifically, if the expected length of
an optimal alignment is longer than the shorter of the two
sequences being compared, then one has effectively entered
the realm of global sequence comparison, to which our theory
no longer applies. This is perhaps best seen as an indication
that the combination of substitution and gap costs being
employed are tailored for too ‘distant’ similarities, and that a
scoring system with a greater relative entropy should be used
instead (32).

RELATIVE ENTROPY AND THE RELATION OF α TO β

It has recently been established under certain simplifying
assumptions that in the no-gap case, the edge-effect correction
outlined above is the proper first-order correction to equations
1 and 2 for finite-length sequences (J.L.Spouge, personal
communication). For high-scoring local alignments without
gaps, it can be shown (33) that the average length of align-
ments with score x is well approximated by

, 10

where Hu is the relative entropy of the scoring system in nats
(32), and the subscript u indicates we are speaking of ungapped
alignments. It is therefore reasonable to define, and estimate,

the relative entropy per amino acid pair for gapped alignments
by the formula

Hg = λg/αg, 11

where the subscript g indicates the gapped case.
Given this definition, we estimate Hg for the scoring system

studied above to be 0.141 ± 2% nats. Note that for the identical
scoring system, Altschul and Gish (20) obtained the much
greater estimate of 0.25 nats for Hg, due primarily to their
assumption that β is 0 in equation 7. This assumption yields a
good estimate of Hg only in the limit of very large scores x, a
limit not nearly approached in simulations of practical size.

Given that for ungapped alignments βu is near zero, as seen
experimentally (see Table 5 for some examples), one may ask
why βg should be distinctly negative. An understanding is to
realize that for a scoring system in which a gap of length 1 has
score –G, at each end of an optimal alignment there must be a
section with score +G that does not include gaps. The average
lengths of these sections will be described better by the
ungapped than by the gapped α. This is a much stronger effect
than the fact that an optimal alignment may not begin or end
with a negatively scoring aligned pair of letters, which causes
βu to be slightly negative. Together, these two effects lead to
the prediction that the parameter βg can be approximated by the
formula

βg ≈ 2G(αu – αg) + βu. 12

For the particular scoring system and random letter frequencies
we have been studying, G = 12, αu = 0.79 and βu = –3.2. In
conjunction with our estimate of 1.90 ± 0.02 for αg, this yields
an estimate of –29.8 ± 0.5 for βg, which coincides with the
experimental value of –30 ± 1 within the precision of measurement.
Similar agreement is found for other gap costs and scoring
systems that are not too close to the log-linear transition (see
Table 5).

Equation 12 suggests that, with a knowledge of the easily
accessible αu and βu, the estimation of αg alone is sufficient for
the edge-effect correction. In practice, however, estimating βg
requires no more work than estimating αg, so one might as well
use the experimental value.

l x( ) αux≈
λu

Hu
------x=

Table 5. The estimation of β using α

Estimates for α and β were obtained by linear regression of alignment length versus score, for scores attaining at least a cutoff value. Sequences were generated
using a set of standard amino acid frequencies (26). Substitution scores were from either the BLOSUM (27) or PAM (37,38) series. Affine gap scores charged an
existence penalty for each gap, and an extension penalty for each residue within a gap. Cutoff scores were chosen sufficiently high to avoid detectable bias in
estimating α. Sufficient data points were generated to estimate α with a standard error of <2%. For each scoring system studied, this required over 500 pairs of
random sequences, recording islands anchored within the central 5000 × 5000 square of each pairwise comparison. Borders of length 1000 were used for the
BLOSUM-45 and BLOSUM-62 scoring systems, and of length 500 for all others.

Matrix BLOSUM-45 BLOSUM-62 BLOSUM-80 PAM-70 PAM-30

αu 0.9113 0.7916 0.5222 0.3250 0.1938

βu –5.7 –3.2 –1.6 –0.7 –0.3

Gap existence 14 11 10 10 9

Gap extension 2 1 1 1 1

αg 1.92 ± 0.03 1.90 ± 0.02 1.07 ± 0.02 0.70 ± 0.01 0.48 ± 0.01

βg –37.2 ± 1.6 –29.7 ± 1.0 –12.5 ± 0.8 –8.1 ± 0.5 –5.9 ± 0.3

2G(αu – αg) + βu –38.0 ± 1.0 –29.8 ± 0.5 –13.7 ± 0.4 –9.0 ± 0.3 –6.0 ± 0.2
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DISCUSSION AND CONCLUSION

It was originally claimed that the primary advantage of the
island over the direct method for estimating statistical parame-
ters lay in speed (12). We have shown here that this is substan-
tially true only for asymptotic parameter estimation. However,
we also have argued that edge-effect parameters allow a single
estimation of asymptotic parameters to replace all finite-size
parameter estimates. Furthermore, the island method permits
simple maximum-likelihood estimation of λ that accounts for
discrete score data, and it allows for simultaneous parameter
estimation using various score thresholds c, and thus the
controlled tradeoff of systematic bias and stochastic error.

The parameter λ depends not only upon the scoring system
employed, but also upon the letter frequencies of the sequences
being compared. In practice, λ may sometimes vary by >10%
from one pair of sequences to another, due merely to variations
in sequence composition. Yet, in the context of a database
search, it is simply too time consuming to re-estimate λ for each
pairwise comparison of potential interest: one moderately
accurate estimate of λ requires as much time as searching a
typical current database using standard heuristic methods (4).
Thus, while one may precompute highly accurate estimates of
λ for a fixed ‘standard’ composition, isn’t this accuracy viti-
ated by varying compositions?

Two solutions to the problem of varying background
frequencies have been proposed, both of which can make use
of accurate parameter estimation procedures. Altschul et al. (4)
have suggested that for non-standard letter frequencies, the
substitution scores be rescaled so as to set the calculable (13)
parameter λu equal to that for the original substitution scores
used with standard frequencies. The conjecture is that the
precalculated λg will then apply to gapped alignments using the
rescaled substitution scores in the context of the non-standard
frequencies. This procedure has been implemented with good
results (34). Alternatively, Mott (22) has used random simula-
tions for a very large number of different scoring systems, gap
costs, sequence compositions and sequence lengths to derive
an empirical formula for λ, dependent upon variables calculable
from the scoring system, letter frequencies and sequence
lengths. Because the values of used in deriving this formula
were calculated by the direct method, frequently with short
sequences, some improvement in Mott’s formula may be
obtainable using the methods described here. To be more
conservative, statistical parameters may be based upon residue
compositions within sequence regions containing the aligned
segments of interest. In general, by improving the precision
with which statistical parameters are estimated for local
sequence alignment, more accurate judgments can be rendered
concerning the biological relevance of protein and DNA
sequence similarities.
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APPENDIX

Maximum-likelihood fitting

In this appendix we explain the maximum-likelihood fitting
technique in the presence of discrete scores. In the case of the
extreme-value distribution this extends the more commonly
used maximum-likelihood fitting for continuous scores as it is,
e.g. presented by Lawless (23). By analogy to some analytical
results on discrete extreme-value distributions (35), for small
lattice spacing we expect only small deviations in the estimated
parameters due to the discreteness of the scores as long as we
perform uncensored fits. However, for alignment scores it is
often necessary to estimate the parameters only for a subset of
the observed scores. For such a censored fit, the discreteness of
the scores must be taken into account, as discussed here, to
obtain correct maximum-likelihood estimates of the parameters of
the underlying distribution.

Throughout the appendix we will assume that sufficiently
large island scores S follow a geometric distribution

Prob(S = x) = Dpx, 13

where we write p = exp(–λ) in order to emphasize the discrete
character of the scores S. In the simplest case, the distribution
is of this geometric form for all x ≥ 0 which fixes the prefactor
D through normalization to D = 1 – p. Let us assume that we
observed n islands with the scores x1, …, xN and we wish to
find the value of p (i.e. λ) which best describes these observed
scores. Since the probability of observing these scores is just
the product of their individual probabilities the logarithm of
the total probability (i.e. the log-likelihood) is

14

The best value of p is the one which maximizes this expression.
We can obtain it by equating the first derivative of this expression
to zero. This yields after some simple algebra

. 15

In our application, the distribution of island scores is not of
the geometric form (equation 13) for all scores x. It follows this
form only asymptotically for large scores x. In this case, the
prefactor D is no longer fixed by normalization. Rather, it
depends on the shape of the distribution for small x. In order to
get a good estimate for p we have to perform a censored fit,
i.e. we keep only those island scores x with value at least c. The
integer cutoff c is chosen so that the geometric form (equation
13) is a reasonable description of the data. This is commonly
called Type I censoring (23). We expect the censored scores to
be distributed according to the restricted probabilities

16

which is independent of the unknown normalization factor D.
If, out of n total scores, the scores x1, …, xM attain a value of c
or larger, the logarithm of the probability is

17

This log-likelihood function is identical to the one without
censoring presented in equation 14 except for the shift of all
scores by the cutoff c. Thus, the optimal value is given by

18

From this expression it becomes obvious why it is important to
take the discreteness of the scores into account for censored
fits. The maximum-likelihood estimate depends explicitly
on the cutoff, as c appears in equation 18, but the set of scores
x1, …, xM remains unchanged as the cutoff c is varied between
two adjacent integers. Therefore, it is important to demand that
c be integral, taking the discreteness of the scores into account.
In order to get an estimate for the other distribution param-
eter K, we have to employ the expected number E(x) of islands
with score at least x given by equation 1. If we observe Rc
islands with score at least c in B pairwise comparisons we get
Rc ≈ BE(c) ≈ B mn c which can be rearranged into equation 6
for the maximum-likelihood estimate . If we choose the
direct rather than the island method to estimate λ, we are inter-
ested in the distribution

Prob(S′ = x′) = Prob(S′ ≤ x′) – Prob(S′ ≤ x′ – 1) 19

of the optimal local alignment scores. The optimal local alignment
score S′ is the maximum of all the approximately ρmn island
scores of the two sequences compared, where ρ describes the
typical island density. Thus, the two probabilities on the right-
hand side of equation 19 can be expressed by the distribution
of island scores S, and S′ is distributed according to

Prob(S′ = x′) = Prob(S ≤ x′)ρmn – Prob(S ≤ x′ – 1)ρmn. 20

Since each island score follows the geometric distribution
(equation 13) we get
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with K = ρD/(1 – p). The last approximation is justified since
Dpx′/(1 – p) is a small number for all the scores x′ that we are
interested in. Equation 21 suggests that the optimal alignment
scores are indeed extreme-value distributed. The only influence of
the discreteness of the scores is that the probability Prob(S′ = x′) is
given by finite differences of the extreme-value distribution
instead of being a proper probability density, i.e. the derivative
of the extreme-value distribution. Let us now assume that we
performed B comparisons. We again choose a cutoff c, and
keep only the m optimal local alignment scores x′1, …, x′M that
are greater than or equal to c. (If we are interested in an uncen-
sored fit, we can always choose c = 0 since all local alignment
scores are non-negative.) These scores are expected to follow
the distribution

22

The logarithm L(p,K) = ln Prob(x′1, …, x′M | x′1 ≥ c, …, x′M ≥ c)
of the probability of observing the censored scores x′1, …, x′M
then becomes

23

As before, the best estimates = exp(– ) and of the two
parameters p and K, given the observed data x′1, …, x′M, are the
ones which maximize the function L(p,K). We could try to find
this maximum by taking the derivatives of L(p,K) with respect
to p and K and equating them to zero. However, this leads to a
pair of equations that can only be solved numerically. Therefore,
it is better to directly use a numerical minimization algorithm
applied to the function –L(p,K). We used the downhill simplex
method in two dimensions (36). In order to improve convergence,
it can be conveniently started at the values of and which
are obtained by the relatively simple uncensored, continuous
extreme value fit to the data. Then, it converges rapidly
towards the global minimum ( , ) of the function –L(p,K).
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