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Cyclin-dependent kinase 9 (CDK9) is a well-characterized subunit
of the positive transcription elongation factor b complex in which
it regulates transcription elongation in cooperation with cyclin T.
However, CDK9 also forms a complex with cyclin K, the function
of which is less clear. Using a synthetic lethal RNA interference
screen in human cells, we identified CDK9 as a component of the
replication stress response. Loss of CDK9 activity causes an
increase in spontaneous levels of DNA damage signalling in
replicating cells and a decreased ability to recover from a
transient replication arrest. This activity is restricted to CDK9–
cyclin K complexes and is independent of CDK9–cyclin T
complex. CDK9 accumulates on chromatin in response to
replication stress and limits the amount of single-stranded DNA in
cells under stress. Furthermore, we show that CDK9 and cyclin K
interact with ataxia telangiectasia and Rad3-related protein and
other checkpoint signalling proteins. These results reveal an
unexpectedly direct role for CDK9–cyclin K in checkpoint pathways
that maintain genome integrity in response to replication stress.
Keywords: CDK9; cyclin K; DNA replication; DNA damage
response; checkpoint
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INTRODUCTION
Precise replication of the genome and continuous surveillance of
its integrity are essential for cell survival and the avoidance of
various diseases, including cancer. The replication stress response
(RSR) helps cells to cope with environmental and endogenous
genotoxic insults that challenge DNA replication. The RSR is
crucial for the prevention of cancer, acting as a barrier against
genomic instability and tumorigenesis (Bartkova et al, 2005;
Gorgoulis et al, 2005; Bartek et al, 2007).

In eukaryotic cells, replication forks stall due to DNA lesions,
depletion of nucleotide pools, complex chromatin organization

and protein–DNA interactions. One component of RSR is ataxia
telangiectasia and Rad3-related protein (ATR) checkpoint kinase
(Cimprich & Cortez, 2008). ATR stabilizes stalled replication forks
and promotes recovery. Furthermore, it senses stalled replication
forks that result from fork uncoupling that exposes replica-
tion protein A (RPA)-bound single-stranded DNA (Byun et al,
2005). RPA contains a protein interaction domain that binds to
several checkpoint proteins including ATR-interacting protein
(ATRIP) and RAD9 homologue A to promote the assembly of
checkpoint signalling complexes (Cortez et al, 2001; Zou &
Elledge, 2003; Ball et al, 2007; Xu et al, 2008). This assembly
promotes the interaction of TopBP1 with ATR–ATRIP complex,
which activates ATR kinase activity (Kumagai et al, 2006).
Once activated, ATR phosphorylates numerous substrates,
including checkpoint kinase 1 (CHK1), which helps to disperse
signals that are necessary to maintain genome integrity (Cimprich
& Cortez, 2008).

CDK9 is a serine/threonine kinase. Unlike most CDKs—which
function in regulating cell cycle transitions—CDK9 has been
predominantly linked with transcription and also functions in co-
transcriptional histone modification, messenger RNA (mRNA)
processing, mRNA export and DNA repair (Bres et al, 2008;
Romano & Giordano, 2008; Pirngruber et al, 2009; Liu et al,
2010). CDK9 forms a heterodimer with a regulatory cyclin:
cyclins T1, T2a, T2b or K. The T-type cyclins interact with CDK9
to form the main component of the positive transcription
elongation factor b (P-TEFb) complex that stimulates transcription
elongation by phosphorylating the carboxy-terminal domain of the
largest subunit of RNA polymerase II. Cyclin K can also interact
with CDK9 in vitro and in vivo (Fu et al, 1999; Lin et al, 2002),
and the CDK9–cyclin K complex can activate transcription when
tethered to RNA, but not to DNA, in vitro (Lin et al, 2002);
however, the function of cyclin K in vivo is not clear. The
expression of cyclin K is activated by p53 in response to DNA
damage (Mori et al, 2002), suggesting that it might function in the
DNA damage response.

RESULTS AND DISCUSSION
Hydroxyurea sensitivity screen identifies CDK9
To identify genes involved in mediating recovery after replication
fork arrest, we completed an unbiased loss-of-function genetic
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screen in human cultured cells. We reasoned that genes involved
in the RSR would probably be required to maintain cell viability
when challenged with an agent that stalls replication forks. We
therefore optimized a high-throughput assay using two RSR
genes—ATR and ATRIP—as positive controls and a nontargeting
oligonucleotide as a negative control. The assay measures the
ability of cells to recover from a transient, high dose of
hydroxyurea (HU), a drug that stalls replication forks by inhibiting
ribonucleotide reductase. The primary screen was completed in
U2OS human osteosarcoma cells using the Dharmacon druggable
genome library of 27,252 small interfering RNAs (siRNAs)
targeting 6,813 human genes. Cells were transfected in duplicate
with pools of four siRNAs targeting each gene arrayed in a one-
gene-per-well format in 96-well plates, split 1:4, treated with or
without 3 mM HU for 24 h and then assayed for cell number using
WST-1 reagent at 24 h after recovery from treatment (Fig 1A).
Plate-to-plate variability was controlled by normalizing to the
average of the nontargeting siRNA values. Candidate RSR genes
were identified by examining the ratio of HU-treated to non-HU-
treated cell numbers (Fig 1B) and by analysis of significance by
the weighted flexible compound covariate method (supplemen-
tary Fig S1 online; Shyr & KyungMann, 2003). Validation of the
primary screen was accomplished by testing four individual
siRNAs to eliminate off-target effects (validated HU-sensitive
genes are presented in supplementary Table S1 online). Two of the
genes that met these criteria were HUS1 and RAD17 (Fig 1C),
known ATR signalling pathway genes, which provided internal
validation of the screen. In this study, we focus on CDK9. All four
siRNAs targeting CDK9 cause HU hypersensitivity (Fig 1C,D).

CDK9 is a replication stress response protein
To validate that CDK9 is an RSR protein, we examined the ability
of CDK9-silenced cells to recover from a transient replication fork
arrest using cell cycle analysis by flow cytometry. U2OS cells
treated with HU for 20 h were observed to be arrested in early
S-phase (Fig 2A). At 10 h after removing HU, cells treated with
nontargeting siRNA oligonucleotides progressed through S-phase
and accumulated 4N DNA content, whereas U2OS cells treated
with ATRIP, ATR or CDK9 siRNA oligonucleotides have a delayed
progression through S-phase (Fig 2A,B). A similar impairment in
recovery after CDK9 silencing was observed in human telomerase-
immortalized epithelial cells, suggesting that the phenotype
is not cell-type-specific (data not shown). Depletion of CDK9
caused a similar defect in recovery after a replication challenge
of aphidicolin, a DNA polymerase inhibitor (Fig 2A,B). In
the absence of exogenous damage, no changes in cell prolifera-
tion or apoptosis are seen after CDK9-silencing (supplementary
Fig S2 online).

Next, we examined the induction of DNA damage after CDK9
knockdown by immunofluorescence microscopy for phospho-
rylated histone gH2AX. Silencing many genes that function in RSR
pathways causes an increase in spontaneous gH2AX staining
during S-phase due to a failure to maintain replication fork
stability, even in the absence of added genotoxic agents (Lovejoy
et al, 2009; Paulsen et al, 2009). At 72 h after CDK9 silencing,
phosphorylation of gH2AX was significantly increased compared
with nontargeting silencing. To determine whether the induction
of gH2AX occurs in replicating cells, we co-stained the cells for
cyclin A—a cell marker in S- and G2-phase—and 5-bromo-2-
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Fig 1 | Silencing cyclin-dependent kinase 9 causes hydroxyurea hypersensitivity. (A) Diagram of primary screen assay as described in the text.
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as indicated. Treated compared with untreated percentage viability was calculated and the mean and s.d. values from three replica experiments

are shown. Asterisk indicates Po0.05. (D) Western blot analysis demonstrating efficiency of knockdown with the indicated siRNAs. ATR, ataxia

telangiectasia and Rad3-related protein; ATRIP, ATR-interacting protein; CDK9, cyclin-dependent kinase 9; HU, hydroxyurea; NT, nontargeting;
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deoxyuridine (BrdU)—a cell marker in S-phase. In contrast to cells
treated with ionizing radiation—which causes damage in all
phases of the cell cycle—cells in which CHK1 or CDK9 is silenced
exhibit significantly increased co-staining for gH2AX and cyclin A
(Fig 2D,E) and for gH2AX and BrdU (Fig 2D,F), suggesting
that silencing of CDK9 induces DNA damage in replicating
cells. Collectively, these findings demonstrate that CDK9
functions in an RSR pathway to maintain genome integrity during
DNA replication.

CDK9 kinase activity is essential for its functions in the RSR
To assess whether the kinase activity of CDK9 is essential for
mediating cell cycle recovery after replication stress, we generated
U2OS cell lines stably expressing exogenous wild-type FLAG–HA
(haemagglutinin)–CDK9 or FLAG–HA–CDK9 D167N—a kinase-
dead mutant (Garriga et al, 1996)—and silenced endogenous
CDK9 using siRNA targeting the 30-untranslated region. Wild-type
FLAG–HA–CDK9 but not FLAG–HA–CDK9 D167N comple-
mented the HU and aphidicolin recovery deficits of
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CDK9-silenced cells (Fig 3A,B), suggesting that the kinase activity of
CDK9 is essential for its functions in the RSR and confirming the
siRNA phenotypes are not due to off-target effects. Western blot
analysis demonstrated the expression of exogenous fusion proteins
and knockdown of endogenous CDK9 in these experiments (Fig 3C).

Cyclin K is a replication stress response protein
To determine which regulatory subunit works with CDK9 in the
RSR, we examined cell cycle recovery after a replication
challenge of HU or aphidicolin in cells silenced for cyclins T1,
T2 and K. Four siRNAs targeting cyclin K strongly impaired cell
cycle recovery (Fig 4A,B). By contrast, silencing cyclin T1 and
cyclin T2 did not cause a deficit in cell cycle recovery (Fig 4A,B;
supplementary Fig S3 online), suggesting that cyclin K, but not
cyclin T1 or cyclin T2, is the regulatory subunit of CDK9, which
mediates its activities in the RSR. Western blot analysis of
cells treated with siRNA against cyclin K, T1 and T2 confirmed
the knockdown of protein expression (Fig 4C–E). Silencing of
cyclin K in the absence of exogenous damage also induced a
significant increase in phosphorylation of gH2AX compared with
nontargeting silencing (Fig 4F), consistent with a role for cyclin K
in maintaining genome integrity.

The absence of a deficit in cell cycle recovery after silencing of
cyclin T1 and cyclin T2—well-characterized regulatory subunits
of the P-TEFb complex—suggests that the RSR phenotypes
observed after CDK9 knockdown might be independent of
P-TEFb-mediated transcription regulation. To further examine this
issue, we performed a microarray genome-wide expression
analysis in U2OS cells treated with nontargeting or CDK9 siRNA

under the same conditions in which we obtained our loss-of-
function phenotypes. The microarray results are summarized in
supplementary Table S2 online. The expression levels of 60 genes
without treatment with HU and 127 genes treated with HU were
significantly downregulated by at least 1.5-fold, and the expres-
sion levels of 75 genes without treatment with HU and 138 genes
treated with HU were significantly upregulated after CDK9
silencing, compared with nontargeting silencing. However, few
of the regulated genes have any functional link to the cell cycle or
DNA damage, suggesting that transcriptional changes might not
account for RSR defects in CDK9-silenced cells.

CDK9–cyclin K complex interacts with other RSR proteins
To test whether CDK9 functions directly in the ATR-dependent
RSR pathway, we tested whether CDK9 could form complexes
with ATR or other RSR proteins. Immunoprecipitation of CDK9–
HA expressed in HEK293T cells pulled down endogenous ATR,
Claspin and ATRIP, but not PCNA or RPA32 (Fig 5A). Endogenous
CDK9 also co-immunoprecipitated with endogenous ATR, Claspin
and ATRIP (Fig 5B,C), suggesting that the proteins interact in a
complex or complexes. These interactions are not DNA-dependent
or regulated by replication stress as they are preserved after
treatment of the immunoprecipitation reactions with benzonase
nuclease and are unchanged after treatment of the cells with HU
(data not shown). We further investigated whether any of the
regulatory cyclins interacted with components of the RSR.
Immunoprecipitation of ATR pulled down both CDK9 and cyclin K
but not cyclin T1 or cyclin T2 (Fig 5C,D). These data further confirm
that cyclin K, not cyclin T, mediates the RSR functions of CDK9.

B

C kDa

55

42

1 2 5 3 6 4

IB:

CDK9

80

60

40

20

0
1 2 3 4 1 2 3 4

C
el

ls
 w

ith
4N

 D
N

A
 c

on
te

nt
 (%

)

APHHU

A

Cycling Arrested Released Arrested Released

HU APH

FL
A

G
-H

A
C

D
K

9 
D

16
7N

+
C

D
K

9-
3

FL
A

G
-H

A
C

D
K

9 
W

T
+

C
D

K
9-

3
+

C
D

K
9-

3
+ N
T

V
ec

to
r

V
ec

to
r

2N 2N 2N 2N 2NcDNA siRNA

C
el

l n
um

b
er

DNA content
4N 4N 4N 4N 4N

1 Vector + NT

2 Vector + CDK9–3

3 FLAG–HA–CDK9 WT + CDK9–3

4 FLAG–HA–CDK9 D167N + CDK9–3

6 FLAG–HA–CDK9 D167N + NT

5 FLAG–HA–CDK9 WT + NT

Fig 3 | Cyclin-dependent kinase 9 activity is essential for its activities in the replication stress response. (A,B) U2OS cells stably expressing an empty

vector, wild-type FLAG–HA–CDK9 or FLAG–HA–CDK9 D167N were transfected with NT or CDK9 siRNA directed against the 30-UTR of CDK9, treated

with 3 mM HU or 15 mM APH for 20 h and released into nocodazole for 10 h. DNA content was analysed by flow cytometry. (B) The percentage (mean

and s.d.) of cells that completed DNA synthesis in three replicate experiments is shown. (C) Western blot analysis demonstrating expression of fusion

proteins and knockdown of endogenous CDK9. APH, aphidicolin; CDK9, cyclin-dependent kinase 9; HA, haemagglutinin; HU, hydroxyurea;

NT, nontargeting; siRNA, small interfering RNA; UTR, untranslated region.

CDK9 acts in the replication stress response

D.S. Yu et al

&2010 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 11 | NO 11 | 2010

scientificreport

879



To determine whether CDK9 and ATR function in a common
pathway, we performed epistasis experiments for HU sensitivity
after silencing of ATR, ATRIP and CDK9. The silencing of ATR and
ATRIP showed a similar HU sensitivity compared with ATR
silencing alone, consistent with ATR and ATRIP functioning in the
same pathway (Fig 5E). Similarly, ATR silencing and CDK9
silencing also caused a similar HU sensitivity compared with ATR
silencing alone, suggesting that ATR and CDK9 act in a common
pathway that sensitizes to HU (Fig 5E).

To investigate the function of CDK9 in the ATR signalling
pathway, we examined the requirement of CDK9 for ATR-
dependent signalling in response to replication stress. Silencing

of CDK9 did not impair CHK1 or minichromosome maintenance 2
phosphorylation in response to HU treatment, suggesting that
CDK9 does not regulate ATR activation (supplementary Fig S4A
online). Furthermore, CHK1 autophosphorylation is not impaired
in CDK9-silenced cells (supplementary Fig S4B online). We did
observe an increase in CDC25A protein levels (with no change in
mRNA levels, P¼ 0.515) in CDK9-silenced cells both before and
after treatment with HU, which was rescued by the siRNA-
resistant CDK9 complementary DNA (supplementary Fig S4B
online). These data suggest that CDK9 might function either
downstream from CHK1 or perhaps in a parallel pathway to
regulate CDC25A stability.
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CDK9 reduces chromatin-bound RPA
To determine whether CDK9 is regulated in response to
replication stress, we examined whether its activity or localization
is changed in HU-treated cells. Although we observed no
evidence that its kinase activity was altered, we did observe a
2.3-fold increase in the amount of CDK9 bound to chromatin
after treatment with HU (Fig 5F). Furthermore, the amount of
chromatin-bound RPA increased approximately twofold in
CDK9-silenced cells after HU treatment (Fig 5F), suggesting
that CDK9 acts to limit the amount of single-stranded DNA
available for RPA binding. Together with the induction of gH2AX
phosphorylation in CDK9-silenced, replicating cells, these find-
ings are consistent with a model in which CDK9 responds to

replication stress by localizing to chromatin to reduce the
breakdown of stalled replication forks.

CDK9 is overexpressed in several cancers—including leukae-
mias and lymphomas—and has been suggested as a useful drug
target (Bellan et al, 2004; Romano & Giordano, 2008). Our
data indicate that targeting CDK9 would not only alter transcrip-
tional regulation but also have an impact on replication
stress responses. Indeed, U2OS cells treated with flavopiridol
or 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole—which inhibit
CDK9 activity—impair cell cycle recovery in response to treatment
with HU (supplementary Fig S5 online). Thus, CDK9 inhibitors
might be useful in cancers involving high levels of replication stress,
or in combination with replication stress-inducing chemotherapies.
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Our data suggest a direct function for CDK9–cyclin K
complexes in the RSR. The RSR function of CDK9 might be
evolutionarily conserved; its Saccharomyces cerevisiae homo-
logue—Sgv1—is synthetically lethal with the checkpoint proteins
Mrc1, Csm3, Tof1 and Sgs1 (Collins et al, 2007), which help to
stabilize DNA polymerase at stalled replication forks. Further-
more, a mutation in the T-loop of Schizosaccharomyces pombe
CDK9 causes UV hypersensitivity (Gerber et al, 2008). These data
provide evidence that the CDK9–cyclin K complex has different
biological activities to the CDK9–cyclin T complex.

METHODS
Cell lines, plasmids and siRNA. U2OS and HEK293T were
maintained in Dulbecco’s modified Eagle medium supplemented
with 7.5% fetal bovine serum. Kinase-dead CDK9 D167N was
generated by site-directed PCR mutagenesis. Stable cell lines
expressing wild-type or mutant CDK9 were created by retroviral
integration. The human druggable genome RNA-mediated inter-
ference library was obtained from Dharmacon. Individual siRNA
sequences used for experiments are described in the supplemen-
tary information online. RSR assays were performed as previously
described (Mordes et al, 2008) using 20-h treatments with either
3 mM HU or 15 mM aphidicolin. The primary screen was
completed in duplicate with siRNA at a concentration of 25 nM
using HiPerfect (Qiagen). Individual siRNAs in validation experi-
ments were each transfected six times at a concentration of 10 nM.
Drug was added 72 h after transfection for both primary and
validation screens.
Immunofluorescence and immunoprecipitation. Indirect immuno-
fluorescence for gH2AX, cyclin A and BrdU was performed as
previously described (Bansbach et al, 2009). Cell lysates for
overexpression, co-immunoprecipitation and western blot analyses
were prepared with 0.5% NP-40 lysis buffer (50 mM Tris (pH 8.0)
and 150 mM NaCl) supplemented with protease and phosphatase
inhibitors. Nuclear extracts were used for the endogenous co-
immunoprecipitation experiments as described previously (Mordes
et al, 2008). Chromatin fractions were prepared as previously
described (Bansbach et al, 2009). Antibodies are described in the
supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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