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The multicopy Agtl0-lacZ transgene shuttle vector of
Muta™Mouse serves as an important tool for genotoxicity
studies. Here, we describe a model for Agt10-lacZ transgene
molecular structure, based on characterisation of trans-
genes recovered from animals of our intramural breeding
colony. Unique nucleotide sequences of the 47 513 bp
monomer are reported with GenBank® assigned accession
numbers. Besides defining ancestral mutations of the Agt10
used to construct the transgene and the Muta™Mouse
precursor (strain 40.6), we validated the sequence integrity
of key A genes needed for the Escherichia coli host-based
mutation reporting assay. Using three polymerase chain
reaction (PCR)-based chromosome scanning and cloning
strategies, we found five distinct in vivo transgene rear-
rangements, which were common to both sexes, and
involved copy fusions generating ~10 defective copies per
haplotype. The transgene haplotype was estimated by
Southern hybridisation and real-time-polymerase chain
reaction, which yielded 29.0 = 4.0 copies based on spleen
DNA of Muta™Mouse, and a reconstructed CD2F,; genome
with variable Agtl0-lacZ copies. Similar analysis of
commercially prepared spleen DNA from Big Blue® mouse
yielded a haplotype of 23.5 * 3.1 copies. The latter DNA is
used in calibrating a commercial in vitro packaging kit for
E.coli host-based mutation assays of both transgenic
systems. The model for Agtl0-lacZ transgene organisation,
and the PCR-based methods for assessing copy number,
integrity and rearrangements, potentially extends the use of
Muta™Mouse construct for direct, genomic-type assays that
detect the effects of clastogens and aneugens, without
depending on an E.coli host, for reporting effects.

Introduction

Knowledge concerning spontaneous and induced mutagenesis
in somatic and germ line tissues has been greatly enhanced by
use of transgenic rodent systems such as Muta™Mouse (1,2)
and BigBlue® mouse (3,4) and related cell lines (5—7). These

transgenes are composed of engineered A-bacteriophage and
mutation reporter genes from Escherichia coli (lacZ for
Muta™Mouse and lac I for BigBlue®). The A-components
are essential for rescue of the reporter genes from the murine
genome, and their delivery, amplification and detection (plaque
assay) using select E.coli hosts. The implicit assumptions in
the use of these mutation reporting systems are that all the
transgenic A-shuttle vector copies are identical, and can be
efficiently and independently recovered from genomic DNA of
any cell or tissue type of either sex, and are expressible in E.coli.
However, the nucleotide sequence of either transgene system has
not been verified, including the A-related precursor components
as well as any potential alterations arising from the actual
integration and the formation of multiple copies of the trans-
genes during establishment of the mouse lines (1,3,8-10).
Estimates of mutation frequencies of the E.coli reporter gene(s)
may not accurately reflect those of endogenous loci (11).
Features that distinguish these transgenes (e.g. Agtl0-lacZ) from
most endogenous genes include: their multicopy, head-to-tail
chromosomal arrangements, their extensive and high CpG
content relative to the mouse genome, methylation, phasing in
replication and lack of transcription (i.e. no transcripts detected
in RNA from kidney, liver and lung as reported by [(1,12) and
Shwed, P. unpublished results]. Several of these properties
are not well understood and some may be disruptive to
chromosome-chromatin domain structure roles such as tran-
scription, replication, recombination and repair (13—17). Fur-
thermore, transgene reporters may not be recovered or expressed
in E.coli hosts because of mutations that disable A-genes and/or
generate sequence conversions for prophage-like insertions (18).

To better understand the integrity and chromosomal structure of
Muta™mouse Agtl0-lacZ copies, we undertook a characterisation
of the monomer sequence in animals from our colony. Here, we
report the novel nucleotide sequence data, providing information
on the transgene’s ancestry with respect to Agtl0 and its two
precursor lambdoid genomes and integrity of the transgene copies
in tissues. As part of the study, the transgene copy number was
investigated by DNA hybridisation (Southern blot) and quantita-
tive real-time—polymerase chain reaction (RT-PCR), using NCBI
mouse genome build 36.1 to derive copy reference standards such
as single copy and multicopy endogenous genes or mixtures of
Agt10-lacZ transgene and mouse genomic DNA. Further, we
included a copy comparison with commercially available DNA
from BigBlue® mouse, which could serve as a potential inter-
laboratory reference standard.

Materials and methods

Sources of genomic DNA, transgene and standards

Muta™Mouse strain 40.6 was obtained directly from the Jan Vijg laboratory
(TNO, The Netherlands) in 1990 (2) and thereafter maintained as a breeding
colony under approval of Health Canada’s Animal Care Committee.
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Information on the strain’s construction and protocols for isolation of high-
molecular weight DNA from various tissues are reported elsewhere (2,19).

Additional Muta™Mouse liver tissue was obtained from Covance
Laboratories Ltd, Harrogate, UK. Monomers of Agtl0-lacZ were obtained
from Muta™Mouse DNA using Transpack® packaging extract (Stratagene, La
Jolla, CA, USA) and a Wizard® Lambda Preps DNA Purification Kit
(Promega, Madison, WI, USA), according to manufacturer’s protocols. Cloning
vector Agtl0 and AC1857 were obtained from Sigma. Standards to determine
copy number of Agtl0-lacZ DNA per diploid genome were made by mixing
1 pg of non-transgenic mouse CD2F; [(BALB/c x DBA/2) F;] spleen DNA
(Jackson Laboratory, Bar Harbor, ME, USA) with Agt10-lacZ DNA at various
concentrations. Copy number was based on NCBI mouse genome build 36.1
(5.1 x 10° bp per haploid cell) and the 47 513 bp Agtl0-lacZ model (see
Figurel). BigBlue® mouse spleen DNA was supplied with the Transpack®
packaging kit. DNA quality (260/280 nm and 260/230 nm) and quantity (A260
nm) parameters were obtained by using the ND 1000 micro spectrophotometer
(Nano Drop Technologies, Wilmington, DE, USA).

Sequence analysis and derivation of DNA probes

Unless otherwise indicated, most of the DNA sequences used and generated in
this work are identified by GenBank® accession numbers (see Tables I and II,
and legends to Figures 1-4). The oligonucleotide primers (see list in Table I)
were designed using Vector NTI™ version 9.0.0 software (Invitrogen,
Burlington, Ontario, Canada) and GenBank® sequence data for A bacteriophage,
imm434 and E.coli lacZ. These custom-made primers (Cortec DNA Service
Laboratories Inc., Kingston, Canada) were used to generate polymerase chain
reaction (PCR) fragments in reactions involving a DNA polymerase deficient in
3’5" exonuclease activity (KOD polymerase; Novagen, Gibbstown, NJ, USA)
to minimise proofreading errors. Fragments generated, either by PCR or cloning
in E.coli, were sequenced in both directions using an ABI Prism® 3100 Genetic
Analyzer and BigDye® Terminator Cycle Sequencing Kit (Applied Biosystems,
Foster City, CA, USA). The nucleotide sequences were compiled with Vector
NTI software and communicated to GenBank® using its software (Bankit).

Transgene copy determinations by DNA hybridisation

The Southern hybridisation method was performed (19) using 2 pg of
Muta™mouse DNA and transgene CD2F; DNA mixtures (see standards). The
DNA was predigested with BamHI endonuclease (10 U at 37°C, 3 h),
fractionated by 0.8% agarose gel electrophoresis and transferred to Nytran®
SuPerCharge membranes (Schleicher and Schuell, BioScience Inc., Keene, NH,
USA) by capillary flow using 0.25 M NaOH and 1.5 M NaCl. Bound DNA was
stabilised by ultraviolet cross-linking with 50 mJ per Southern blot (GS Gene
Linker, Bio-Rad Laboratories Inc., Hercules, CA, USA). Probes were PCR
amplicons of mouse genes and transgene components (see Table I), which were
radiophosphate labelled by random priming (20). Hybridisations were carried
out with 1 x 10° c.p.m. per ml of hybridisation solution (Ambion, Austin, TX,
USA) and washes were carried out at 50°C for 30 min each with 2x SSC (1x
SSC is 0.15 M NaCl plus 0.015 M sodium citrate)-0.1% SDS, with 0.5x SSC-
0.1% SDS and at 65°C with 0.1x SSC-0.1% SDS. The amount of probe
annealed to each DNA blot was quantified by autoradiography (Kodak Biomax
XAR film), followed by scanning and digitalisation of the films to obtain pixel
densities (GeneSnap; Syngene Optics Ltd, Cambridge, UK or UN-Scan-it®
Ver.5.1 software (Silk Scientific, Orem, UT, USA). Hybridisation results were
corrected for probe-specific activity and target size (kilobase pair).

Transgene copy number determinations by RT-PCR

Segments of endogenous genes and transgenes of Muta™Mouse DNA and in
CD2F; DNA-transgene mixtures (see standards) were quantified using the
iCycler iQ RT-PCR detection system (Bio-Rad Laboratories Inc.). Oligonu-
cleotide primers (see Table I) were designed with Beacon Designer (3.01
version; Premier Biosoft International, Palo Alto, CA, USA) and synthesised by
Cortec DNA Service Laboratories Inc., Kingston, Canada. DNA templates (see
previous section) were denatured (100°C, 10 min, followed by 5 min on ice)
prior to addition (20 ng) per 20 ul PCR (96-well PCR plates; Bio-Rad
Laboratories Inc.). Reactions consisted of 1x iQ™ SYBR® Green Supermix
(Bio-Rad Laboratories Inc.): 50 mM KCI, 20 mM Tris—HCI, pH 8.4, 0.2 mM
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Fig. 1. Model of the Muta™Mouse Agtl0-lacZ transgene derived by sequence analysis. The transgene monomer has 47 513 bp and 57 ORFs and is based on
nucleotide sequencing of PCR amplicons derived from systematic scanning of functional regions of Agt10-lacZ using Muta™Mouse genomic DNA from tissues of
both gender and Agtl10-lacZ in vivo copies rescued by in vitro phage packaging and commercial stocks of ACI857 and Agt10. Data include the b527 deletion and
unfinished parts of bacteriophage imm434 (accession numbers M60848, Y00118) and the 5.2 kb EcoR1-Dral fragment of pMC1511, which contains the E.coli lacZ
mutation reporter (GenBank® L08935) (hatched-box). The GenBank® accession numbers for sequences other than those reported already for A (NC_001416;
48.5 kb) are given in Table II. Functional regions included left (COS; ) and right (COSg) cohesive ends and ORFs required for virion assembly and DNA packaging
and origin of X DNA replication (ORI). Arrows show orientation of ORFs common to the 48.5 kb A bacteriophage as identified by A gene nomenclature (see
NC_001416). Novel in vivo copy rearrangements are described in Figure 2 and Table II. The large open box spans a novel finding of a region of substitution by
lambdoid Rac prophage tail fiber assembly gene (/om and ORFs 401, 314 and 194) found also in Agt10 and ACI857 commercial stocks. Also identified are crossover
hot spot instigator motifs (Chi sites) conveying potential for lacZ recombination with the E.coli genome. The symbol ' signifies a fully functional Chi motif (starts
at nucleotide position 3508 on the reverse or antistrand with respect to E.coli lacZ (accession J01636). x° signifies a one base difference version of the Chi motif that
requires a single mutation for full function. These ysites start at nucleotide positions 3149 and 3152 for the two on the anti-strand and position 3248 for the one on
the sense strand. MAR-1 and MAR-2 show location of sequences identified as matrix-associated regions using a computational approach (15). MAR-1 is located 5’
to the lambda INT gene and MAR-2 is located in the 3’ non-coding Agt-10 region and they represent regions that may contribute to higher order mammalian
chromosome loop structures. In a head-to-tail arrangement of transgenes, MAR-2 would be located within 1.4 kb of the COSy. site and in the vicinity of
rearrangements featured in Figure 2.
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Table I. Primers used in this study for PCR and nucleotide sequencing

Gene target/amplicon size (bp)

Primer pair (forward/reverse)

General sequencing primers
ANU region (600 bp)

Mom, ORF401-like coding sequence side tail fiber and
INT genes (3929 bp)
Ab527 mutation (972 bp)

AN-O region (6551 bp)

E.coli lacZ (3341 bp)

ATail region (582 bp)

AReplication origin (ori) (149 bp) (RT-PCR)

(501 bp) Ori Southern hybridization

(812 bp) 18S Southern hybridization

Mus musculus 18S rDNA gene (117 bp) (RT-PCR)

Mus musculus annexin V gene exon 4 (115 bp) (RT-PCR)

A inverse primers
(Position 340)

(Position 97)

Genome walking Agtl10-lacZ primers
(Extending into 5’end, position 101)
(Extending into 5’end, position 44)
(Extending to 3’ end, position 48195)
(Extending to 3’end, position 48475)

Primers to scan for detection of transgene integration
Biotinylated transgene primer

Degenerate primers
FP1
FP2
FP3
FP4

Nested gene specific primers
GSP1
GSP2

Nul-1: 5'-CGGGTTTTCGCTATTTATGA-3’
Nul-2: 5'-ACATGTCGGTTTTCCAGTTC-3’
LO-1: 5'-ATGGCAGTAAAGATTTCAGG-3’
LO-2: 5'-ACAGCAGGCCACTCAATATC-3’
B5-1: 5'-GAATCAATTCCAATTACCTGAAGTC-3'
B5-2: 5'-GTATCAAGGTATTTTATGCGC-3’
NO-1 5'-TTTTCCCTTAATTTTCTGGC-3’
NO-2: 5'-TTACCGGACCAGAAGTTCTC-3’
LZ-1: 5'-GAATTCCGATTCATTAAT-3’

LZ-2: 5'-GAATTCAAATAGTACATAATGG-3’
TR-1: 5'-TATGTCCACAGCCCTGACG-3’
TR-2: 5'-CTCGTATCACATGGAAGG-3’
ORI-1: 5'-GACCCAACTCGAAATCAAC-3’
ORI-2: 5'-ATCTGCTCACGGTCAAAG-3’
ORI-S1: 5'-GGACAGGAGCGTAATGTGGCA-3’
ORI-S2: 5'-AATTGCAGCATCCGGTTTCAC-3’
18SS-1: 5'-TCTTTCGAGGCCCTGTAAT-3’
18SS-2: 5'-ACCAACTAAGAACGGCCAT-3’
18S-1: 5'-ACGGACAGGATTGACAGATTG-3’
18S-2: 5'-CCAGAGTCTCGTTCGTTATCG-3’
AN-1: 5'-GCATCCTGAACCTGTTGACATC-3’
AN-2: 5'-ACACCCACTCCACCTTGAATG-3’

INV-1: 5'-CTTTTTGGCCTCTGTCGTT-3’
INV-2: 5'-TCCTTTCTTTTCAGAGGGTA-3’

GW-1 5"-CACCTGTCGTTTCCTTTCTTTTCAGAG- 3’
GW-2: 5'-GAAGAAGAACGGAAACGCCTTAAACC-3’
GW-3: 5'"-AATTCCCGGACCCTTTTTGCTCAAGAGC-3’
GW-4: 5'-GTCCTTTCCGGTGATCCGACAGGTTAC-3’

BIO-1 5'-CAGCATCCCTTTCGGCATACCATT-3’

5"-GACTCAGATATCGGCAGCGTGGTNNNNNNNGCGCT-3’
5"-GACTCAGATATCGGCAGCGTGGTNNNNNNNGGCCT-3’
5"-GACTCAGATATCGGCAGCGTGGTNNNNNNNGCGCA-3’
5"-GACTCAGATATCGGCAGCGTGGTNNNNNNNGGCCA-3’

5'-ACTATAGGGCACGCGTGGT-3’
5"-ACTTCCATTGTTCATTCCAC-3’

Sequence sources GenBank: mouse annexin V (accession AJ230111); mouse 18S ribosomal gene (accession X00686), A ori region (accession J02459) and E.coli

lacZ (accession J01636). RT-PCR, real-time -polymerase chain reaction.

each dNTP, iTag DNA polymerase, 3 mM MgCl,, SYBR Green (proprietary
concentration), 10 nM Fluorescein and 300 nM of specific primers.
Amplification was achieved using the following protocol: 40 cycles of 94°C
for 15 sec and 58°C for 45 sec. The threshold cycle number (C,) was calculated
with iCycler iQ Optical System Software Ver.3.1 (Bio-Rad Laboratories Inc.).

PCR strategies to obtain in vivo-related transgene fragments

Three strategies were used to scan for putative transgene rearrangements in
Muta™Mouse DNA. The first strategy involved the cloning of anomalously
sized transgene amplicons that were derived from screening a stock of
amplicons generated by PCR. The template was a pool of EcoRV digested
Muta™Mouse genomic DNA (~1.0 to 2.5 kb in size) recovered from agarose
gel slices using ZymoClean gel extraction columns (Zymo research
Corporation, Orange, CA, USA). The primers spanned key functional regions
of the sequenced AgtlO-lacZ. The anomalous Agtl0-lacZ-related amplicons
were identified by agarose gel electrophoresis and further extracted and
amplified by inverse PCR (21). After ligation (19), PCRs were carried using
COS flanking, antiprimers (see Table I, INV-1 and INV-2) and a proofreading
Taq polymerase (LA Tagq; Takara Bio Inc., Otsu, Shiga, Japan) to negate
potential PCR errors.

The second strategy involved a genome walking procedure (Universal
Genome Walker Kit; BD Biosciences, Mississauga, Ontario, Canada).
Muta™Mouse DNA was fragmented with different restriction enzymes
(EcoRV, Dral, Pvull and Sspl) and the resulting fragments were ligated to
adaptor nucleotide oligomers (supplied in the kit). Duplicate PCR amplifica-
tions were performed with ~50 ng of each DNA digest, using Advantage
genomic polymerase (BD Biosciences), an outer adaptor primer (AP1, provided

in the kit), a transgene-specific primer (GW-1 or GW-4 see Table I) and
manufacturer’s-specified reaction conditions (7 cycles of 2 sec at 94°C and 3
min at 70°C, followed by 33 cycles of 2 sec at 94°C and 3 min at 65°C and then
terminated with 4 min at 67°C). A second amplification (‘nested’ PCR) used
1 pl of a 50x dilution (~50 ng) of the previous PCR product, an inner adaptor
primer (AP2) provided in the kit, a nested transgene-specific primer (GW-2 or
GW-3) and manufacturer’s-specified reaction conditions (5 cycles, 2 sec at
94°C, then 3 min at 72°C, followed by 20 cycles, 2 sec at 94°C, then 3 min at
67°C and then terminated with 4 min at 67°C). The PCR products were
fractionated by agarose gel electrophoresis, extracted, cloned and sequenced.

The third strategy was modelled after a protocol to identify proviral
integration sites (22). PCRs were carried out with Sspl linearised Muta®Mouse
DNA and a biotinylated Agtl0-lacZ-specific primer (BIO-1) and each of the
degenerate primers (see FP1-FP4, Table I). Biotinylated PCR products were
recovered using streptavidin-coated magnetic beads according to manufac-
turer’s instructions (Dynabeads kilobase BINDER™ Kit; Invitrogen). A second
round of PCRswas performed using 2 pl of purified fragments, the GSP-2
primer (Table I) and a primer representing the 23 nucleotide common region of
FP1-FP4 primers. The subsequent PCR products were fractionated by agarose
gel electrophoresis, extracted from the gel, cloned and sequenced.

Results and discussion

Status of the \gtl0-lacZ sequence in Muta™Mouse

The model for the Muta™Mouse Agtl0-lacZ transgene
sequence is shown in Figure 1 with details given in the
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Table IL. Novel Agtl0-lacZ-related nucleotide sequences produced from this study

GenBank® approved accession numbers Target size (bp) Description

AY927770 920 Spans the mutation in b527 of both the Agtl0/acZ and the
cloning vector Agt10

AY927771 6729 The Agtl0lacZ and Agt10 lom ORF401-like coding sequence
(cds) and side fibre genes, and AINT complete cds

AY940193 6729 Mus musculus (CD2F1 (BalB/C x DBA/2) transgenic DNA

that includes /om and complete cds of side tail fibre genes,
and partial cds of the MINT gene

AY940194 920 M .musculus genomic DNA template, b527 mutation region

DQ101279 1011 M.musculus genomic DNA template rearrangement
sequence R1

DQ387054 661 M .musculus genomic DNA template rearrangement
sequence R2

DQ387055 1097 M .musculus genomic DNA template rearrangement
sequence R3

DQ387056 779 M . musculus genomic DNA template rearrangement
sequence R4

DQ387057 1001 M.musculus genomic DNA template rearrangement

sequence RS

The proposed nucleotide sequence for the Agt10-lacZ transgene model of Muta™Mouse (see Figure 1) is composed of nucleotide sequences considered to be novel
by GenBank®, as indicated by new accession numbers above and also nucleotide sequences which have substantial similarity to those previously assigned
GenBank® accession numbers A bacteriophage (J02459), E.coli lacZ (J01636) and imm 434 (M60848; Y00118).

FUSION copy-1 (15097 bp) + copy-2 ( 47497 bp)
A p E (R9) of - €z — — — SgppCOSL
(R1) —— —zz—— \ - @ — €z@— — = = 1,0
¢ COSR ¢-:|— - — — zzr — 4
A cos R COSR
! o
S-GTTTCCGTCCAGATTGTCCTGGGGG TTTTCGCTAT TTATGAAAAT -3 %
B (RZ) 5-GTTATTCGGGAAGTGAACGGCACCGGG CGCTATTTATGAAAA -3
FUSION: copy-1 (47503 bp ) + copy-2 (47278 bp )
cosL ~
A Lot
A COSR
5-TTTACGGGTCCTTTCCGGTGATCCG TACCATTCAGAACTGGCAGG-3' F
(R3)
C FUSION: copy-1(41316bp ) + copy-2 (47499 bp )
A
535 = \ f_-_ocos L// _ 4.07kbp
A g s « .
\ COSR 3 0Bkbp ‘ ‘a‘ 3.5 kbp head-to-tail
5-AAAGAGACGCAGAAACAGCGGGTTTTCGCTATTTATGAAAATTT-3' - 31 kbp {RZ)
I T 6500 — M-
FUSION: copy-1 ( 47513 bp ) + copy-2 ( 23092 bp ) 1.65kop - 17kbp
™ A CcOSL - 1.3kbp(R3
COSL 4 -« — — E2723% ——@m——0 P (R)
COSR

5-TCCTTTCCGGTGATCCGACAGGTTACGICTCTIGGCATACAAATAA-3' 1.08kbp-.

Fig. 2. Schematic diagrams illustrating in vivo rearrangements of Agtl0-lacZ transgene. Panels (A) through (E) show examples of rearranged Agtl10-lacZ copies
(R1-R5) that correspond to the rearrangement fragments of <1 kb, initially recovered from genomic DNA of three male and two female Muta™Mouse animals by
genome scanning methods (see Materials and methods). Donor sequences (underlined) at the fusion site between copies are shown, along with selected features of
the transgene: left (COSy, and right (COSR) cohesive ends, genes A, K and lacZ, shown as a hatched box. Additional sequence data can be accessed through
GenBank® (see Table II). PCR primers in each case were selected to amplify the fusion fragment and validate these rearrangements in DNA samples from eight
males and eight females (see text). Examples R1-R4 were likely formed by head-to-tail (R1 and R2) and head-to-head (R3 and R4) fusions between adjacent
transgene copies and stabilisation by sequence loss (dashed lines). Panel E shows example R5 that is composed of 546 bp of lacZ (nucleotides 3371-3916 accession
J01636) fused to 113 bp of the bacteriophage lambda A gene (nucleotides 2328-2441 accession J02459) fused to a partial COS, sequence (nucleotides 15-138
accession J02459) and appears to have originated from a fusion and extensive deletion of as many as three transgene copies. Putative crossover sites, shown as
bolded sequences in R1-R3, involve similar sequences (e.g. the R1 dimer fusion occurs between sequence GGGGG (nucleotides 15094—15098) and sequence
CGGG (nucleotides 15-18), and the latter sequence is also involved in R3 and R5 fusions). (F) A phospho-image of a Southern blot hybridisation derived from
agarose gel fractionated EcoRV digested genomic DNA of four animals probed with a 563 bp amplicon spanning the COS; -Nul region. DNA ladder fragment sizes
are shown on the left of the panel and estimated EcoRV fragment sizes are shown on the right side. In a head-to-tail arrangement of transgenes, the predicted EcoRV
fragment would be sized 3.5 kb. The EcoRV fragment sizes that appear to correspond to particular rearranged transgene copies are shown in brackets.

legend. Derivation of the 47 513 bp monomer involved  pMCI1511 fragment insertion and our novel sequence findings
extensive validation of nucleotide sequences of bacteriophage (refer to accession numbers in Table II, Figure 1), which
A, the immunity region of phage 434 (imm 434) and the lacZ-  include Agt10 and ANMS518 (left arm) and ANM607 (right arm)
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labelled Agt10 ori 501 bp probe (upper band) and then to a 32p_labelled 812 bp
mouse 18S probe (lower band).
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Fig. 4. Summary of RT-PCR analysis of in vivo transgene copy number.
Standard curves were based on quantifications of the ori amplicons, using
replicated sets of template composed of CD2F; non-transgenic mouse DNA
mixed with Agt10-lacZ (see Figure 3 Materials and methods) to generate
haploid standards of 1, 2.5, 5, 10, 20, 40 and 50 copies. Cycle thresholds (Cy)
and efficiency parameters were obtained by iCycler software and show a linear
correlation with log copy number values (R> = 0.9924). Shown are average C,
values for: ori standards (open circles), single-copy annexin V exon 4 (closed
triangle, A); RS rearrangement (closed circle, RS); interpolated copies of
Muta™mouse ori (closed diamond, MM) and 18S (closed box, 18S).

components (23). Data for these arms clarify ancestral
mutations listed for Agtl0 genotype (A srl A1° bS527 srl A3°
imm *** (srl434+) srl A4° srl A5°), the junctions of the lacZ-
pMC1511 fragment insertion and imm434.

Muta™Mouse Agt10-lacZ transgene

As a form of validation, key segments of the transgene
were amplified, sequenced and compared with corresponding
segments from commercial stocks of Agt10 and ACI857 using
primer sets mostly listed in Table I. Sequences obtained from
separate amplifications of the left arm of Agtl0-lacZ and
Agtl0 (see accession number AY927771) revealed an
unreported substitution of open reading frames (ORFs) 401,
314 and 194, with a putative lambdoid Rac prophage tail fibre
assembly gene (NCBI GenelD: 946062). The significance of
these results is considered in the next section. Further details
about the left arm were revealed by analysis of the 5527
deletion region. The novel sequence indicates a deletion of
3.6 kb, including ORFs that are not essential for phage
viability [e.g. Ea47 (lambdap24), Ea31 (lambdap23), Ea59
and the non-coding att site].

The status of ancestral mutations at the abolished EcoRI sites
in A (accession number J02459, nucleotide positions 21227,
26105, 31748, 39169 and 44973) within ORF314, Ea59, exo,
O and S was also clarified by sequencing amplified Agt10-lacZ
segments derived from phage plaques (i.e. rescued in vivo
copies of the transgene), the commercial Agt10 vector as well
as direct amplification of genomic copies from DNA of two
transgenic mice. These data also established that the 6.7 kb
imm 434 sequence contains regulatory regions N, ¢/ and
cro and pMC1511-lacZ sequences, as well as other function-
ally important regions (e.g. nul, A, F1, ORF64, S and K). The
Agtl0 sequences and counterparts of Agtl0-lacZ are 98%
similar.

Ancestry of the Muta™Mouse transgene

The sequence analysis described in the previous section and
Figure 1 provides a new level of detail about this transgene’s
ancestry and potential use in Muta™Mouse exposure assays.
The finding of substitutions in ORFs 401, 314 and 194, and
comparison of them with genes encoding tail fibre proteins of
other E.coli lambdoid phage genomes (data not shown),
indicate a mosaic pattern consistent with module (gene
segment) exchanges between similar genes or clusters of
similar genes, which likely originated as a result of illegitimate
recombination (24-26). However, these recombination events
occurred prior to the Agt10-lacZ construction because the same
substitutions were found in the progenitor Agt10 and ACI857.
These substitutions would likely have no obvious negative
effects on functions relating to the E.coli-based Muta™mouse
mutation assay, which includes rescue of monomer copies by
in vitro packaging, and infection, replication and virion
production necessary for plaque expression.

Potential functional transgene sequence motifs

Databases for murine and E.coli genomes were examined for
nucleotide sequence similarities with the full-length transgene
model. No similarities with known murine genes were found,
but there are numerous CpG islands as well as several putative
transcription factor-binding sites distributed along the trans-
gene. At least three or more types of these elements are
concentrated within gene A (nucleotide position ~1300 % 200
bp) and the 3" end of J and 5’ end of lom (nucleotide position
17800 + 200 bp). Earlier observations reported that the
transgene is heavily methylated (C™) and that the lacZ of this
transgene was transcriptionally inactive in Muta™Mouse
(1,12). We made similar observations (Shwed, P. unpublished
results) and also found two segments that strongly resemble
matrix-associated regions (15), in terms of their size and

613



P. S. Shwed et al.

consensus of core sequence. These sequences (see Figure 1,
MAR-1 and MAR-2) could potentially serve a role in higher-
order chromatin folding, replication and recombination of the
transgene and its repeats within the mouse chromosome.
Further, the location of MAR-2 is in the vicinity of where
rearrangements were found. Given the large size and repetition
of the transgene within the mouse genome, the transgene may
serve as a model to study agents that cause chromosome
disruption and double minutes.

A scan of the transgene revealed that it contains a 5'-
GCTGGTGG-3" motif, called a crossover hot spot instigator
(Chi, or y, reviewed in ref. 27), labelled x* at lacZ position
3508 E.coli lacZ (accession JO1636) on the antisense strand of
the lacZ gene (see Figure 1). This motif would reduce plaque
output, but it is antisense with respect to the transgene COS
sites and therefore may not be functional (reviewed in ref. 27).
The lacZ gene also features three imperfect Chi-motifs, labelled
%°, including one in the sense strand, having the potential to be
active by one mutation. In addition, the model 47 513 bp
transgene monomer has 71 other ¥° motifs (51 in the forward
strand), but not all have been validated. If true, they would
further reduce plaque output and plaque-forming unit esti-
mates.

The detailed knowledge of the existing lacZ/E.coli assay
presented herein could lead to the development of new assay
designs that may result in new insights into the mechanism of
mutation induction during E.coli packaging and in the
Muta™Mouse genome. Further insights may be gained through
detailed studies of the unpublished Muta™Mouse lacZ (E.coli
host) mutation database.

Evidence for Muta™mouse transgene rearrangements

Our breeding colony is derived from strain 40.6.13, the pre-
commercial progenitor of Muta™Mouse. Molecular character-
isation of strain 40.6.13 is not well documented. A Southern
blot hybridisation analysis of the founder and F1 progeny
indicated an integration of ~35 copies, possibly at one locus
and likely all in head-to-tail configuration (1). The same
analysis reported that most copies were likely intact and
heavily methylated. An in situ DNA hybridisation analysis of
animals from our colony revealed a cluster of transgene copies
within the B region of Chromosome 3 (28). However, this
method cannot reveal the number or integrity of transgene
copies involved.

As an alternate approach towards characterisation of the
putative transgene cluster(s), we scanned for presence of
aberrant copies using DNA from various tissues of both sexes.
In one approach, PCR was used with primers designed to
amplify within, and across, sites that would serve as transgene
copy junctions, such as COS and MAR (see Figure 1). This
analysis revealed minor heterogeneity in the expected size of
some PCR targets. In subsequent approaches, the products
generated from methods using inverse PCR, genome walking
and arbitrary PCR primers were cloned and sequenced using
primers described in Table I. From this extensive effort, five
types of transgene aberrations were repeatedly detected and
sequenced. As summarised in Figure 2A—E and Table II, R1-
R4 examples are fusions of at least two copies of the transgene,
but RS is likely a fusion product of as many as three copies.
The orientation of transgene copies within R1 and R2 is the
same as the bulk of the non-rearranged head-to-tail copies, but
R3-R5 are oriented head to head. However, the joining of R3
and R4, through their COS sites (either end) could allow them
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to be included within a tandem array involving head-to-tail
joined R1, R2 or any non-rearranged copy.

The R1-R5 rearrangements were validated in Muta™Mouse
DNA by sequencing and use of diagnostic PCR primers and
probes relating to the fusion junctions and strand orientation
maps (Figure 2A-E). Positive identification of these recombi-
nations in vivo was made for each case by using at least three
males and two females and between 6 and 10 DNA samples
from three tissues. The example analysis in Figure 2F was
derived by using a 614 bp PCR hybridisation probe, which
detects both the non-rearranged transgene copies and also R1-
R4, due to their size and loss of flanking EcoRV restriction
sites near the MAR-2/COS site. The five rearrangements are
present in the commercial Muta™mouse colony available from
Covance, which indicates that the rearrangements arose early in
the lineage, since the Health Canada colony was obtained in
1990.

The transgene copy fusions identified in this study are
consistent with complex rearrangements of gene concatemers
observed in other transgenic mice (29-32). The fusions could
have arisen independently of each other, by either non-
homologous end-joining or recombination, as suggested for
modifications observed in other types of transgenes after their
integration (33,34), or in the case of R2, by sequence
degradation due to nuclease ‘nibbling’ (30,35,36). The five
types of transgene fusions suggest that a substantial fraction of
the transgene array is involved in the rearrangements (at least
10) and these would be defective and not rescued by in vitro
packaging, because of size (either <37 kb or >52 kb) and/or
loss of key functions (37). No mouse genomic DNA insertion
site sequences were recovered as part of this characterisation
effort and may reflect a common limitation of these methods to
recover very complex or very small transgene-genomic
sequence rearrangements. Alternatively, there may be multi-
sequence integrity breaks forming one or more transgene loci
and chromosomal DNA junctions.

Further studies using DNA from other Muta™Mouse
colonies would clarify to what extent these rearrangements
are shared and likelihood that they arose during the progenitor
construction. Some of these rearrangements can potentially
serve as markers within the transgene cluster. As discussed
below, RS is the most reliable one that can be detected by PCR.
The integrity scanning methods, along with other strategies
[e.g. mapping mutations by restriction site alteration, (11)]
could be potentially used to characterise various classes of
mutagens such as clastogens and aneugens for effects on
transgene copy stability in somatic and germ line cells.

Copy number determinations

The initial report on construction of Agtl0-lacZ transgenic
founders indicated a copy number range of 3—-80 depending on
mouse strain, using dot-blot hybridisation methodology, liver
samples and a standard composed of A DNA mixed with tail
DNA from an unspecified non-transgenic mouse (1). Strain
40.6 was reported to have 35 copies per haploid genome, while
other strains were determined to have different values.
However, the Southern blot data suggests that copy number
is about the same for all strains. More recently, the copy
number for Muta™Mouse has been described as 40 per haploid
genome, without reference to how this copy version was
derived (38,39). This amount slightly exceeds the averaged
estimates by slot blot hybridisation for a cell line (FE1) derived
from one of our animals (7). The relatively low transgene copy



of FE1 may reflect different measurement methods or that there
is actually a copy loss within the FE1. This cell line has been
shown to be a mix of karyotypes, having a modal chromosome
number of 78, and three transgene loci per cell in 80% of the
cells scored (7).

Given the evidence for several defective Agt10-lacZ copies
(Figure 2), we determined the haploid copy for animals in our
breeding colony using variations in the Southern blot
hybridisation method and also RT-PCR. The Southern
hybridisation method has been used to monitor founder
animals for multiple integration sites and rearrangement by
microinjection core facilities (1,10,40). However, based on
a large number of experiments, we found that like dot-blot
methods, Southern blot methods were not reliable as
a quantitative tool when comparing extreme differences in
copy number of genes. These analyses included the use of
several restriction enzymes to predictably fragment genomic
DNA in order to reduce viscosity when titering, fractionating
and blotting DNA samples. The example study shown in
Figure 3 used BamHI1 digested Agtl0-lacZ CD2F; DNA
mixtures and DNA of Muta™Mouse tissues probed with both
A ori and 18S ribosomal gene sequences. The relative copy of
18S fragment in both murine genomes was comparable and
the ori-associated BamH1 fragments of male and female
Muta™Mouse tissues gave copy numbers of 20-30 per
haploid genome. However, the analytic conditions for high-
copy targets do not reliably detect the single-copy gene. If
fused versions of the transgene are in single copy, then based
on relative intensities of their hybridisation signals and that of
the 3.4 kb non-recombinant hybridised fragment (Figure 2),
the number of non-recombinant copies would be ~25 and the
total transgene copies ~35.

RT-PCR has rapid diagnostic potential and has been used to
estimate low-copy transgene insertions in plants (41-43) and
more recently, to determine status of transgene zygosity of
animals (44-46). To date, few contemporary high-copy
eukaryotic transgene copy determinations by RT-PCR have
been reported.

To qualify an RT-PCR assay for high-copy estimates, both
primer sensitivity and efficiency (as measured by amplicon
quantity) were evaluated with specific primer sets described in
Table I, using the same reference standards as for the
hybridisations, and also annexin V (Exon IV, 675 bp),
a single-copy gene that is also located on chromosome 3. As
summarised in Figure 4, a reliable standard curve (R*> =
0.9924) was generated with the standards and ori primers that
allowed the back-calculation of the copy number for the single-
copy annexin gene and copy number of ori amplicons in
Muta™Mouse spleen DNA. Additional, RT-PCR comparisons
using Muta™Mouse spleen DNA and commercially prepared
BigBlue® spleen DNA as templates yielded average copy
numbers of 29 + 4 (n = 3) and 23.5 £ 3.1 (n = 5),
respectively. The difference in copy number of the two types of
transgenic mice is significant as determined by statistical
analysis (Student’s #-test).

The copy number value for BigBlue® spleen DNA is
nearly half of the 40 copies previously claimed for BigBlue®
mouse (4). However, Barnett et al. (47), who bred Big Blue®
mice with non-transgenic mice, suggested that based on
mutation frequency of hemizygous offspring with a single
marker lacl mutation (41.5 x 107%), the number of viable
shuttle vectors per cell may be as low as 25 (the calculated
value was 24.096).

Muta™Mouse Agt10-lacZ transgene

Conclusions

Muta™Mouse has been extensively used over the past 20 years
for in vivo mutagenicity assessment [see review by Lambert
et al., 2005 (38)], despite the fact that neither the nucleotide
sequence nor the integrity of the transgene array, in terms of its
tandem multiple copies, were fully characterised. The present
study provides a useful molecular-level map of the transgene
monomer. This characterisation clarifies previously unknown
monomer components, including the nature of ancestral
mutations within the Agt10 moiety. Using the monomer model
as a baseline and chromosome scanning and cloning methods,
at least 10 defective, rearranged copies were found. Of these
copies, eight occur as head-to-tail or head to head dimer
fusions. One recombinant, RS, probably involves more than
two extensively deleted copies and is easily detected by PCR
compared to the other rearrangements. Transgene copy
determinations by Southern hybridisation and by RT-PCR,
indicate that only about two-third of the estimated haploid
genome copies can be retrieved and used in E.coli mutation
assays. The use of these data and detection methods, as well as
the primer list for analysis of external versus endogenous copy
standards should enable independent inter-colony comparisons
in efforts to establish whether these defects are unique to our
colony or the precursor 40.6 strain construction. The R5 could
serve as a heterologous single-copy reference marker for future
Muta™Mouse studies.

Results of this study further the usefulness of Muta™Mouse
to study effects of mutagens at the copy as well as
chromosomal structure levels. Further contributions of the
study include RT-PCR based methods for detection of
transgene gene rearrangements and variable copy number
determinations in inter-laboratory comparisons using a stand-
ardised reconstructed NCBI mouse genome build, single and
multiple copy endogenous genes, and a commercially available
reference standard, BigBlue® mouse spleen DNA. The
Muta™Mouse transgene construct appears to have potentially
utility for assays that detect the effects of clastogens and
aneugens, without depending on an E.coli host, for reporting
effects.
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