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Abstract
Maximum-likelihood (ML) estimation has very desirable properties for reconstructing 3D volumes
from noisy cryo-EM images of single macromolecular particles. Current implementations of ML
estimation make use of the Expectation-Maximization (EM) algorithm or its variants. However, the
EM algorithm is notoriously computation-intensive, as it involves integrals over all orientations and
positions for each particle image. We present a strategy to speed up the EM algorithm using domain
reduction. Domain reduction uses a coarse grid to evaluate regions in the integration domain that
contribute most to the integral. The integral is evaluated with a fine grid in these regions. In the
simulations reported in this paper, domain reduction gives speedups which exceed a factor of 10 in
early iterations and which exceed a factor of 60 in terminal iterations.
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1 Introduction
Single-particle reconstruction is the process by which noisy two-dimensional images of
individual, randomly-oriented macromolecular “particles” are used to determine one or more
three-dimensional electron-scattering-density “maps” of the underlying macromolecules. All
of the algorithms that perform such reconstructions are iterative. Each iteration begins with a
guess of the particle structure, then aligns the cryo-EM images with the structure, and averages
the aligned images to update the structure. The alignment step is especially critical in
overcoming noise and improving resolution.

For the alignment step, traditional algorithms choose the best alignment to the current guess
of the structure. This “best alignment” strategy is simple to implement, but can be troublesome
when used with noisy images because noisy images can match at wrong alignments. The
problem is that the “best alignment” strategy ignores alignments that are almost as good as –
but are not – the best alignment.

© 2010 Elsevier Inc. All rights reserved.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Struct Biol. Author manuscript; available in PMC 2011 September 1.

Published in final edited form as:
J Struct Biol. 2010 September ; 171(3): 256–265. doi:10.1016/j.jsb.2010.06.004.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



One class of reconstruction algorithms which does not have this limitation is based on the
maximum-likelihood (ML) principle. These algorithms do not use the best alignment for
structure update, but instead use the Expectation-Maximization (EM) algorithm or variants
thereof, which form a weighted average over all alignments for the structure update. The
weighted averaging allows the non-best-match alignments to contribute. In cryo-EM, the ML
principle was proposed for 2D image restoration [13] and subsequently generalized to the
estimation of multiple image classes [11] and for the optimization of unit-cell alignment in
images of crystals [17]. The ML principle has also been extended to the problem of 3D
reconstruction from 2D cryo-EM images by [15,16,11,5,12,10].

Even though it has appealing properties, the EM algorithm has a limitation: it is
computationally slow. Calculating the expectation over all alignments (i.e. averaging over all
alignments) is expensive and the EM algorithm can easily take CPU-months to converge. In
this paper, we report two strategies for speeding up the EM algorithm for cryo-EM. The first
strategy is based on the work of Sander et al. [8] and speeds up the EM algorithm by computing
the expectation only over those alignments that contribute significantly to the weighted
average. This is the “adaptive” part of our algorithm. Our experiments show that it significantly
speeds up the EM algorithm without losing accuracy. The second strategy is the use of graphics
processing units (GPUs) to accelerate the most computation-intensive parts of the calculations.

To put previous attempts to speed up the EM algorithm in context, we first explain the basic
EM iteration. The EM iteration has two steps, in the the first step the latent data probability is
calculated and in the second step this probability is used for calculating the weighted averages.
Both calculations involve integration over all possible alignments and contribute equally to the
computational complexity.

Previous attempts to speed up the EM algorithm can be classified into two groups. The first
group of algorithms uses spherical harmonics as basis functions for the structure [15,16,5].
These algorithms have the computational advantage that integrations with respect to rotations
can be calculated in closed form. However, integration with respect to translations still need
to calculated numerically. The second group contains the algorithm of Scheres et. al. [11] and
is similar in its approach to our algorithm. This algorithm decreases computational cost by
calculating the EM integrals over a smaller integration domain. Scheres et al.’s strategy is quite
complex: The first EM iteration is carried out in its entirety over alignments. For all subsequent
iterations, every image is compared with every class mean using the most significant
translations from the previous iteration for this pair. Using these translations, the latent
probability that the image comes from that class is calculated for every rotation. All rotations
for which the calculated probability exceeds a fraction of the maximum value of all calculated
probabilities are retained. The EM integration is carried out over alignments formed by the
surviving rotations and all translations.

One problem with this strategy is that it is not entirely clear whether thresholding the probability
to reduce the domain gives good approximations to the integral. If the domain of integration
is to be reduced, then the reduction strategy ought to be based on how changing the domain
affects the integral rather than on thresholding a function. Our algorithm includes such a
strategy, and is inspired by adaptive integration techniques in numerical analysis [1]. We first
use a coarse grid to estimate the contribution to the integral at every alignment. Then, we retain
the smallest set of alignments over which the integral contributes a fraction (e.g. 0.999) of the
net integral.

2 The ML formulation
Suppose that μ is a projection of a structure along a specific direction. An observed cryo-EM
image I is μ with additive noise and a random in-plane rotation and shift. Letting Tτ represent
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the in-plane image rotation and translation operator, where τ = (θ, tx, ty) is the rotation and
translation, the observed image is I = Tτ (μ + n), or, T−τ (I) = μ + n, where, n is additive white
Gaussian noise. Thus the probability density function (pdf) of observing an image I is

(1)

where, p(τ) is the density of τ, Ω is the support of p(τ ), and

(2)

where, ∥ ∥ is the usual Euclidean norm, P is the number of pixels in the image, and σ2 is the
noise variance of each pixel. The support Ω = [0, 2π) × [−tmax, tmax] × [−tmax, tmax] for some
maximum translation tmax.

A small aside to emphasize an important point – typically in equation (2) the value of ∥T−τ
(I)–μ∥2 is several orders of magnitude larger than the value of σ2 (the former is the pixel-wise
squared difference summed over the entire image while the latter is the noise variance of a
single pixel). Because small changes in ∥T−τ (I) – μ∥2 are vastly amplified by the exponentiation,
small changes in ∥T−τ (I) – μ∥2 can cause large changes in the value of pg.

Cryo-EM obtains images from unknown random projection directions. It is common to model
this phenomenon as follows: Let μj, j = 1, … ,M be the projection of the particle along the jth
direction. Then, assuming that images are random draws from one of the projections, the pdf
of an image I is

(3)

where, the coefficients αj are non-negative and sum to 1, and the densities p(I ∣ μj, σ) are given
by equation (1) with μ = μj. This probability density model is popularly called a mixture
model. The densities p(I ∣ μj, σ) are called class densities and the coefficients αj are called
mixture coefficients. The means μj are called class means.

Suppose that N images Ik, k = 1, … ,N are obtained in this way. Then, the joint density of the
images is

(4)

A maximum-likelihood estimate of μ1, … , μM, σ, α1, … , αM is given by

(5)
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2.1 The EM algorithm
The EM algorithm iteratively converges to the maximum-likelihood estimate of equation (5).
The EM algorithm and its application to cryo-EM is not new. But we present some its details
in order to motivate the adaptive-EM algorithm. The EM algorithm works by introducing
additional random variables, called latent variables. For the maximum-likelihood problem of
equation (5) the EM algorithm introduces two latent variables per image. Together they denote
the component of and the transformation for the kth image. For the kth image the latent random
variables are denoted yk and τk. The variable yk is a discrete valued random variable taking
values yk ∈ {1, … ,M} . The event yk = j indicates that the kth image comes from the jth
component. The random variable τk = ( θk, tx,k, ty,k) takes values τk ∈ Ω.

Because yk takes values in yk ∈ {1, … ,M} and τk in Ω, the joint random variable (yk, τk) takes
values in {1, … ,M} × Ω. In figure 1a, we show {1, … ,M} × Ω as a column of M × Ω domains.
There are N such columns corresponding to N images. Below we will need to refer to the M ×
N copies of the domain Ω in figure 1a individually and collectively. We will refer to the domain
in the jth row and kth column as Ωjk. We will collectively refer to all domains as ʊ, i.e. ʊ =
∪j,kΩjk.

The EM iterations proceed as given below. The superscripts [n – 1] and [n] refer to the values
of the variables in the n – 1st and nth iteration:

The EM Algorithm—

1. Initialize: Set n = 0 and initialize ,  σ[0] for j = 1, … ,M.

2. Start Iteration: Set n = n + 1.

3. Calculate Latent Probabilities: For all points in Ωjk calculate

(6)

and

(7)

The variable i in the both denominators of the above formulae is a summation variable.
In equation (6) the variable i sums over rows, and in equation (7) the variable i sums
over columns.

4. Update Parameters: The parameter  is updated using the probability density p
of equation (6)

(8)
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The parameters , σ[n] are updated using the density  of equation (7):

(9)

and

(10)

Note that the updates of μ and σ are weighted averages of T−τk (Ik and

 with  as the weight.

5. Loop: Stop if , , σ[n] have converged. Else go to step 2.

A useful visualization of the EM iterations is presented in figure 1a:

1.
Begin by calculating  in Ωjk.

2. From this calculate  in every Ωjk. Normalize this
function column wise in ʊ so that the net integral of the function in each column is 1.
This is illustrated in figure 1a and referred to as column normalization. The normalized
function is the latent data probability of equation (6). The denominator in equation
(6) achieves the normalization.

3. Next, normalize the function obtained in the above step so that its net integral in each
row of ʊ is 1. This is also illustrated in figure 1a and called row normalization. The
normalization is achieved by the denominator in equation (7). The result of row
normalization is the function .

4. Update μj and σ2 according to equations (9-10) using weighted averages with  as the
weight.

3 Adaptive-EM
3.1 Speeding up the EM algorithm

The EM iteration described above is computationally expensive. Equations (6-10) require
integration over the domains Ωjk. These integrals are not available in closed form and have to
be evaluated numerically. To do this, we introduce a grid in every Ωjk (see fig. 1b) and
approximate the integrals with a Riemann sum of the integrand over the vertices of the grid.
The grid consists of cubes of size Δθ × Δtx × Δty. The center of each cube is a vertex of the
grid. We use v to refer to a vertex, and C(v) to refer to its cube.

The computationally expensive part of the algorithm is the calculation of the

 term at each vertex of the grid. We employ two strategies to speed up the
EM iteration. Both strategies require various formulae in equations (6-10) to be approximated.
The first strategy is called domain reduction and it replaces the integration over Ωjk with
integration over smaller subsets. The second strategy is called grid interpolation and uses two
grids – a coarse grid for estimating the reduced domain, and a fine grid in the reduced domain
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for calculating the formulae. Analogous strategies have been used by Sander et al. [8] for
angular search in a conventional reconstruction algorithm. The difference is that our strategy
is for approximating an integral whereas Sander et. al.’s strategy is for approximating a
maximum-seeking search.

Both strategies are based on observations which are illustrated in figure 2. The (a) part of the
figure shows an image which was obtained by projecting a ribosome structure in two different
directions, summing the projections, adding noise, and blurring. This image is similar to an

estimated class mean  in the early iterations. The (b) part shows a single projection with
white noise added to it. This image is similar to the observed images. The (c) part shows

 as a function of rotation (translations are held fixed for simplicity) with the

image in part (a) as  and the image in part (b) as Ik. The (d) part shows how , which is

calculated from , behaves with rotation. The function  has strong spikes.

Figure 2 illustrates several effects:

1. The function  has more than one peak. A peak-seeking alignment method would
align Ik at the strongest of these peaks. But it is not clear that just using the strongest
peak is the best alignment decision, especially since it is the best alignment to an

unconverged mean .

On the other hand, recall from equations (9-10) that the EM algorithm works by using
all values of . Thus, all peaks contribute in the EM algorithm, and it avoids the
premature decision of using a single peak. This shows why the EM algorithm is
preferable to a peak-seeking alignment algorithm.

2. In spite of multiple peaks, figure 2d suggests that  is essentially zero over a significant
part of Ωjk. If the numerical integration can be restricted to only that part of the domain
where  contributes significantly, then considerable computational gain can be made
without losing too much accuracy. This is the motivation behind domain reduction.

3.
Note that  is a much smoother function than , which is a spiky
function. This suggests a way to estimate the reduced domains: introduce a coarse

grid in the domains Ωkj, calculate  at the vertices of the coarse grid,
interpolate using the vertex values and use interpolated function to estimate  and the
reduced domains. This is grid interpolation.

The solid line in figure 2 c shows  evaluated on a fine grid (spacing

1 degree). The dashed line in figure 2 c shows  evaluated on a
coarse grid (spacing 12 degrees) and interpolated by a B-spline. The resulting ’s are
shown in figure 2 d. Note that the  calculated from the B-spline gives an
approximation of  and the figure suggests that the reduced domain can be calculated
from this approximation.

The procedure that obtains the reduced domain is described below in detail. The result
of using that procedure gives the reduced domain shown in figure 2 d (the parameter
ζ is explained below).

We now describe both strategies in detail:
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3.2 Domain Reduction
The idea in domain reduction is to replace integration over Ωjk with integration over a smaller
subset . The s are estimated to contain a significant fraction ζ of the probability mass of

. The fraction of the probability mass is equal to a parameter ζ is user-chosen but constrained
to be 0 < ζ < 1. Because we want to retain the averaging properties of the EM-algorithm, we
set the value of ζ close to 1, e.g. ζ = 0.999. Even though the ζ is very close to 1, the domain is
reduced considerably because  is spiky.

To describe more precisely how  are found, recall that  is obtained by column and row
normalization as shown in figure 1. Thus the integral of  sums to 1 in each row of ʊ. Let Ωj

= ∪kΩjk be the union of all Ωjk in a row, then row normalization implies that . Let
O ⊂ Ωj be any subset of Ωj, then

measures the probability “mass” of  in O. Let O* be the subset of Ωj with the smallest volume
that has a probability mass of ζ:

(11)

Then, the reduced domain is .

The reduced domain O* is easy to find: Let Τ be a threshold and  be the subset of Ωj in which

the values of  are greater than or equal to Τ. Then  is a monotonically decreasing

function of Τ and its range of values is [0, 1]. Thus there is a unique Τ for which .
It is straight forward to show that for this Τ the set  equals the set O* of equation (11).

The algorithm for domain reduction is a binary-search algorithm for the appropriate Τ is :

The Domain Reduction Algorithm—

1. Initialize: Set the upper and lower limit of Τ to 0 and 1 respectively.

2. Binary search: Carry out a binary search in within [0, 1] for the Τ that solves:

3. Calculate the domains: Return the reduced domains .

3.3 Grid Interpolation
Grid interpolation uses two grids, a coarse grid Gc and a fine grid Gf . The two grids are chosen
such that any cube of the coarse grid contains an integer number of the cubes of the fine grid.
The two grids are used to estimate the reduced domain as follows:

Domain Reduction with Grid Interpolation—
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1.
Coarse Calculation: Calculate  at the vertices of the coarse grid
Gc.

2. Interpolate: Use a tensor product B-spline to interpolate the above values on to the
fine grid Gf . B-spline interpolation is much faster than calculating

 at every node.

3.
Estimate : Use the interpolated values of  to calculate  using
equations (6-7). Integrals are evaluated by Riemann sums over all vertices of the grid
Gf .

4. Estimate reduced domain: For each row of ʊ, use binary search to find a threshold
Τ such that the Riemann sum (integral) over all vertices of Gf for which  is ζ. In
the kth row, let V = {v} denote all vertices in Gf for which . Set 
where C(v) is the cube associated with vertex v, and the reduced domain to

.

3.4 Adaptive-EM
The adaptive-EM algorithm uses domain reduction with grid interpolation as an intermediate
step in the calculations.

The Adaptive-EM Algorithm—

1. Initialize: Set n = 0 and initialize , , σ[0] for j = 1, … ,M.

2. Start Iteration: Set n = n + 1.

3. Domain Reduction: For each row of ʊ use the domain reduction with grid
interpolation to get the reduced domains .

4. Calculate Latent Probabilities: For every vertex of the fine grid Gf , (re-)calculate
the latent probabilities using equations (6-7). All integrals in these equations are
calculated by a Riemann sum only over those vertices of the fine grid that lie in the
reduced domains .

5. Update Parameters: Update parameters , , σ[n] according to equations (8-10).
Again all integrals in these equations are approximated by a Riemann sum over the
vertices of the fine grid that lie in the reduced domains .

6. Loop: Stop if , , σ[n] have converged. Else go to step 2.

Thus, the adaptive-EM algorithm is just the EM algorithm with the integrals replaced by
Riemann sums over the vertices of the fine grid in the reduced domain.

4 Computational Complexity
The execution times of the EM and the adaptive-EM algorithm depend on factors that are
implementation and machine dependent. For example, in a MATLAB implementation of the
algorithm the computationally most expensive step is the calculation of the transformed image
Tτk (Ik) at every vertex of the grid. On the other hand, in a CUDA implementation using graphics
processors (GPUs, described in section 5), the image transformation is very fast and the

computational speed is limited additionally by the norm calculation .
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Furthermore, the actual execution time depends on the number of parallel GPU units available.
All of these factors are implementation dependent.

However, the number of image transformations and the number of norm calculations are
directly proportional to the number of vertices at which various integrands are evaluated. The
number vertices processed per iteration depends only on the grid size and (for the adaptive-
EM algorithm) the reduced domain. It is a relatively implementation independent performance
measure. We use the ratio of the number of vertices processed per iteration for the EM algorithm
to the number of vertices processed per iteration for the adaptive-EM algorithm as a measure
of the speed up of the adaptive-EM algorithm.

Suppose that coarse and the fine grid have Nc and Nf vertices respectively in each domain
Ωkj and that the standard EM algorithm uses the fine grid while the adaptive EM algorithm
uses the coarse and the fine grid.

The standard EM algorithm uses all vertices of the fine grid twice - once during the calculation
in equation (6) and once during the parameter update in equations (9) and (10). Thus the total
number of vertices per iteration is 2NMNf , where N is the number of images and M is the
number of class means.

The adaptive-EM algorithm uses vertices thrice - vertices of the coarse grid are used once in
the domain reduction algorithm, and vertices of the fine grid in the reduced domain are used
once in calculating latent probability and again in parameter update. Assuming that ρ percent
of the vertices of the fine grid survive the domain reduction step, the net number of image
transformations for calculating the latent probability plus the parameter update is 2NMρNf .
Thus, the net number of transformations is NMNc + 2NMρNf and the speedup factor s of the
adaptive-EM algorithm is

(12)

5 GPGPU programming
Modern off-the-shelf graphics cards for desktop computers have graphics processors with
multiple processing units. These processors are capable of massive parallelism and are
increasingly used for general purpose computing. We implemented the EM and adaptive-EM
algorithms for parallel execution on NVIDIA graphics cards. We now briefly explain the
programming environment and hardware model, and then describe our implementation of the
algorithms.

The NVIDIA graphics architecture consists of an array of multiprocessors, each multiprocessor
containing eight scalar processors, special function units, a multithread instruction unit, and
local shared memory. The NVIDIA graphics processors are programmed by an extension of
the C programming language called CUDA[7]. CUDA provides extended C functions
(subroutines) called kernels. Multiple copies of a single kernel can be executed in parallel on
graphics processors.

A part of the graphics memory can be configured as texture memory. When a two dimensional
matrix, such as an image, is stored in texture memory, hardware support (fast interpolation) is
available for addressing the matrix with real valued indices, i.e., if I is a N × N matrix stored
in texture memory, then I can be indexed by a pair of real valued indices (x, y) ∈ [0, 1]×[0, 1].
The value at (x, y) is taken to be the interpolated value of I(x * (N − 1) + 1, y * (N − 1) + 1).
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The interpolation is linear and uses integer neighbors of this location. For the EM and adaptive-
EM algorithms, the interpolation allows fast calculation of Tτ (I). Given, the transformation
parameter τ = (θ, tx, ty), the transformed image T−τ (I) is obtained by calculating T−τ (I)(x, y)
= I(x’, y’) where

and x, y is sampled on an N ×N grid in [0, 1]×[0, 1]. Furthermore, in the CUDA model, texture
memory is persistent so that an image need be loaded only once into texture memory before
the transformation is calculated for different values of τ .

A CUDA program runs on the host CPU as well as the graphics processors. Typically, only a
small part of any algorithm is computationally expensive, and that part is parallelized as a
kernel and executed on the graphics processors. The rest of the algorithm is executed on the
host CPU serially. For further details of hardware, thread and block scheduling, and texture
memory the reader is referred to the CUDA programming manual [4,7].

5.1 CUDA implementation of the EM and adaptive-EM algorithm
There are two computationally expensive parts of the EM and adaptive-EM algorithm: the
calculation of latent probabilities of equations (6-7) and the Riemann sums for the parameter
updates needed for equations (9-10). Our CUDA implementation uses three kernels for these
two tasks.

All of our kernels iterate over a set of transformations {τ}. The elements of this set depend on
whether the kernel is used for the EM algorithm or the adaptive-EM algorithm. All kernels are
run by first loading the set of transformations {τ}. The kernels are as follows:

Kernel 1 (Transformation Kernel): This kernel calculates T−τk (Ik). Before the kernel
is executed the set of transformations {τ} is loaded into the graphics memory. Then, texture
memory is allocated and Ik is loaded into it. The kernel rotates and translates Ik according
to values of τk ∈ {τ} stored in the memory.

Even faster methods for computing the integrals can be envisioned, based on the polar
FFT approach of Penczek [14].

Kernel 2 (Norm Kernel): Given T−τk (Ik) and  this kernel calculates

.

Kernel 3 (Parameter Calculation Kernel): For every j = 1, … ,M the sum over k in
equation (9) and the inner sum over k and the Riemann integral in the summand in equation
(10) is carried out in parallel by this kernel.

6 Simulations
The EM and adaptive-EM algorithms were evaluated using simulations. The 3D ribosome
structure of figure 3a was used in the simulations. The structure has a resolution of 2.82Å per
side of a voxel. The structure was projected along the x-, y-, and z-axis to obtain the images
shown in figures 3 b,c,d. All projections were 128 pixels × 128 pixels. The electron-microscope
contrast transfer function (CTF) [3] of the form:
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was applied to the projections with a = 0.07 and α set to a value such that the first zero of the
CTF occurred at 1.6nm.

Each projection was randomly rotated between 0 and 360 degrees, randomly translated by ±2
pixels in the x- and y-directions, and contaminated with additive white noise to create one
image. A total of 900 such images were created from the three projections (300 images per
projection). Preliminary experimentation showed that, for 900 images, the EM algorithm failed
at a signal-to-noise ratio (SNR) of −22db. We chose SNRs of −15db and −21db for simulations.
These SNRs represent images at low and high noise respectively.

The CUDA implementation of the EM and adaptive-EM algorithms was used in the
simulations. All simulations were carried out on a single desktop computer. All algorithms
were initialized with class means set to random zero-mean noise.

Performance measures
Because the adaptive algorithm uses a reduced domain, its estimates of the class means are
different than those of the EM algorithm. The adaptive strategy is useful if this difference is
small. To evaluate the difference, we compared the class means of the EM algorithm and the
adaptive-EM algorithm with the non-noisy projections (which provide “ground truth”) using
Fourier ring correlations. The Fourier ring correlations were measured by partitioning the
Fourier space into 20 equally spaced radial shells from dc to the Nyquist frequency and
calculating the correlation coefficient in each ring.

A second measure for comparing the adaptive-EM with EM is computational complexity. As
discussed above, we do this by measuring the ratio of the number of vertices processed per
iteration of the EM algorithm to the number of vertices processed per iteration of the adaptive-
EM algorithm. This is the speedup factor s of equation (12) measured every iteration.

Algorithm Parameters
In all simulations the domain Ω was set to [0°, 360°]×[−2pix, 2pix]×[−2pix, 2pix]. The fine
grid sampled this volume at a resolution of Δθ = 1°, and Δtx =Δty = 1 pixels. The coarse grid
resolution was Δθ = 12°, and Δtx = Δty = 2 pixels.

Preliminary informal experimentation revealed that the adaptive-EM algorithm gave
reasonable class means for ζ = 0.999 and 0.9999. These values were used for further
investigation.

In all simulations, both algorithms converged by the 25th iteration.

6.1 EM and Adaptive-EM Algorithms
Figures 4-5 shows the results of using the EM algorithm and the adaptive-EM algorithm for
image pixel S.N.R.’s of −15db and −21db respectively.

The top rows in both figures show sample noisy images from x-,y-, and z-axis projections. The
next row shows the class means used to initialize the algorithms. Subsequent rows show the
class means obtained by the EM algorithm, and by the adaptive-EM algorithm for ζ = 0.999
and ζ = 0.9999. For SNR=−21db, we also obtained the “best alignment” class means in order
to compare them with the EM class means. These are shown in the bottom row of figure 5.
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Figure 6 a-c shows the Fourier ring correlations between the class means and the corresponding
“ground truth” class means of figure 3b-d.

The speedup factors s (eq. (12)) of the adaptive-EM algorithm are shown as a function of
iteration number in figure 7. At termination, the speedup factors are above 60.0 for SNR = −15
and −21db. Note that the speedup factors for all iterations, including the first iteration, is greater
than 10. Recall from equation (12) that the speed up factor depends on ρ, which is the fraction
of vertices surviving in the reduced domain. Using equation (12) to solve for ρ gives figure 8
for the data of figure 7.

A final comment. Although the main goal of the simulations was to measure the speed-up of
the adaptive-EM algorithm over the EM algorithm, we also attempted to measure and compare
the execution speed of the GPGPU algorithm with the execution speed of a MATLAB
implementation. Unfortunately, the MATLAB implementation was not fast enough to process
900 images in over 10 days. An informal comparison of speed with smaller number of images,
and higher SNR (SNR=−15db) revealed that the GPGPU implementation was faster by factor
of 80 or more than the MATLAB implementation.

6.2 Discussion
The data in figures 4-6 suggests that domain reduction and grid interpolation are effective
strategies for reducing computation in the EM algorithm. A curious feature of adaptive-EM
algorithm is that its Fourier ring correlations are marginally better than those of the EM
algorithm. This can be attributed to the the fact that contributions from the reduced domain are
better matched to the class mean (alternately, contributions from outside the reduced domain
are ill-matched to the class mean). Nevertheless, the effective resolutions of the EM algorithm
and the adaptive-EM algorithm are the practically identical, showing that there is little penalty
for using the reduced domain.

The last row of figure 5 shows dramatically the failure of the “best alignment” strategy for
noisy images. Notice especially the poor reconstruction of the last class mean. The EM
algorithm, on the other hand, accurately recovered all three means, as did the adaptive EM
algorithm in this challenging case with a very low SNR.

The data in figures 7-8 shows that the adaptive strategy is effective in reducing computation.
The average speedups for all SNRs that we measured are above 10, suggesting that CPU-
months worth of computation may be reduced to CPU-days worth of computation. Two other
points are also worth noting. First, the adaptive strategy is very effective even in the first
iteration. This is significantly different from the stategy of Scheres et. al. [9] where the first
iteration is carried without any speedup. Second, figure 8 shows the part of the domain which
contributes effectively to the calculation stabilizes after a variable number of iterations. For
SNR= −21db, for example, the domain does not appear to stabilize till the 10th iteration. This
suggests that a strategy which prematurely freezes the reduced domain, or which does not
estimate the significance of all rotations and translations before adaptation, may not be optimal.

In the simulations shown here the coarse grid had the particularly large angular step of 12°.
This had the advantage of a low number of vertices to be evaluated, but the disadvantage that
the interpolated function deviated substantially from the true values on the fine grid, as shown
in Figure 2. This in turn required that the parameter ζ be set to a conservative value (e.g. 0.999)
to ensure that the reduced domain encompassed all of the important contributions to the latent
probability. A smaller coarse-grid step would have the advantage that the interpolated function
better approximates the true values, and in this case the value of the ζ parameter would more
accurately reflect the fraction of the integrand that is preserved. In the end it is not only the
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coarse-grid step size, but also the fraction of fine-grid nodes that survive the domain reduction,
that determine the speed-up of the algorithm (eqn. 12).

7 Conclusion
The EM algorithm for cryo-EM is computationally expensive because the E step requires
numerical integration. However, the latent data probabilities for cryo-EM tend to be spiky and
the computational complexity of the EM algorithm can be reduced by limiting the numerical
integration to a reduced domain which contains most of the probability mass of the latent data.
Furthermore, the reduced domain can be effectively estimated by a grid interpolation strategy.
Using the reduced domain and grid interpolation gives an adaptive-EM algorithm. This
algorithm adjusts its integration domain in each iteration. Simulations show that the adaptive-
EM algorithm provides speedup of over a factor of 10 even in the first iteration. The speedup
at termination is greater than a factor of 60. Simulations also show that the adaptive-EM
algorithm gives class means that are practically identical to the EM class means.
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Figure 1.
Structures for the EM algorithm.
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Figure 2.
Domain Reduction and Grid Interpolation.
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Figure 3.
Ribosome structure and projections.
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Figure 4.
EM and adaptive-EM reconstructions at SNR= −15db.
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Figure 5.
EM and adaptive-EM reconstructions at SNR= −22db.
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Figure 6.
Fourier ring correlations of EM and adaptive-EM class means compared to ground truth.
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Figure 7.
Speedup of the adaptive-EM algorithm.
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Figure 8.
Ratio of number of vertices of the reduced domain to the number of vertices in Ω.
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