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Neural Mechanisms of Belief Inference during Cooperative

Games

Wako Yoshida, Ben Seymour, Karl J. Friston, and Raymond J. Dolan
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WCIN 3BG, United Kingdom

Humans have the arguably unique ability to understand the mental representations of others. For success in both competitive and
cooperative interactions, however, this ability must be extended to include representations of others’ belief about our intentions, their
model about our belief about their intentions, and so on. We developed a “stag hunt” game in which human subjects interacted with a
computerized agent using different degrees of sophistication (recursive inferences) and applied an ecologically valid computational
model of dynamic belief inference. We show that rostral medial prefrontal (paracingulate) cortex, a brain region consistently identified
in psychological tasks requiring mentalizing, has a specific role in encoding the uncertainty of inference about the other’s strategy. In
contrast, dorsolateral prefrontal cortex encodes the depth of recursion of the strategy being used, an index of executive sophistication.
These findings reveal putative computational representations within prefrontal cortex regions, supporting the maintenance of cooper-

ation in complex social decision making.

Introduction

The ubiquity of cooperation in society reflects the fact that re-
wards in the environment are often more successfully accrued
with the help of others. For example, hunting in groups often
yields much greater prey when divided equally among the group
than that obtainable by hunting alone. Cooperation is optimal if
we know that others are committed to it despite the occasional
temptations for them to work alone, to our cost. Importantly,
such knowledge of intentionality can be inferred through re-
peated interactions with others and provides a key process at the
heart of “theory of mind” (ToM) (Premack and Woodruff,
1978). However, achieving such inference poses a unique com-
putational problem for the brain because it requires the recursive
representation of reciprocal beliefs about each other’s intentions
(Yoshida et al., 2008). How this is achieved in the brain remains
unclear.

To investigate this, we designed a task based on the classic
“stag hunt” from game theory in which human subjects interact
with a computerized agent. The stag hunt game has a pro-
cooperative payoff matrix (Table 1), in which each of two players
choose whether to hunt highly valued stags together and share the
proceeds or defect to hunt meager rabbits of small value. In this
game, cooperation depends on recursive representations of an-
other’s intentions since, if I decide to hunt the stag, I must believe
that you believe that I will cooperate with you. Thus, interactions
of highly sophisticated players allow cooperation to emerge,
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whereby “sophistication” is defined by the number of levels of
reciprocal belief inference they make.

In the task we present below, human subjects interacted with a
computerized agent that shifted its level of sophistication without
notice. This design places demand on human subjects’ ability to
infer the level of sophistication of their opponent so as to opti-
mize their own behavior and maximize rewards. We applied an
ecologically valid computational model of dynamic belief infer-
ence (Yoshida et al., 2008) and show here that it accurately pre-
dicts subjects’ behavior. This model comes with a precise
computational specification that invokes two distinct compo-
nents: level of sophistication and uncertainty (entropy) of belief
inference. We estimate these two statistic components from sub-
jects’ actual behavior and provide neurophysiological [functional
magnetic resonance imaging (fMRI) blood oxygen level-
dependent (BOLD)] data that show how these are implemented
in the brain. Specifically, we show how different regions of pre-
frontal cortex, within what is traditionally referred to as a theory
of mind network, implement the predicted underlying compo-
nent functions. Our findings provide neuronal evidence to vali-
date and endorse our computational model and provide a new
perspective on the role of prefrontal cortex in complex social
decision making.

Materials and Methods

Subjects. We scanned 12 healthy subjects (three females, 24.8 = 3.0 years,
mean age and SD). All were English speaking, had normal or corrected
vision, and were screened for a history of psychiatric or neurological
problems. All subjects gave informed consent and the study was ap-
proved by the Joint Ethics Committee of the National Hospital for Neu-
rology and Neurosurgery (United College London Hospitals National
Health Service Trust) and the Institute of Neurology, University College
London (UCL) (London, UK).

Experimental task. We designed a stag hunt game in which subjects
navigated in a two-dimensional grid maze to catch rabbits or stags (Fig.
1A). In the game, there were two rabbits and one stag. The rabbits re-
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Table 1. Normal-form representation of a stag-hunt in terms of payoffs in which
the following relations hold: A > B=D > Canda > b=d > ¢

Hunter 2
Stag Rabbit
Hunter 1
Stag Aa Gb
Rabbit B, ¢ D,d

Uppercase letters represent the payoffs for the first hunter, and lowercase letters represent the payoffs for the
second.

mained at the same grid location and consequently were easy to catch
without requiring help from the other hunters. If one hunter moved to
the same location as a rabbit, he/she caught the rabbit and received a
small payoff. In contrast, the stag could move to escape the hunters and
could only be caught if both hunters moved to the locations adjacent to
the stag (in a cooperative “pincer” movement), after which they both
received a bigger payoff. Note that as the stag can escape optimally, it was
impossible for a hunter to catch the stag alone.

In the experiment, the subjects played repeated games with a computer
agent who changed strategy every 5-8 games without notice. The sub-
jects were instructed that the other hunter was a computerized agent.
However, to avoid bias from prior knowledge, we did not instruct the
subjects that the agent’s strategy changed with time (in fact, we did not
tell subjects that the computer agent’s behavior was strategic). The
agent’s strategies were defined by the optimal value functions with first-,
third-, or fifth-order sophistication levels. In general, a computerized
agent with the lower-order (competitive) strategy would try to catch a
rabbit, provided both hunters were not close to the stag. On the other
hand, an agent with a higher-order (cooperative) strategy would tend to
chase the stag even if it was close to a rabbit. The order of computerized
agent’s strategies was randomized between subjects.

The start positions of all agents, hunters, and the stag were randomized
on every game under the constraint that the initial distances between
each hunter and the stag were more than four grids points. After that, at
each trial both hunters and the stag moved one grid location sequentially;
the stag moved first, the subject moved next, and the computer moved
last. Thus, the subjects were able to change their decisions to hunt a stag
or rabbit during each game in a manner dependent on their judgment
of the other player’s strategy. We specifically used this design so as to
necessitate rapid on-line assessment of the computer’s behavior as
well as to render the task less abstract and artificial, thereby conferring
a high degree of ecological realism. The subjects chose to move to one
of four adjacent grid locations (up, down, left, or right) by pressing a
corresponding button on a key response pad, after which they moved
to the selected grid. Each time step lasted 2.5 s, and if the subjects did
not press a key within this period they remained at the same location
until the next trial. The reaction times for the stag and the computer
were set between 1.25 to 1.75 s at random; thus, each trial took be-
tween 2.5t0 6 s.

At the beginning of each game subjects were given 15 points, which
decreased by 1 point per trial, continuing below 0 beyond 15 trials.
Therefore, to maximize the total number of points, it was necessary to
catch the prey as quickly as possible. The game finished when either of the
hunters (subject or agent) caught a prey or when a certain number of
trials (15 = 5) had expired. To prevent subjects changing their strategies
depending on the inferred number of moves remaining, the maximum
number of moves was randomized for each game. The total points ac-
quired in each game was the remaining time points, plus the hunting
payoff: 10 points for a rabbit and 20 points for a stag. For example, if the
subject caught a rabbit on trial 6, he/she got the 10 points for catching the
rabbit plus the remaining time points: 9 = 15 — 6 points, giving 19 points
in total (10 + 9), whereas the other player received only their remaining
time points; i.e., 9 points. If the hunters caught a stag at trial 8, both
received the remaining 7 = 15 — 8 time points plus 20 points for catching
the stag, giving 27 points in total. The remaining time points for both
hunters were displayed on each trial, and the total number of points
accrued was displayed at the end of each game. At the end of the experi-
ment, the subjects were paid money based on accrued total points.
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Before the scanning experiment, each subject received written instruc-
tions as well as training on a short version of the stag hunt game, which
includes all three types of strategies of the computer agent in equal quan-
tities. All subjects played at least 20 games until they indicated they had
learned how to play the game and recognized that the computer agent’s
behavior was based on a dynamic strategy. In the scanning experiment,
11 of 12 subjects played two sessions, each of which comprised 40 games,
so that they played 80 games in total while one subject played only one
session due to a technical problem.

Belief inference model. To address how subjects make inferences about
the other player’s strategy, we used a previously described computational
model of theory of mind (Yoshida et al., 2008). Here, we briefly summa-
rize the key concepts and application to our stag hunt game.

The ToM model deals with sequential games with multiple agents,
where the payoffs and values are defined over a joint space. Under the
joint state values, the values for one agent become a function of the other
agent’s value, and thus the optimal strategies are specified according to
levels of sophistication, which refers to the number of recursive process,
k, by which my model of your strategy includes a model of your model of
my strategies, and so on (Fig. 1 B). Importantly, if you infer that the order
of the other’s strategy is k, you should optimize your strategy with an
order of k + 1. Cooperation in the stag hunt game depends on recursive
representations since, when I decide to hunt the stag I must believe that
you believe that I am going to cooperate with you. The intractable nature
of the nested levels of inference that this recursion entails has led to the
proposition that humans have a limit on the degree of recursion, an
example of “bounded rationality” (Simon, 1955; Kahneman, 2003). In
this way, “type” (Maynard Smith, 1982) of player K bounds both the
prior assumptions about the sophistication of other players and the so-
phistication of the player per se. For example, a player of type K = 3
believes that the other player can have a level of recursive sophistication
no more than k = 3, and he/she can have a strategy with recursive sophis-
tication of no more than k = 4. We can infer the unknown bound k given
their choice behaviors by accumulating evidence for different models
specified by different bounds.

We applied the ToM model to the stag hunt game in which the state
space is the Cartesian product of the admissible states of three agents: two
hunters and a stag. However, for simplicity, we assumed that the hunters
believed, correctly, that the stag was not sophisticated and then fixed the
stag’s strategy at first order. The stag’s strategy does not explicitly appear
in the model but was assumed to constitute the environmental dynamics.
Under flat priors bounded by K, subjects make an inference about the
computerized agent’s strategies p(k as the evidence given the trajec-
tory of states y = s;,5,, ..., Sp

P(kcum(n |y’ ksub) o P(V(L e ’T) ‘ ksub(l) e >T)’ kcom)p(kcum)

com)

T—1
= 1—[1 KT B IP(SHI ‘5,, ksub(t)> kcom)) (1)
=

where k is a forgetting parameter that exponentially discounts previous
evidence and allows the agent to respond more quickly to changes in the
other’s strategy. Using the posterior distribution, the subjects update the
computer’s strategy as a point mass at the mode ., and optimize their
strategy k., as follows:

arg max p(kcom(t) |J/, ksub)) (za)

keom E{1,....Ksub}

ksub(t + 1) = ]A(com(t) + 1)

?(com(t) =

(2b)

Thus, in the model, subjects update belief inference and optimize own
sophistication only at computer agent’s move event neither at subject’s
nor stag’s move. For model-based imaging analysis based on the ToM
model, we generated two parametric functions: one was the entropy of
prior distribution of an opponent’s sophistication level inferred by the
subject, p(k.,,,) of Equation 1, and the other was the subject’s sophisti-
cation level, k,,,, of Equation 2b.

We computed the posterior probabilities of a fixed-strategy model and
the ToM model given the actual behavioral data. In the fixed-strategy
model, both players use a fixed strategy and do not update the strategy;
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therefore, there is no need to infer the other’s
strategy. The players in the ToM model assume
the other player might change his/her strategy
and optimize their own after each move. We
calculated the evidence using k;, = 1,...,6
for the fixed-strategy modeland K, = 1,...,6
for the ToM model; i.e., we used 12 models in
total. This is because the difference between
successive value functions becomes smaller
with increasing order, and the value functions
saturate at k; = 6 (supplemental Fig. S1, avail-
able at www.jneurosci.org as supplemental
material). In the stag hunt game, the agent’s
behavior depends on the order of strategies
keoms the first-, third-, or fifth-order and the
positions of other agents. The average cooper-
ation rates simulated with two agents with
matched sophistication level were 9.6, 20.8,
and 83.9% for the fist-, third-, and fifth-order
levels from all possible sets of initial states. In-
terestingly, the third- and fifth-order strategies
show quite different behaviors (supplemental
Fig. S2, available at www.jneurosci.org as sup-
plemental material). For the model comparison,
we used the true values of the strategies of com-
puter agent; i.e., k; = {1, 3, 5}. Supplemental Fig-
ure 3 (available at www.jneurosciorg as
supplemental material) shows the results of
Bayesian model selection (Stephan et al., 2009).
Over model space of the ToM model, we inferred
that the sophistication level of the subjects is K; =
5. This is reasonable since the subjects did not
have to use the strategies higher than k, = 6, given
that the computer agent’s strategies never ex-
ceeded five.

Under the inferred (or best) model with K;
=5, we optimized two model parameters. One
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Figure 1. Stag hunt game and theory of mind model. A, Two players (hunters), a subject (green circle) and a computer agent
(blue circle), try to catch prey: a mobile stag (big square) or two stationary rabbits (small squares), in a maze. From an arbitrary
initial state, they move to the adjacent states in sequential manner in each trial; the stag moves first, the subject moves, and then
the computer agent moves. The players can capture either a small payoff (rabbit hunt; bottom left) or a big payoff (stag hunt,
bottom right). Cooperation is necessary to hunt a stag successfully. At the end of each game, both players receive points equal to
the sum of prey and points relating to the remaining time (see Materials and Methods). B, In our theory of mind model, the optimal
strategies differ in the degree of recursion (i.e., sophistication): first-order strategies assume that other players behave randomly,
second-order strategies are optimized under the assumption that other players use a first-order strategy, and third-order strate-
gies pertain toan assumption that the other player assumes you are using afirst-order strategy, and so on. Here, we assume bounds
orconstraints on the strategies available to each player and their prior expectations about these constraints. , The subjects change
their behavior based on the other player’s sophisticated level (k) which was unknown. When the computer agents used fifth-order
strategies, the rate of cooperative games (stag hunt) out of the total (mean == variance = 0.405 == 0.034) was significantly higher
than when they used the lower third-order strategies (mean = variance = 0.089 = 0.012, p << 0.0001) and first-order strategies
(mean = variance = 0.026 == 0.002, p << 0.00001).

is a subjective utility parameter «, which scales

the utility of a rabbit relative to the utility of a

stag: if the subjects overestimate a rabbit’s utility, this parameter is larger
and induces more competitive behaviors; if they underestimate a rabbit’s
utility, this parameter is smaller and leads to cooperation. The maximum
likelihood estimation showed that the optimal value was in the range of
0.39 = a = 0.43 for each subject (mean = SD = 0.41 = 0.01) and a =
0.41 for all subjects. The other parameter is the forgetting parameter
(Eq. 1), and it was in the range of 0.51 = a = 0.84 for each subject
(mean £ SD = 0.68 = 0.11) and estimated as 0.75 from all subjects’ data.
To test the efficacy of the forgetting parameter, we compared the log
evidences of the ToM model with and without forgetting effect and ver-
ified that the ToM model with forgetting effect shows significantly better
fit with the behavioral data (data not shown). To calculate the regression
functions for the imaging analysis, we used the optimal utility parameter
a = 0.4 for all subjects and optimized the forgetting parameter k for each
subject.

The recursive or hierarchical approaches to multiplayer games have
been adopted in behavioral economics (Stahl and Wilson, 1995; Costa-
Gomes et al., 2001) in which individual decision strategies systematically
exploit embedded levels of inference. The sophistication that we specifi-
cally address here pertains to the recursive representation of the other
player’s intentions, and this is distinct from the number of “thinking
steps” in other models (Camerer et al., 2004), which corresponds to the
depth of tree search.

In this article, we wanted to establish the neuronal correlates of our
Bayes optimal model of cooperative play. However, it is important to
note that our conclusions are conditioned upon the model that we use. It
is possible that our subjects used different models, in particular belief
learning models with a dynamic game (Fudenbergand Levine, 1998). We
suggest that subsequent work might use Bayesian model comparison to
adjudicate among Bayes optimal models and a family of heuristic ap-

proximators (Gigerenzer et al., 1999). Such an evaluation in terms of the
evidence for alternative models from both behavioral and physiological
(fMRI) data is clearly an important avenue to pursue.

fMRI acquisition. A Siemens 3T Trio whole-body scanner with stan-
dard transmit-receive head coil was used to acquire functional data with
a single-shot gradient echo isotropic high-resolution echo-planar imag-
ing (EPI) sequence (matrix size: 128 X 128; field of view: 192 X 192
mm?; in-plane resolution: 1.5 X 1.5 mm?; 40 slices with interleaved
acquisition; slice thickness: 1.5 mm with no gap between slices; echo
time: 30 ms; asymmetric echo shifted forward by 26 phase-encoding
lines; acquisition time per slice: 68 ms; reaction time: 2720 ms). The
number of volumes acquired depended on the behavior of the subject.
The mean number of volumes of each session was 318, giving a total
experiment time of ~14.4 min. A high-resolution T1-weighted struc-
tural scan was obtained for each subject (1 mm isotropic resolution
three-dimensional modified driven equilibrium Fourier transformation)
and coregistered to the subject’s mean EPI. The mean of all individual
structural images permitted the anatomical localization of the functional
activations at the group level.

fMRI analysis. Statistical parametric mapping (SPM) with SPM5 software
(Wellcome Trust Centre for Neuroimaging, UCL) was used to preprocess all
fMRI data, which included spatial realignment, normalization, and smooth-
ing. To control for motion, all functional volumes were realigned to the
mean volume. Images were spatially normalized to a standard space Mon-
treal Neurological Institute template with a resample voxel size of 2 X 2 X 2
mm and smoothed using a Gaussian kernel with an isotropic full width at
half maximum of 8 mm. In addition, high-pass temporal filtering with a
cutoff of 128 s was applied to remove low-frequency drifts in signal, and
global changes were removed by proportional scaling.
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Table 2. Maximally activated voxels in areas where significant evoked activity was related to payoff at the result event, and two parametric functions of the ToM model at

the computer move
Talairach axis
RIL BA X y z Z-value
Payoff
Ventral striatum R — 16 21 -8 4.67
Ventral striatum L — =10 19 0 3.89
Sophistication level (stag move event)
Ventral striatum R — 8 8 0 3.55
Ventral striatum L — —10 8 0 3.84
Entropy of other’s strategy (computer move event)
Medial prefrontal cortex L 10 —6 53 14 476
Medial prefrontal cortex R 10 4 50 8 3.76
Posterior cingulate — 31 2 —50 32 4.00
Sophistication level (computer move event)
Dorsolateral prefrontal cortex L 46 =50 28 32 4.26
Frontal eye field L 7 —20 6 46 4.25
Frontal eye field R 7 30 9 59 417
Posterior parietal cortex L 6 —16 —55 65 4.22
Dorsolateral prefrontal cortex R 9 40 38 36 3.55

R, Right; L, left; BA, Brodmann’s area.
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Figure 2.  Two examples of behavioral analysis based on the theory of mind model. A, Model selection for how the subject updated his/her posterior probabilities or belief inference over the

computer agent’s strategy at each trial. The posterior at the end of each game is used as a prior for the subsequent game. In the figure, each game is separated by a blank gap and has a variable
number of trials according to performance. B, The time courses of sophistication level (k) of the computer agent’s actual strategy (blue) and subject’s strategy estimated by the model (green), which
is used asa model-based regressor for brain imaging analysis. The subjects estimated the dynamical changes in the computer agent's strategy as a mode of posterior density and optimized their own
strategiesatthe k + 1level. C, The uncertainty of beliefinference with time shown as the entropy of posterior density about the computer agent's strategy (4). Note that entropy increase lags behind
the change in the computer’s strategy because it takes time to estimate changes as evidence is accumulated.

Following preprocessing, statistical analysis was conducted using a
general linear model. We specified four events with impulse stimulus
functions. In each trial, three events were modeled at the time of stag
move, subject move, and computer move. At the end of each game, the
time of presentation of the outcome (2.5 s after the last computer move)
was also modeled as an event. For model-based analysis, we simulated the
ToM model using the actual action sequences to produce per-subject,
per-trial estimates of the subject’s strategy and the other’s strategy in-
ferred by the subject. First, to see the brain activity related with belief
inference, we generated two parametric functions: one was the entropy of
prior distribution of the other’s sophistication level inferred by the sub-
ject, and the other was the subject’s sophistication level. These functions
were then used as the parametric modulators at the computer move event
when subjects observed the other’s decision (action selection) and up-
dated their inference of the other’s strategies. For the reward-related
activity, we used two parametric functions. The abstract reward level was
modeled as a parametric function of total payoff amount at the outcome
of each game. To index brain activity related to the social reward of
cooperation, the parametric function of sophistication level was applied

to the stag move event. All stimulus functions were then convolved with
the canonical hemodynamic response function and entered as regressors
into a standard general linear convolution model of each subject’s fMRI
data using SPM, allowing independent assessment of the activations that
correlated with each model’s predictions. Note that the two model-based
regressions at the computer move event do not show any significant
correlation, and switching the order of these regressors does not change
the main results. The six scan-to-scan motion parameters produced dur-
ing realignment were included as additional regressors in the SPM anal-
ysis to account for residual effects of motion. To enable inference at the
group level, the parameter estimates for the two model-based parametric
regressors from each subject were taken to a second-level: random effects
group analysis using one-sample T tests. All results are reported in areas
of interest at p << 0.001 (uncorrected) and k < 100 (Table 2). The pre-
dicted activations in the bilateral ventral striatum and the medial pre-
frontal (paracingulate) cortex (MPFC) were further tested using a
spherical small volume correction (SVC) centered on coordinates de-
rived from the meta-analysis of O’Doherty et al. (2004) for the striatum
(x,,z =18, 14, —6 mm and — 18, 14, —6 mm) with a radius of 8 mm and
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the review of Amodio and Frith (2006) for the
medial prefrontal cortex (x, y, z = 0, 52, 16
mm) with a radius of 16 mm. To better localize
activity, the activation maps were superim-
posed on a mean image of spatially normalized
structure images from all subjects.

-
o
1

Results

Computational model and behavior
The agent’s strategies were defined by the
optimal strategies with first-, third-, or

Number or trials (rate)
o
(&)}
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fifth-order levels of sophistication. The 0
agent’s behavior depends on the order of
strategies and the positions of other
agents. In general, a computerized agent
with the lower-order (competitive) strat-
egy would try to catch a rabbit, provided
both hunters are not too close to the stag.
On the other hand, an agent with a higher-
order (cooperative) strategy would chase the stag even if they
were close to a rabbit (see Materials and Methods). During the
experiment, the computerized agent shifted its strategy occasion-
ally without notice. Thus, to behave optimally (maximize their
expected payoff), subjects should update their estimate of the
degree of sophistication of the other player (computer agent)
continuously and then play at one level higher. We found that the
number of games in which the subjects attempted to catch a stag,
in effect when they behaved more cooperatively, was significantly
higher when the computerized agent was more sophisticated
(Fig. 1C). This behavioral effect confirms that our subjects were
affected by the level of sophistication of the other player.

We then assessed the statistical fit of the computational model
with actual behavioral data. We found that the belief inference
(ToM) model explained subjects’ behavior significantly better
than a fixed strategy model in which both players use a fixed
degree of sophistication without dynamic estimation of the other
player’s sophistication. Over model space of the ToM model, we
inferred that the upper bound of sophistication (K) for the sub-
jects was equal to 5, which means the subjects used strategies with
up to a sixth sophistication level. This is reasonable, given that the
computer agent’s strategies never exceeded five. The ToM model
with K = 5 was subsequently used to generate estimates of the
subjects’ inference about other player’s strategies based on their
action sequence (Fig. 2). Furthermore, the overall predictability
showed that our model fit a subject’s behavior well for all levels of
computer agent’s sophistication (Fig. 3).

Figure3.

Reward signal and ventral striatum

We then analyzed BOLD fMRI signals from subjects while they
performed the task. At the time of the outcome of each game
(when subjects obtain a reward in the form of prey) we observed
significant activity in bilateral ventral striatum that correlated
with the payoff amount in each game (Fig. 4A), consistent with
this region’s established role in encoding the magnitude of both
primary and secondary (monetary) rewards in humans
(O’Doherty et al., 2004; Knutson and Cooper, 2005). In the con-
text of the current experiment, these effects for abstract rewards
provide face validity to an assumption that our task was motivat-
ing and the ensuing outcomes were rewarding. During decision
making involving social interaction, a similar area is implicated in
reward-related outcomes not only for material goods, such as
money (Sanfey et al., 2003; King-Casas et al., 2005), but also
nonmaterial goods including the experience of mutual coopera-
tion (Rilling et al., 2002) and the acquisition of a good reputation

i ‘I ['I il |
2 3 4 5 6

2 3 4 5 6
Estimated subject’s sophistication level

The rate of subject’s sophistication level estimated by our model with three different computer agent’s strategy; each
bar shows the rate of number of trials with an agent of the fifth-, third-, and first-order sophistication (in dark, medium, and light
gray color). The left and right panels show the result of all games and only last games in each condition, respectively.

y=20

T-value

Figure 4. Ventral striatal activity correlated with nonsocial and social reward. 4, Bilateral
ventral striatum [right (R), X, y,z = 16,22, —8 mm, Z = 4.67; left (L), —10, 20,0 mm, Z =
3.89] showed significant activity correlated with payoff at the end of each game. Both of these
areas survived correction for small volume within an 8 mm sphere centered on coordinates from
areas implicated in previous studies of reward (R, p << 0.01; L, p << 0.05). B, At the stag’s move
event time point, activity in caudal ventral striatum (8, 8,0 mm, Z = 3.55; —10,8,0mm,Z =
3.84) showed a significant correlation with sophistication level, which is itself associated with
the expected social reward of cooperation.

(Izuma et al., 2008). In our task, the total payoff points are con-
verted directly into monetary reward. To address whether there
might be specific striatal activity associated with cooperation over
and above that associated with the expected monetary value, we
modeled expected monetary value and the subject’s sophistica-
tion level at the stag’s move event of each trial in the same analy-
sis. This analysis revealed a focus of activity in the ventral striatum
(Fig. 4 B), consistent with “added value” associated with cooper-
ation per se (as indexed by sophistication level, which is strongly
correlated with cooperativity).

Belief inference and prefrontal cortex

The central feature of the computational model is that it predicts
unobservable internal states of the subject required for belief in-
ference. Critically, the fMRI data allowed us to investigate
whether or not brain activity in putative ToM regions correlates
with these states. When subjects observed the other player’s ac-
tion, according to the model they need to update the likelihood of
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the other player’s strategy using Bayesian belief learning and then
optimize their own strategy. Accordingly, we used two principal
statistics for belief inference as parametric regressors. The first
was the entropy of the belief about the other player’s strategies
(Fig. 2C), by which we mean the uncertainty or average surprise
of belief inference. The second was the sophistication level of
subjects’ strategies (Fig. 2B, green line), which corresponds to
their level of strategic thinking and, implicitly, the expected level
of the other player’s sophistication.

We found that the entropy of belief inference was correlated
with activity in an anterior part of rostral medial prefrontal
(paracingulate) cortex (MPFC), a region consistently identified
in psychological tasks requiring mentalizing (McCabe et al.,
2001; Gallagher et al., 2002) (Fig. 5A). That is, activity was greater
when the subjects were more uncertain about the other player’s
level of sophistication.

By contrast, we observed that the level of strategic thinking
correlated with the BOLD signal in the left dorsolateral prefrontal
cortex (DLPFC), bilateral frontal eye field (FEF) on the superior
frontal sulcus, and the left superior parietal lobule (SPL) (Fig.
5B). Equivalent signals were present in the right DLPFC at the
same threshold but did not pass our cluster extent criterion. All
results are reported in areas of interest at p << 0.001 (uncorrected)
and k < 100 (Table 2).

Discussion

In summary, brain activity in distinct prefrontal regions, including
part of the classical theory of mind network, expresses a dynamic
pattern of activity that correlates strongly with the statistical compo-
nents of belief inference.

In the field of ToM in general, previous neuroimaging studies
(Frith and Frith, 2003) have found that the anterior MPFC is
important for representing the mental states of others (McCabe
etal., 2001; Gallagher et al., 2002; King-Casas et al., 2008). How-
ever, these studies have left unanswered the question as to the
precise computations invoked during the application of ToM
(Wolpert et al., 2003; Lee, 2008) and, hence, which of the many
subprocesses might be implemented in classical ToM regions.
Indeed, it remains possible that the mere presence of a human
conspecific engages ToM regions and, thus, that the correspond-
ing activation might not be functionally related to the execution
of the social games per se. Here, we looked specifically at belief
inference, which is likely to be a central (but by no means the
only) component of ToM. The fact that subjects knew they were
playing a computer suggests that anterior MPFC activity relates
(at least in part) to a computational component of belief infer-
ence, as described above, and is not purely related to belief about
the humanness of the other players.

Recent evidence from the “inspection” game (Hampton etal.,
2008) has suggested that ToM in games involves a prediction of
how the other player changes his/her strategy as a result of one’s
own play. In the Hampton et al. (2008) study, neural responses in
anterior MPFC related to predicting such changes are notable
given that game theory has seldom considered “higher-order
thinking” in learning during repeated games, although Bayesian
updating of types has been proposed in reputation formation and
teaching (Fudenberg and Levine, 1998; Camerer et al., 2002).
Both Hampton’s influence model and our ToM model involve
the learning of the other’s strategy, where the other individual
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learns the best response in repeated games. However, our ToM
concerns something fundamentally different: while Hampton’s
model involves learning the influence of one’s own action on the
other player’s strategy in “second-order” strategic thinking, here
we propose that ToM refers to learning the other player’s level of
thinking itself. This formulation extends beyond accounts that
assume both players maintain a constant level of thinking.

A recent imaging study using a “beauty contest” game com-
pared the brain activity of subjects with low and high levels of
reasoning, revealing greater MPFC activity in the high group
(Coricelli and Nagel, 2009). The suggestion here was that higher-
level subjects account for the other’s strategy, in contrast to the
lower level group. This finding supports previous studies impli-
cating MPFC in ToM and is not inconsistent with the present
findings that MPFC activity correlates with the entropy of belief
inference. However, the previous data (Coricelli and Nagel, 2009)
provide less insight into how belief inference is achieved, since in
one-shot games like the beauty contest subjects do not have the
opportunity to dynamically optimize an internal model of the
other’s intentions. By contrast, the cooperative game and its as-
sociated model used here suggest a mechanistic account of how
beliefs are generated and represented in the brain.

From a psychological perspective, strategic thinking involves
several typically “executive” processes, including the temporal
ordering of mental representations, updating these representa-
tions, predicting the next action, maintaining expected reward,
and selecting an optimal action. Although our study was not
designed to determine how computation of the level of sophisti-
cation relates to the broader functions of different brain areas, the
fact that we observed greater activity in DLPFC, FEF, and SPL is
consistent with their known roles in executive processes. Notably,
responses in these regions are known to correlate with complexity
in classic working memory tasks (Braver et al., 1997; Owen et al.,
2005). In social situations, DLPFC neurons encode signals related
to a previous choice and its outcome conjunctively in a matching
pennies task, as seen in monkeys (Barraclough et al., 2004) and
Williams syndrome patients (Meyer-Lindenberg et al., 2005). In
addition, DLPFC activation has been observed with high- versus
low-level reasoning in a beauty contest (Coricelli and Nagel,
2009). With higher strategies, as in our task, subjects behave more
cooperatively and, consequently, the DLPFC is likely to be in-
volved in the complex strategic processes required for the estab-
lishment and maintenance of social goals governing mutual
interaction. Recently, activity of posterior parietal cortex was
found in a social game that can be solved by “deliberative” rea-
soning (Kuo et al., 2009). Furthermore, neurons in posterior pa-
rietal cortex are known to modulate their activity with expected
reward or utility during foraging tasks (Sugrue et al., 2004) and
competitive games (Dorris and Glimcher, 2004), and activity
here may relate to social utility associated with cooperation in
this task.

The fact that the brain engages in ToM does not preclude
prosocial accounts of motivation in cooperative interactions.
There is good reason to assume that different decision-making
systems collectively contribute to behavioral output, with sophis-
ticated goal-orientated decision processes existing alongside sim-
pler mechanisms, for instance the associative learning rules used
by reinforcement learning systems (Daw et al., 2005), or through
observation of others (especially experts) (Behrens et al., 2008).
Whereas strategic thinking almost certainly offers the most effi-
cient way to determine actions early in the course of learning,
given any population of potentially prosocial and antisocial op-
ponents, these simpler (e.g., more automatic, prosocial) mecha-
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nisms assume greater importance in the control of behavior if
outcomes are predicted reliably, thereby obviating the computa-
tional burden of strategic inference (Seymour et al., 2009). In-
deed, we note that in this experiment the outcome for an abstract
category of reward, the prey, correlated with activity in the striatum,
a region that supports reinforcement and observation-based
learning (King-Casas et al., 2005; Montague and King-Casas,
2007; Behrens et al., 2008). However, the fact that an individual’s
computational strategy may be hidden from observation or sub-
jective insight illustrates the value of fMRI in determining pre-
cisely which strategy is being used.

Our account of ToM does not necessarily suggest that players
compute their optimal strategy explicitly or indeed are aware of
any implicit inference on the other player’s strategy. Rather, the
model is purely mechanistic in describing how brain states can
encode theoretical quantities necessary to optimize behavior. In
other words, we do not suppose that subjects necessarily engage
in explicit cognitive operations but are sufficiently tuned to in-
teractions with conspecifics to render choice behavior sophisti-
cated. Furthermore, there are several limitations to the current
study that ought to be addressed in future work. First, whereas an
experimental design that incorporates a computer agent allows
flexible control of the level of sophistication of the other player, it
does not capture the full depth of strategic play in purely human
games, since subjects should appreciate that the computer agent
does not reciprocally adapt its behavior based on their actions.
This is an important aspect of ToM not captured in this study.
Second, it is possible that subjects’ actions do not necessarily
correspond precisely to their beliefs. Such mismatches have been
shown in previous data (Bhatt and Camerer, 2005), and this
might be caused by irrational learning or belief inference modi-
fied by the circumstances (or situations). For example, an obser-
vation that payoff balance between stag and rabbit has an effect
on subjects’ behavior (Battalio et al., 2001) suggests that the
model parameters might be adjusted from trial to trial.

Our data provide a perspective on ToM that proposes a more
multifaceted set of operations than hitherto acknowledged. In
humans, ToM is implicitly achieved in the first year and explicitly
acquired at around the age of 4 years, but in autistic spectrum
disorders and related psychopathologies it is delayed or absent.
This raises the possibility that one or other of the processes we
propose might reflect core deficits in the corresponding behav-
ioral phenotype. Although functional abnormality within mid-
line anterior and posterior regions has been shown repeatedly in
autism (Castelli et al., 2002; Saxe et al., 2004; Kennedy et al., 2006;
Chiu et al., 2008), the precise nature of explanation for these
abnormalities are unclear. Future studies might fruitfully explore
whether this deficit can be understood as reflecting a computa-
tional dysfunction, yielding insight that could motivate novel
therapeutic strategies.
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