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Abstract
The human and simian immunodeficiency viruses contain small open reading frames known as
vpr and vpx. These genes encode proteins that are highly related both at the amino acid level and
functionally, although key differences do exist. This review describes the main functions ascribed
to Vpr and Vpx in the context of both viral replication and modulation of host cell biology.

1. Introduction
HIV-1 Vpr (short for viral protein, regulatory) is a small, 96-amino acid protein of about 14kDa.
The name assigned to this protein originated from the observation that disruption of its open
reading frame in HIV-1 resulted in a virus that replicated with a slower kinetics (Hattori et al.,
1990; Ogawa et al., 1989; Wong-Staal, Chanda, and Ghrayeb, 1987). HIV-1 Vpr is a small,
96-amino acid (14 kDa) protein. Vpr is packaged in the virus particles via a direct interaction
with the p6 subunit of the Gag precursor (reviewed in (Tungaturthi et al., 2003)). Vpr is also
expressed de novo by the provirus, from a singly-spliced, late mRNA (Schwartz, Felber, and
Pavlakis, 1991).

A multiplicity of effects and functions have been ascribed to Vpr. As a virion-bound protein,
Vpr has been proposed to participate in the nuclear import of pre-integration complexes in
macrophages and other non-dividing cells; and to enhance the fidelity of reverse transcription.
As a late protein produced in the infected cell, Vpr induces cell cycle arrest in the G2 phase,
transactivation of the viral promoter, and ultimately apoptosis (reviewed in (Le Rouzic and
Benichou, 2005; Planelles and Benichou, 2010)).

2. Structure of Vpr
The structure of Vpr consists of three bundled α-helices spanning residues 17-33, 38-50 and
55-77, respectively. Flanking the triple helix bundle are flexible, unstructured n- and c-terminal
domains that are negatively and positively charged, respectively (Figure 1) (Morellet et al.,
2003). The carboxy-terminus of Vpr contains six arginine residues between positions 73 and
96 (Figure 1). This domain shows similarity with those of arginine-rich protein transduction
domains, and may explain the transducing properties of Vpr, including its ability to cross the
lipid bilayers (Coeytaux et al., 2003;Kichler et al., 2000;Sherman et al., 2002). The third helix
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of Vpr is rich in leucine residues (Schuler et al., 1999), and one side of the helix presents a
stretch of hydrophobic side chains that can form a leucine zipper-like motif (Schuler et al.,
1999). This region is thought to mediate the formation of Vpr oligomers (Fritz et al.,
2008;Mahalingam et al., 1997;Schuler et al., 1999;Wang et al., 1996) and the interaction with
a ubiquitin ligase complex (see below).

3. Effects of Vpr on the cell cycle
The ability of Vpr to manipulate the cell cycle and, more specifically, to induce arrest at the
G2-to-M transition was first reported in 1995 (He et al., 1995; Jowett et al., 1995; Re et al.,
1995; Rogel, Wu, and Emerman, 1995). About one year prior to those reports, Zhao and
collaborators described the first cellular protein found in association with Vpr in co-
precipitation experiments (Zhao, Mukherjee, and Narayan, 1994). This was a novel cellular
protein of unknown function, and was named Vpr-binding protein (VprBP) (Zhao, Mukherjee,
and Narayan, 1994). Initial studies did not link VprBP to the cell cycle effects of Vpr and it
was only recently that a direct link was found (see below).

4. Vpr induces genotoxic stress
The effects of Vpr on the cell cycle resemble those of DNA damage. More specifically, the
presence of hyper-phosphorylated Cdk1, and the ability of methylxanthines, such as caffeine,
to relieve the cell cycle block, suggested that the underlying stimulus was DNA damage (Poon
et al., 1997; Shostak et al., 1999).

Roshal et al. showed that Vpr induced G2 arrest via activation of ataxia telangiectasia-mutated
and Rad 3- related kinase, ATR (Roshal et al., 2003). ATR is a sensor for replication stress, a
cellular condition that involves the stalling of replication forks. Replication stress be induced
by deoxyribonucleotide depletion, topoisomerase inhibition or ultraviolet light-induced DNA
damage (reviewed in (McGowan and Russell, 2004)). The ATR phosphorylation target that
controls G2 checkpoint activation is Chk1 (Figure 2) (Cimprich and Cortez, 2008). In
agreement with this idea, Roshal et al. also showed that depletion of Chk1 or ATR relieved
Vpr-induced G2 arrest (Roshal et al., 2003).

It remains unclear whether the Vpr effect on the cell cycle is a primary function of Vpr or,
alternatively, a consequence of an unknown function of Vpr. Nevertheless, recent observations
with infected cells from HIV-1-infected individuals indicate that infected CD4+ lymphocytes,
in vivo, display a DNA content that is consistent with that of cells in the G2/M transition
(Zimmerman et al., 2006).

5. Vpr manipulates a ubiquitin ligase complex
In 2006, several groups identified a family of proteins that were associated with the damaged
DNA-specific binding protein 1 (DDB1), a Cullin 4 adaptor (Angers et al., 2006; He et al.,
2006; Higa et al., 2006a; Jin et al., 2006). This novel family of proteins, which include VprBP,
act as the substrate receptors in a Cullin 4- and DDB1-based ubiquitin ligase complex or E3
(Angers et al., 2006; He et al., 2006; Higa et al., 2006a; Jin et al., 2006). VprBP was,
accordingly, renamed DDB1- and Cullin 4-associated factor (DCAF) -1. Shortly thereafter, it
was shown that, through its interaction with VprBP/DCAF1, Vpr is capable of binding to a
larger complex that includes Cul4A, DDB1, Rbx1/Roc1 and a ubiquitin conjugating enzyme
or E2 (Belzile et al., 2007; DeHart et al., 2007; Hrecka et al., 2007; Le Rouzic et al., 2007;
Schrofelbauer, Hakata, and Landau, 2007; Tan, Ehrlich, and Yu, 2007; Wen et al., 2007).

DDB1 links Cul4A to a number of possible substrate receptors, collectively referred to as
DCAFs. The ubiquitination targets for several DCAFs have been identified. For example,
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CDT2 (DCAF2) recruits the origin of replication licensing factor, CDT1 (Higa et al., 2003;
Hu et al., 2004) to prevent re-replication of DNA. The damaged DNA-binding 2/xeroderma
pigmentosum complementation group E protein (DDB2/XPE) is another DCAF that interacts
with DDB1-Cul4A to promote degradation of XPC (Sugasawa et al., 2005), and the histones
3 and 4 (Wang et al., 2006), as part of the response to DNA damage. Cul4A- and Cul4B-
containing E3 ligases are also responsible for destruction of the cyclin-dependent kinase
inhibitor, p27, and cyclin E, respectively (Higa et al., 2006b). Thus, the general roles of
Cul4ADDB1 E3 ligases involve genome stability, DNA replication and cell cycle checkpoint
control. Merlin, a tumor suppressor protein, is the only target of DCAF1 found to date (Huang
and Chen, 2008). In vitro, Merlin accumulates in serum-starved cells, and blocks proliferation.
Merlin is then degraded in response to serum stimulation, and this relieves the block to cell
proliferation (Huang and Chen, 2008).

Based on the above evidence, a model has emerged in which Vpr binds to a
Cul4ADDB1/DCAF1 E3 ligase, to trigger polyubiquitination and, presumably, degradation of an
unknown cellular protein (represented as “T” for “target” in Figure 2), resulting in activation
of the G2 checkpoint (reviewed in (DeHart and Planelles, 2008)). Direct evidence for the
polyubiquitination and degradation of the putative target is not available. However, Richard
et al. recently reported that overexpression of the ubiquitin K48R mutant, which blocks
formation of poly-ubiquitin chains with the K48 linkage, abrogated the induction of γH2A-X
foci in Vpr-expressing cells (Belzile et al., 2010). Since K48-linked poly ubiquitin chains target
proteins for proteasomal destruction, it is tempting to speculate that the ubiquitination target
of Vpr is ultimately degraded.

This model predicts that Vpr would be using two different interfaces to bind to VprBP/DCAF1
and the putative target protein. The domain of Vpr that binds to DCAF1 was mapped to the
leucine-rich (LR) motif 60-LIRILQQLL-68 within the third α-helix of HIV-189.6 Vpr (Zhao,
Mukherjee, and Narayan, 1994). A Vpr mutant disrupting the DCAF1 interaction, Vpr(Q65R),
was described by Le Rouzic et al. (Le Rouzic et al., 2007). Consistent with the idea that
DCAF1-Vpr interaction is required for Vpr function, Vpr(Q65R) failed to induce G2 arrest
(Le Rouzic et al., 2007).

In contrast, truncation of the c-terminal 18 residues of Vpr [Vpr(1-78)] or replacement of
arginine at position 80 by alanine, Vpr(R80A), resulted in mutants with unaltered binding to
DCAF1, but unable to induce G2 arrest (DeHart et al., 2007; Le Rouzic et al., 2007). In addition,
co-expression of either Vpr(1-78) or Vpr(R80A) (Figure 1) with wild-type Vpr resulted in a
dominant-negative effect by either of the previous mutants (DeHart et al., 2007; Le Rouzic et
al., 2007).

Together, the above observations indicate that (a) binding of Vpr to DCAF1 is necessary, but
not sufficient, for induction of G2 arrest; and (b) the carboxy-terminal domain of Vpr is likely
required for the recruitment of a cellular protein, whose ubiquitination leads to G2 arrest (Figure
2).

Vpr-induced G2 arrest has two known downstream effects that likely contribute to the
pathogenesis of HIV-1. First, the transcriptional activity of the viral promoter is increased by
several fold during G2/M (Goh et al., 1998; Hrimech et al., 1999; Zhu et al., 2001), leading to
enhanced production of viral particles (Goh et al., 1998). Secondly, G2 arrest leads to the
commitment of infected cells to death by apoptosis (see below).
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6. Vpr is a potent pro-apoptotic protein
Vpr was found to be a potent inducer of cell death both when expressed alone or in the context
of HIV-1. Vpr-induced cell death has the hallmarks of apoptosis (Andersen et al., 2005;
Muthumani et al., 2002; Shostak et al., 1999; Stewart et al., 2000).

Recombinant Vpr was found to associate with purified mitochondria (Jacotot et al., 2000;
Vieira et al., 2000). This interaction was mediated via binding to the adenine nucleotide
transporter (ANT), a component of the permeability transition pore (PTPC) that resides at the
inner mitochondrial membrane (Jacotot et al., 2000; Vieira et al., 2000). The addition of
recombinant Vpr to purified mitochondria triggered mitochondrial membrane permeabilization
and release of pro-apoptotic proteins, such as cytochrome c (Jacotot et al., 2000; Vieira et al.,
2000).

Recent studies of ANT and cyclophilin D (an essential regulatory element of ANT (Tsujimoto
and Shimizu, 2007)) in knockout mice suggest that these mitochondrial pore components may
promote necrotic, but not apoptotic cell death (Baines et al., 2005; Kokoszka et al., 2004;
Nakagawa et al., 2005). In recent studies, siRNA-mediated depletion of ANT did not affect
Vpr-induced apoptosis, whereas depletion of another mitochondrial pore-forming protein, Bax
(Figure 2), effectively blocked apoptosis (Andersen et al., 2006).

An alternative explanation for Vpr-induced cell death is that apoptosis represents a downstream
consequence of prolonged G2 arrest (Andersen et al., 2006; Jacquot et al., 2007; Yuan, Xie,
and Chen, 2003). Specifically, the pro-apoptotic activity of Vpr was eliminated when cells
were artificially synchronized at the G1/S boundary and therefore not allowed to progress into
G2 (Andersen et al., 2006). Furthermore, G2 arrest and apoptosis induction by Vpr are
dependent on the activation of ATR, and phosphorylation of its target, BRCA1 (Andersen et
al., 2006). BRCA1 phosphorylation leads to GADD45α upregulation and induction of
apoptosis (Andersen et al., 2006) (Figure 2). The signaling events that connect GADD45α and
Bax are not known.

Tissue macrophages infected with HIV-1 are relatively resistant to the viral cytopathic effects
(Gartner et al., 1986; Gorry et al., 2005; Kedzierska and Crowe, 2002). Thus, macrophages are
considered one of the reservoirs for HIV-1 infection, and are capable of disseminating the virus
to various tissues including the brain (Ghorpade et al., 1998; Orenstein, Fox, and Wahl,
1997). We have observed that macrophages are refractory to Vpr-induced apoptosis
(Zimmerman et al., 2006). Western blot demonstrated the absence of three essential proteins
in the ATR signaling axis: ATR itself, Chk1 and Rad17 (Zimmerman et al., 2006). In view of
these results, we have speculated that the apparent lack of Vpr-induced cytopathicity in
macrophages may due to the absence of ATR signaling (Zimmerman et al., 2006).

7. Vpr modulates the expression of natural killer cell ligands
Activation of the DNA damage pathway proteins ATR and ATM, after cells were exposed to
genotoxic stress, resulted in the expression of ligands for the NK cell activation receptor, natural
killer group 2, member D (NKG2D) (Gasser et al., 2005; Guerra et al., 2008). While the
observations by Gasser et al. were obtained in the areas of cancer and genomic stability (Gasser
et al., 2005), they opened the possibility that a virus that is capable of inflicting genotoxic stress
may also induce NKG2D ligands. Specifically, two different teams tested whether Vpr-
mediated activation of ATR may trigger upregulation of NKG2D ligands (Richard et al.,
2009; Ward et al., 2009).

NKG2D is a single pass type II transmembrane protein consiting of 216 amino acid residues
(Houchins et al., 1991). This receptor exists on the cell surface as a homodimer that contains
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a single C-lectin domain on each chain. NKG2D is part of an oligomeric complex with the
transducing polypeptide DAP10 (Wu et al., 1999). DAP10 is a signaling adaptor protein that
contains a cytoplasmic YINM motif that allows the recruitment and subsequent activation of
phosphatidyl inositol 3-kinase (Wu et al., 1999). NKG2D is expressed on virtually all NK cells
in the blood and on subsets of activated CD8+ T cells, γδ T cells and NKT cells (Bauer et al.,
1999).

The ligands for NKG2D are are evolutionarily related to MHC class I molecules, although with
clear functional differences. Unlike MHC I molecules, NKG2D ligands are devoid of CD8
binding, do not load peptides, and fail to associate with β2-microglobulin (Bahram et al.,
1994; Groh et al., 1998). The human ligands for NKG2D include the transmembrane proteins,
MHC class I polypeptide-related sequence-A (MICA) and –B (MICB) (Bahram et al., 1994)
and the GPI-linked proteins, cytomegalovirus unique long 16 (UL16)-binding protein (ULBP)
1-4 (Cosman et al., 2001).

NKG2D ligands are expressed on certain tumor cell lines and in fetal tissues. Normal adult
tissues may express these ligands but at much lower levels than those found on cell lines
(Cosman et al., 2001). NKG2D ligands are induced on normal adult tissues after infection by
certain viruses (Jonjic, Polic, and Krmpotic, 2008). Binding of NKG2D ligands to NKG2D on
NK cells triggers a cytotoxic response as well as the release of multiple cytokines and
chemokines (Kubin et al., 2001; Pende et al., 2002). Because NKG2D ligation elicits strong
NK responses, viruses have developed strategies to down modulate NKG2D ligands on the
infected cell surface. For example, human cytomegalovirus, which induces the expression of
NKG2D ligands on infected cells, also encodes UL16 and UL142 that, in turn, cause
intracellular sequestration of the same ligands, resulting in inhibition of their function (Cosman
et al., 2001; Kubin et al., 2001).

HIV-1-infection of primary CD4+ T-cells leads to the induction of NKG2D ligand surface
expression (Cerboni et al., 2007; Ward et al., 2007). These molecules were not only found on
in vitro-infected primary CD4+ T-cell blasts but also on infected cells obtained from HIV-1-
infected patients after amplification of the virus-infected cells ex vivo (Fogli et al., 2008). In
addition, these studies, which used primary CD4+ T-cells infected with HIV-1 as targets for
autologous NK cells in cytotoxicity assays, revealed that NK cells can respond to the HIV-1-
infected cells in an NKG2D-dependent manner (Fogli et al., 2008; Ward et al., 2007; Ward et
al., 2009).

Recent studies have shown that expression of the HIV-1 Vpr protein is sufficient for induction
of expression of NKG2D ligands on the cell surface and that this action was mediated solely
through ATR (Richard et al., 2009; Ward et al., 2009). HIV-1 Vpr, however, only upregulates
the expression of ULBP-1 and -2 but not that of ULBP-3, MICA and MICB in primary CD4
+ T-cells (Ward et al., 2009). The upregulation of ULBP-1 and -2 proteins on the cell surface
was accompanied by increased mRNA levels for ULBP-1 and -2 (Ward et al., 2009). The
presence of ULBP-1 and ULBP-2 on HIV-1 infected cells is dependent on the ability of Vpr
to associate with the Cul4ADDB1/DCAF1 ubiquitin ligase (Richard et al., 2009; Ward et al.,
2009). Thus, the Vpr mutation, Q65R, which disabled binding of Vpr to DCAF-1, or
knockdown of DCAF-1, abolished the Vpr effect on ULBP-1 and -2 (Ward et al., 2009).

To determine whether the expression of ULBP-1 and -2 could trigger NK cell killing of infected
T-cells, NK cells were co-cultured with target cells infected with wild-type or Vpr-deleted
HIV-1. NK cells, when exposed to T-cells infected with a Vpr-deficient virus, were two-fold
less as efficient at lysing infected cells than when exposed to T-cells infected with a wild-type
virus (Ward et al., 2009). Moreover, blocking the NKG2D receptor on NK cells diminished
the lysis of T-cells infected with virus containing Vpr (Ward et al., 2009).
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In studies by Cerboni et al., HIV-1 Nef had been implicated in down-modulation of the NKG2D
ligands, MICA, ULBP-1 and -2 on CD4+ Jurkat cell lines (Cerboni et al., 2007). However, in
our recent studies we observed that deletion of Nef did not affect expression of these ligands
on primary CD4+ T-cells (Ward et al., 2009). The reasons for this discrepancy are not known.

Efficient lysis by NK cells requires the recognition of NKG2D ligands in combination with
co-activation receptors, such as 2B4 or NTB-A (Bryceson, Ljunggren, and Long, 2009;
Bryceson et al., 2005; Bryceson et al., 2006a; Bryceson et al., 2006b). The previous idea is
consistent with the observation that HIV-1 down modulates the ligands of 2B4 and NTB-A
(CD48 and NTB-A, respectively) on infected cells (Ward et al., 2007). Therefore, we speculate
that the modest killing effect that was observed in the presence of ULBP-1 and -2
downregulation (Ward et al., 2009) would be enhanced if simultaneous downregulation of 2B4
and/or NTB-A were abrogated. This remains to be tested.

8. Vpx as a paralog of Vpr
Viruses in the HIV-2/SIVsm/SIVmac lineage encode two proteins that are homologous to
HIV-1 Vpr, namely Vpr and Vpx. While HIV-2 Vpr shares the ability to induce G2 arrest with
HIV-1 Vpr (Fletcher et al., 1996; Planelles et al., 1996), HIV-2 Vpx has no effect on the cell
cycle and, instead, is required for efficient infection of non-dividing cells such as macrophages
and dendritic cells (Fletcher et al., 1996; Guyader et al., 1989; Pancio, Vander Heyden, and
Ratner, 2000; Yu et al., 1991). Vpx is thought to have arisen via a duplication of vpr within the
HIV-2/SIVsm/SIVmac group (Sharp et al., 1996; Tristem et al., 1992), which diverged from
the other primate lentiviral groups (Tristem et al., 1992). Given the common evolutionary
origin, the high degree of homology, and the divergent functions of Vpx with respect to HIV-1
Vpr, Vpx is considered a paralog of HIV-1 Vpr.

Vpx facilitates the nuclear import of pre-integration complexes and/or promotes the
accumulation of full-length viral DNA in non-dividing cells (Fletcher et al., 1996; Fujita et al.,
2008; Goujon et al., 2007; Sharova et al., 2008; Srivastava et al., 2008). To explain the ability
of Vpx to enhance lentiviral infection of dentritic cells, it has been proposed that Vpx
overcomes an unknown restriction factor (Goujon et al., 2007). It has also been proposed that
the restriction mechanism involves the ubiquitin/proteasome system, since treatment with
proteasome inhibitors has a similar effect to that of Vpx expression (Goujon et al., 2007).
Restriction factors are typically genetically dominant. In agreement with that, when Sharova
et al. fused permissive cells (infection of which does not require Vpx) with restricting ones,
the resulting heterokaryons had the restricting phenotype (Sharova et al., 2008).

The finding that HIV-1 Vpr manipulates the Cul4ADDB1/DCAF1 ubiquitin ligase prompted
studies to examine the interaction of Vpr and Vpx alleles from other primate lentiviruses with
DCAF1. It was shown that SIVMAC and HIV-2 Vpr interacted with DCAF1 (Le Rouzic et al.,
2007; Wen et al., 2007). Le Rouzic et al. found that the SIVmac Vpx, which has no apparent
effect on the cell cycle, also binds to DCAF1 (Le Rouzic et al., 2007). Binding of lentiviral
Vpr and Vpx proteins to DCAF1 is mediated by a highly conserved leucine-rich motif (Le
Rouzic et al., 2007). It is tempting, then, to speculate that Vpr and Vpx have preserved through
evolution the ability to recruit DCAF1, although for different purposes.

Two recent reports demonstrated that the interaction of Vpx with DCAF1 is required for the
enhancement of infectivity of non-dividing cells (Sharova et al., 2008; Srivastava et al.,
2008). These studies show that depletion of DCAF1 via RNA interference (Sharova et al.,
2008; Srivastava et al., 2008) or expression of a Vpx mutant, Q76A, devoid of DCAF1 binding
(Srivastava et al., 2008) ablated the enhancement of infectivity by Vpx.
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Unlike lentiviruses, gammaretroviruses, such as the murine leukemia virus (MLV) are unable
to infect non-dividing cells. Examples of physiologically relevant non-dividing cells include
monocytes, monocyte-derived macrophages (MDM), microglial cells and dendritic cells. In
the laboratory, non-dividing cells can artificially be generated by treatment of immortalized
cell lines with certain chemicals, such as aphidicolin, an inhibitor of DNA polymerases.
Kaushik et al. recently demonstrated that the restriction in primary cell types is of a different
nature from that observed in artificially arrested cell lines (Kaushik et al., 2009). While the
block to MLV replication in macrophages is at or prior to the step of reverse transcription, this
is not the case in arrested HeLa cells, where reverse transcription proceeds similarly to that in
dividing cells (Kaushik et al., 2009). Kaushik et al. also showed that the ability of Vpx to
overcome a putative restriction to SIV and HIV-1 in non-dividing primary cells was also active
in overcoming the restriction to MLV in such cell types. The ability of Vpx to overcome the
block to MLV infection was shown by preinfection with viruses encoding Vpx, but also by
constructing a chimeric MLV Gag protein encoding SIV p6. SIV p6 is binds to Vpx and
mediates Vpx encapsidation in virus particles. This p6-chimeric MLV acquired the ability to
infect macrophages, but only when it was produced in the presence of Vpx (Kaushik et al.,
2009).
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Figure 1.
Diagramatic structure of Vpr as determined by nuclear magnetic resonance (adapted from
Morellet et al., 2003). Cilinders denote regions of alpha helix comprised between residues
indicated by numbers. N, amino-terminus. C, carboxy-terminus.
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Figure 2.
Signaling pathways proposed to mediate induction of G2 arrest, ULBP-1 and -2 expression,
apoptosis, and LTR transactivation by HIV-1 Vpr. Ub, ubiquitin.
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