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Abstract

The linear “Ising” model, which has been around for nearly a century, treats the behavior of linear
arrays of repetitive, interacting subunits. Linear “repeat-proteins” have only been described in the
last decade or so, and their folding energies have only been characterized very recently. Owing to
their repetitive structures, linear repeat-proteins are particularly well suited for analysis by the
nearest-neighbor Ising formalism. After briefly describing the historical origins and applications of
the Ising model to biopolymers, and introducing repeat protein structure, this chapter will focus on
the application of the linear Ising model to repeat proteins. When applied to homopolymers, the
model can be represented and applied in a fairly simplified form. When applied to heteropolymers,
where differences in energies among individual subunits (i.e. repeats) must be included, some (but
not all) of this simplicity is lost. Derivations of the linear Ising model for both homopolymer and
heteropolymer repeat-proteins will be presented. With the increased complexity required for analysis
of heteropolymeric repeat proteins, the ability to resolve different energy terms from experimental
data can be compromised. Thus, a simple matrix approach will be developed to help inform on the
degree to which different thermodynamic parameters can be extracted from a particular set of
unfolding curves. Finally, we will describe the application of these models to analyze repeat-protein
folding equilibria, focusing on simplified repeat proteins based on “consensus” sequence
information.
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|. Historical overview of Ising models and motivation for the present review
A. Origins

The history of the “Ising” model, or perhaps more appropriately, the Ising-Lenz model, has
been described extensively (Brush, 1967; Niss, 2005). Originally developed to study
ferromagnetism, the model can be traced to the dissertation of Ernst Ising (Ising, 1925), and
to an earlier proposal by Wilhelm Lenz (Lenz, 1920). At the time, Ising was directly connected
to Lenz, as Ising carried out his dissertation work on the model under Lenz’s guidance at
Hamburg University. Since that time, the model (with which Ising’s name is almost exclusively
associated) has been applied to study a wide range of cooperative phenomena in one, two, and
three-dimensions, including phase separation in mixtures, phase transitions in single-
component systems (the lattice gas model), and cooperative phenomena in linear biopolymers.

" To Whom Correspondence Should be Addressed: barrick@jhu.edu TEL (410) 516-0409 FAX (410) 516-4118 .



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Aksel and Barrick

Page 2

It seems unfortunate that Ising did not continue in this area, in part because he was discouraged
that, in his view, the model could not capture ferromagnetic transitions (Brush, 1967).

B. Application to linear biopolymers

Although the Ising model has been used to describe order-disorder transitions in a wide variety
of diverse systems, the one-dimensional Ising model has been particularly useful for
conformational transitions in linear polymers. These transitions, which can be categorized as
“helix-coil” transitions, include the equilibria between the a-helix- and coil in peptides
(Schellman, 1958; Zimm and Bragg, 1959; Lifson and Roig, 1961), and various equilibria of
DNA and RNA, including double-helix formation (Zimm, 1960; Crothers and Kallenbach,
1966), and stacking transitions of single strands (Applequist and Damle, 1965; Poland et al.,
1966). This literature, along with a very clear development of analytical models, is presented
in a beautiful monograph by Poland and Scheraga (Poland and Scheraga, 1970). More recent
applications include binding of protein ligands to repetitive structures such as DNA and protein
filaments (McGhee and von Hippel, 1974; De La Cruz, 2005).

In this review, we develop aspects of the nearest-neighbor or Ising model in the context of
linear repeat proteins, emphasizing key features that are pertinent to recent experimental studies
(including heterogeneous, homogeneous, and “capped” structures, see below). We focus both
on the theory and on how it can be used to analyze experimental data. It is our aim to provide
enough detail so that all steps of the derivation can be followed (from the basic model to the
development of the partition function, and then to modeling equilibrium unfolding transitions),
while avoiding specific features that apply exclusively to other types of linear biopolymers. In
addition, we will include a discussion of some practical issues associated with determining the
model-dependent parameters, emphasizing the relationship between these parameters and the
data needed for their accurate determination.

Il. Linear repeat proteins and their connection to linear Ising models

The structures and global stabilities of linear repeat proteins have been described in a number
of reviews (Groves and Barford, 1999; Kobe and Kajava, 2000; Kajava, 2001; Mosavi et al.,
2004; Main et al., 2005). The units of repeat proteins are constructed from tandem elements
of secondary structure units (a-helix, g-strand, P1I helix, turn), arranged in a large loop. The
length of individual repeats is approximately 20-40 residues, depending on the type of repeat.
Typically, individual repeats show primary sequence similarity, and in most cases repeats were
identified by primary sequence before structural details were available. However, some repeats
show little or no obvious repetition at the primary sequence level. Even when there is repetition,
sequence identity from one repeat to the next is typically around twenty five percent. Thus,
although consensus sequences can be identified, sequences of natural repeats differ
significantly from the consensus.

Three types of repeat proteins that have been amenable to structural and thermodynamic
analysis and simplification through consensus information are ankyrin- (ANK), leucine-rich-
(LRR), and tetratricopeptide (TPR) repeat proteins (see (Kloss et al., 2008) for review; also
(Courtemanche and Barrick, 2008; Kloss and Barrick, 2008)). TPR and ANK repeats are
composed of a-helices and turns, with two short turns connecting the TPR helices, and one
short turn and one extended loop connecting the ANK helices. In contrast, LRR proteins contain
a B-strand that packs against strands of neighboring repeats to form a contiguous sheet.
Depending on the subtype, LRRs contain either an a-helix, a 31¢ helix, or an extended PPII
(Kajava, 2001).

In linear repeat proteins, adjacent repeat units pack against their neighbors in a roughly linear
array (Figure 1). Depending on the shape and packing of repeats, different types of repeats
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typically show regular deviation from linearity (Kobe and Kajava, 2000), displaying twist from
repeat to repeat (particularly pronounced for TPRs) and/or curvature along the entire stack
(particularly pronounced for some LRR subtypes). For some repeat proteins, such as WD40
domainsand TIM barrels, curvature is so extreme that a “closed” or circular structure is formed.
Since such closed proteins have numerous sequence-distant interactions, they are not easily
analyzed using nearest-neighbor thermodynamic models, and will not be discussed here.

Linear repeat proteins have two features that make them ideal subjects for simple nearest-
neighbor models. First, as described above, they are constructed of a repeating unit at the level
of secondary and tertiary structure; repetition can be extended to the level of primary sequence
using consensus information (see below). This translational symmetry reduces the number and
type of energy terms required to describe stability, allowing different regions of the molecule
to be described in the same way. Second, as can be seen in inter-residue contact maps, direct
contacts are limited to repeats that are immediately adjacent in sequence, which justifies using
a nearest-neighbor approximation to describe folding.

Given this structural simplicity, the free energy of repeat protein folding may be expected to
have two dominant contributions: the intrinsic folding of individual units (which we will call
4G;) and the interfacial interaction of neighboring repeats (4G; j+1; Figure 2).
Thermodynamically, the second term is similar to a cooperative term describing short-range
interactions in the peptide helix-coil transition (although the statistics are often formulated
differently to capture backbone hydrogen bonding between residues i andi+4), and to the
stacking interactions in DNA duplex formation. As in these simpler systems, various levels of
approximation can be used to analyze unfolding transitions with nearest-neighbor models.
Because naturally occurring repeat proteins are quite heterogeneous at the primary sequence
level, a homopolymer approach (treating all the repeats as identical) may not be appropriate.
However, studies from a number of labs have shown that stable repeat proteins of various types
(ANK, TPR, LRR) can be built of repeat arrays that are nearly identical in sequence, typically
matching very closely to the consensus sequence for that particular repeat (Mosavi et al.,
2002;Binz et al., 2003;Main et al., 2003). In principle, such consensus arrays can be well-
modeled using a homopolymer approach (Figure 2B; (Main et al., 2003)), although in most
cases polar substitutions at the terminal repeats are required to maintain solubility, introducing
an intermediate level of heterogeneity (Wetzel et al., 2008).

lll. Formulating a homopolymer partition function and the zipper
approximation

The partition function, or sum over states, is central to analysis of the thermodynamic properties
of repeat proteins, their populations, and their folding. Here the partition function will be
developed for a homopolymeric linear system as a summation. As articulated by Zimm and
Bragg in the late 1950s (Zimm and Bragg, 1959), this summation is particularly useful for short
chains, thus keeping the number of terms in the sum manageable. The summation also
simplifies to a useful approximate (closed) form in the high cooperativity limit.

One intuitive way to build a molecular partition function, g, for repeat protein folding, is to
represent the statistical weight of each conformation (for a linear Ising model there will be
2" total) as the concentration of each conformation, compared (as a ratio) to an arbitrary
reference conformation. By choosing the state in which all n repeats are unfolded (U, as the
reference state, such ratios are equivalent to equilibrium constants for folding, and are thus
related exponentially to the intrinsic folding energy of each repeat (4G;) and the interfacial
pairing energy between neighbors (4G; j+1). With this reference, the molecular partition
function can be written
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The inside sum in equation 1 is taken over all microscopic configurations which have i folded
repeats (F;). Because of the dependence of overall folding energies on interfacial interactions,
these microscopic configurations can differ in energy even though they have the same number
of folded repeats. The number of interfaces is maximized when folded repeats are clustered
together, whereas gaps separating folded repeats decrease the number of interfaces. Thus,
converting equation 1 to a sum of equilibrium constants k and t for intrinsic folding and
interfacial interaction (or exponentials in energies) requires the number of gaps between folded
segments to be explicitly stated:

n i-1

q:1+229i‘3Ki#717g

i=1 g=0 (2)

In this equation, Q; 4 is the number of ways that i out of n folded repeats can be arranged with
g gaps.

Unfortunately, the degeneracy in equation 2 is rather complex even in open form, and is not
particularly useful except for short arrays (low n), where each term in g can be given explicitly.
However, in the limit of high interfacial stability, which eliminates gaps between folded
repeats, the degeneracy (Qi,g=0) and the partition function become particularly simple. When
all i folded repeats are coalesced into one structured segment (g=0), there are n—i+1 ways to
arrange the structured segment. This approximation is often referred to as the “zipper model”
because structure (folded repeats in this case) zips up as a single block. The partition function
for the zipper model can be written as

n o
g =1+ (n—i+) k7!
i=1
n .
=147 (n - i+1) (k1)
i=1

=1+7 1 (n+1) Z (kr) =771 Z i(k7)!
1 1 i= 1

=l+77! (n+1) ;l(KT)I — Kz EI(KT)I

()]

Both sums in the last line of equation (3) express partial geometric series in the variable «z,
which can be written in closed form as

Z( o _KT( (k)" =1)

kT —1

Substituting this closed form expression into equation (3) gives

g=1+

k(n+1) ({kt)" = 1) s d (KT({KT}” - l))

kTt —1 d (k) kt—1 (4)
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Differentiating the second term and rearranging gives a closed form of the partition function:

k({kt)™! = {n+1) kT4n)

g=1+
(kT = 1)* (5)

With this relatively simple expression for the partition function, populations and associated
observable properties can be calculated. Of primary importance is the fraction of repeats that
are folded, which is given as

n n . i i n
_1 .1 -ll—l+l)K'T"1_ . c i1 ie1
0 —;lei—;ZI—‘ 7 —ﬁZ(H—I+1)IK' T
i=0 i=0 i=1
n

—xd - i -1

_,quk{1+i§(n i+1) k' }

—xdg

" nq dx

_qulnq

“ndlnk (6)

where pj is the fractional population of the it" partly folded macrostate. Finding 6 by
differentiating g with respect to « can be understood by recognizing that « serves as a “counter”
for folded repeats. For example, conformations with four folded repeats will have four powers
of x. The penultimate expression, which is general, and applies even when the zipper
approximation does not hold, provides the simplest form for calculation of the fraction folded
as a function of «, 7, and n, given equation 5:

K n{kt)™2 — (n+2) k)" + (n+2) kT — 1

n (kt—1) (kt = 1)*+k ({KT}”+1 —{n+1} KT+n)

(7)

Equilibrium unfolding transitions can be derived from (or fitted using) equation (7) by
introducing an explicit dependence on an external variable (temperature, pressure, or
denaturant) to either , z, or both parameters. In this review we will primarily focus on
denaturant-induced unfolding. In Ising analysis of repeat protein unfolding, statistical weights
have been have been assumed to vary exponentially with denaturant (linear in terms of free

energy):

K (%) :e*(AGi)/RT:e*(AGm:O ’"'"["']) /RT (8A)

7(x) :e*(AGi.i»fl)/RT :e’(AGi.iﬂJno M+l [X]) /RT (8B)

Here, [x] represents molar denaturant concentration, m; and m; j+1 are denaturant sensitivities
of the intrinsic and interfacial terms, and 4G; oo and 4G; j+1 10 are intrinsic folding and
interfacial interaction energies in the absence of denaturant. This form of denaturant
dependence has been used extensively for globular protein folding studies (Pace, 1986; Street
et al., 2008).

Although in principle both the intrinsic and interfacial stability may be affected, most studies
of repeat-protein denaturation have attributed the effect of denaturant solely to the intrinsic
folding constant, « (Mello and Barrick, 2004; Kajander et al., 2005; Wetzel et al., 2008).
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Assuming intrinsic folding involves formation of secondary structure elements (Figure 2),
whereas the nearest-neighbor interaction corresponds to packing of neighboring repeats, this
partitioning is consistent with a growing body of evidence suggesting that denaturants
destabilize proteins largely by acting on the backbone, and thus should primarily destabilize
units of secondary structure rather than packing interactions between such structures (Scholtz
etal., 1995; Auton et al., 2007; Bolen and Rose, 2008). Moreover, this partitioning is consistent
with recent global analysis from our laboratory on denaturant-induced unfolding of large
numbers of consensus ankyrin repeat unfolding transitions (TA & DB, in preparation).

The first application of the 1D-Ising model to repeat protein folding involved a series of
constructs in which ankyrin repeats were deleted from one or both ends of the Notch ankyrin
domain (Mello and Barrick, 2004). By analyzing the free energies of unfolding of these
constructs using a set of linear equations, a free energy contribution originating from each
repeat was obtained. Because of the way the deletion series was constructed, analysis yielded
an estimate of the intrinsic stability (4G;) of one of the repeats of +6.6 kcal/mol and an average
interfacial stability (4G; j+1) of —9.1 kcal/mol. These parameters were used to evaluate the
populations of folded, unfolded, and partly folded states as a function of denaturant
concentration, using the zipper approximation, which confirmed the all-or-none nature of the
unfolding transition observed experimentally (Mello and Barrick, 2004).

IV. Matrix approach: homopolymers

The zipper model assumes that the folding of each repeat is highly coupled to its neighbors.
High coupling allows conformations in which stretches of folded repeats are separated by
unfolded repeats to be ignored. However, if cooperativity between adjacent repeats is low, or
repeat arrays are long, these intermediates will be significantly populated, and must be
accounted for. In this section we will present a simple matrix-based derivation of the partition
function for the folding reaction of “homopolymeric” repeat proteins (i.e. all repeats are the
same) that accounts for all partly folded conformations in a very compact way. This “matrix-
method” has been widely used to study one dimensional interacting biological systems (Zimm
and Bragg, 1959; Poland and Scheraga, 1970). In addition to providing a full description of all
partly folded states, this matrix-based form can be used to analyze experimental unfolding
transitions to determine 4G; and A4G; j+1.

Before we show how the matrix representation of the partition function can be manipulated to
analyze unfolding curves, we will use a recursion-based approach that justifies the matrix form
of the partition function. Although the matrix-based form of the partition function can easily
be used without a detailed understanding of its origin, and its form is often justified simply by
the fact that the rules of matrix multiplication combine statistical weights in the appropriate
way, we feel that an understanding of the origins of the matrix method will result in a deeper
understanding of its application.

In the homopolymer approximation, each repeat has the same intrinsic folding energy (4G;j),
and the same interaction energy with its neighbors (4G; j+1 for all i repeats; we will retain the
subscript i for use below, although the homopolymer approximation makes all n repeats
identical). The free energy of any particular configuration, relative to the fully denatured state
(Un above), can be written as

n n—1
AGOZZ(SJ'AG,'+25J'5]'+1AG,’_,'+1
=1 =
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where d;=1 if repeat j is folded, O if it is unfolded. With this free energy relationship, the
partition function of the homopolymer system with n identical repeats can written as:

Hn

g(n)= Z e—AG°/RT

state=1 9)

Long repeat proteins (large n) leads to a very large number (2") terms in the sum, and is
impractical for calculations and analysis of data. Instead, a simpler, more compact form of q
(n) in terms of 4G; and 4G; j+1 and is needed. One approach to simplifying the sum is to derive
an expression for g(n) in terms of the partition function of a construct that contains fewer repeats
(g(n — 1), for example). Repeating this method recursively defines q(n) in terms of
progressively smaller (and simpler) partition functions, and generates the matrix representation
of the partition function in terms of AG; and 4G; j+1 in the process. Starting with g(n) in terms
of q(n — 1), the nt" repeat can be added to an n-1 array in one of the two states: folded (the
partition function that counts all such states will be called g¢(n)) or unfolded (q,(n)). Applying
the same dichotomy to the n-1 state divides q(n — 1) into two halves, one in which the last
(n-1) repeat is folded (gs(n — 1)), and one in which the last repeat is unfolded (g,(n — 1)).

When the nt" repeat is added to the C-terminal end in a folded state, g¢(n) can be written in
terms of gg¢(n — 1) and gy(n — 1):

ar (n) =qf n-1) e—(AGi+AGi.i+l)/RT+qu (n-1) e—(AGi)/RT

The equation above simply states that if repeat n-1 is folded (with partition function g¢(n — 1)),
adding a folded repeat (with intrinsic energy AG;) at position n creates a new interface

(AG; j+1). However, if repeat n-1 unfolded is (with partition function q,(n — 1)), adding an
unfolded repeat at position n does not create a new interface. Likewise when the nth repeat is
added to the C-terminal end in an unfolded state, g,(n) can be calculated using the same
approach:

0/RT 1) /KT

qu(n) =qr(n—1)e"™" +qy (n—
=45 (n - 1) +qu (n - 1)

The expressions for g¢(n) and q,(n) are linear equations in the variables g¢(n — 1) and qy(n —
1):
a5 (I’l) :e—(AG,’JrAG,;H.l)/Rqu (Vl _ 1) +e—AGi/RTqu (n _ 1)

qu=qr(n—1)+g,(n-1)

and can be consolidated with a simple matrix relationship:

l ar (n) —l e—(AG,-+AG,-_,-+1)/RT ¢~ AGi/RT [ qr n-1)
qu (I’l) - 1 1 qu (I’l - 1)
| kT ok gr(n—1)
B 1 l qu (n - 1)
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The second line comes from substituting statistical weights x = e AGV/RT and 7 = ¢“AGi,i+1/RT
for the free energy terms.

Continuing the recursion to the n-2 repeat gives

qr (n) | kT« KT K qr(n—=2)
- 1 1| gu(n=2)

qu (n) 1 1
|kt k|| gr(n-2)
11 qu(n—2)
This recursion can continued all the way to the first (N-terminal) repeat to give

o qu (1)

qu(n) H KT K Jll g5 (1)
qu (n)

gs (1) and g (1) are the statistical weights for a single N-terminal folded and unfolded repeats,
and are simply

qr ()=«
q.(1)=1
Thus

gr(n) | | k1« e
qu (n) 11 1

Multiplying the LHS by the row vector [1 1] sums g¢(n) and q,(n) to give the full partition
function, q(n), as

g =[1 1][ qf(")]

qu (n)
kt ok "7
L B 1

By expanding the column vector on the RHS in terms of the statistical weight matrix, q(n) can
be expressed as the nt" power of the matrix

n—1

g(m =[1 1][1 1} [1 X
0
1

-]

One final rearrangement of q(n), which will be helpful for further calculations, is given by
taking the transpose of the equation above (as q(n) is a scalar, it is unaffected by transposition):
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n T
KT K 0
o o[ 5[[2]
T m T
AT 3]
kr 1" 1
-0 [
Hl
=[0 l]W[l}

where the weight matrix is represented using W. The above equation allows g(n) to be computed
without having to enumerate all 2" terms explicitly. Moreover, it can be simplified by treating
it as an eigenvalue problem, which greatly simplifies the product of the statistical weight
matrices. In this treatment, W is substituted by a matrix product

w=rDT!

where D is a diagonal matrix of the eigenvalues (11, A5) of W, and T is an invertible matrix of
its eigenvectors (Strang, 2005). This substitution leads to

g(n) =0 1](TDT*1)”{ H

=0 1(rpr*)(rpr')...(rDT) | i

=[0 1] TDT‘TDTI...TDTll i J

=[0 l]TDD...DTll i J

=[0 l]TD”T‘I il
B a0l 1
=0 1]T[O AZ]T [1]
1
1

270
=[0 l]T[ 1 ]T‘l[ ]
0 A4 (10)

The eigenvalues of W are obtained by solving the characteristic equation det(W — Al) = 0,
yielding the two roots:

A= (KT+1+ V(KT — 1)2+4K) /2;
day fdk=T/2+ (k7* = T+2) /2 (kT = 1)*+4x W1A)

b= (KT+1 — (kT — 1)2+4K) /2;
dy/dx=7/2 — (k* = 7+2) /2 (kT = 1)*+4« (11B)

(the derivatives will be used below). Two corresponding eigenvectors of W are
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—)[l—/ll]—)[l—/lg]
]l: ’)‘_:
—K —K
and combine to give
=1 = o o) gL | ¢ -l
—K K k(A1 =) | « 1-4

Combining these eigenvalues and eigenvectors into equation 10 gives a relatively simple
closed-form expression for q(n):

K(l _ T) (/ll” _ /12”) +/lln+1 _ /lg’Hl
A - A

qg(n)=

By differentiating q(n) with respect to « as in equation (6) above, the fraction of folded repeats
(6) can be calculated as

o o _ n_ n n—-1041 _ n—l&)] ( nddy _ /10/12)
k|- (1) |4 - i (4 G- TG ) |+ D (U - 5

n| A-d k(1= (A7 = a2) +n+t = e

(12)

Values of A1 and /,, along with derivatives with respect to x, can be inserted into equation 12
from equations 11A and 11B above. The denaturant dependence of the fraction of folded
repeats can be obtained by combining equations 8A (and if necessary, 8B) into equation 12.
Finally, the fraction of folded repeats can be used to analyze experimental equilibrium
denaturation curves to determine the underlying thermodynamic parameters through the
equation

Yobs ([x].m) = (A7 [x]+B7) 0 ([x].n) + (A, [x] +B,) (1 = 6([x] .m))

where Yqps represents an observed signal (often far-UV circular dichroism or tryptophan
fluorescence). The A’s and B’s allow for a linear denaturant dependence of the signals from
folded and unfolded repeats, and combine to give native and denatured baselines. In principle,
when analyzing multiple repeat proteins of different length (n), all the baseline parameters
should be describable using a single pair of values for each baseline. However, owing to modest
uncertainties in concentration, fitting separate baseline parameters may be preferable to
introducing such a constraint, which may degrade the quality of the fit in the equilibrium
transition region and compromise fitted thermodynamic parameters (Johnson, 2008).

VI. Matrix approach: heteropolymers

A primary motivation for analyzing consensus repeat protein unfolding is that each repeat can
be considered to have the same stability and the same interaction energy with its neighbors,
greatly decreasing the number of unknown thermodynamic parameters. However, repeat
protein arrays built of a single consensus sequence seem to have solubility problems, likely
owing to large hydrophobic interfaces present at the ends of each array. In crystal structures
of a fragment of the Notch ankyrin domain, a head-to head crystallographic dimer is seen
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(Lubman et al., 2005), suggesting that the end repeats can indeed mediate association by such
an interface. Such associations are also seen crystallographically in superhelical consensus
TPR arrays, and actually displace the C-terminal capping helix (Kajander etal., 2007). Capping
one or both termini with repeats bearing polar or charge substitutions solves this problem, but
introduces new thermodynamic parameters, and more importantly, requires more complex
models for analysis.

In this section, we will describe how the partition function for a heterogeneous repeat protein
can be manipulated to simulate populations and folding transitions, and more importantly,
fitted to equilibrium folding transitions. As above, we will use a matrix representation of the
partition function, which again can be simplified from an open sum that enumerates each
conformation. For generality, our derivation will treat each repeat as different, having different
intrinsic folding (4G;) and interaction energies (4G; j+1). For many repeat protein folding
studies (especially capped consensus arrays), an intermediate level of complexity, in which
some terms are identical and some are unique, should be sufficient to model folding and
determine underlying energetic parameters, and may provide a more convenient representation.

We will start with the same matrix formulation we presented for homopolymers, and define a
unique weight matrix for repeat:

g =0 1]W1W:---W,,{ | }

KiTi—1i 1
VV,' iti—1,
Ki 1
ki =e AGi/RT
T =e hGulRT (13)

As demonstrated above for a homopolymer, the rules of matrix multiplication combine
statistical weights in such a way as to produce the appropriate Boltzmann factor for each
conformation. That derivation, which considered g(n) in terms q(n-1), q(n-2)..., can easily
accommodate unique, position-specific coefficients, rather than a single value for x and for z,
to generate q(n) as in equation 13. The index on the interaction parameter in equation 13
represents the interaction between repeat i and the previous repeat (i-1) because the rows of
the statistical weight matrix represent the folding status of the previous repeat. In the partition
function for the homopolymer, diagonalization provides a huge simplification, converting a
product of n identical matrices to a product of only three (TDT~1). This is not possible for the
heteropolymer partition function, because the n weight matrices are different (as are their
eigenvalues and eigenvectors). Thus, we are stuck with a product of n matrices as the partition
function for a heteropolymeric repeat protein. Although when multiplied out this product has
no fewer terms than a general summation such as equation (9) above, owing to its compactness
it is considerably easier to generate and manipulate using matrix manipulation programs such
as Matlab (http://www.mathworks.com/) and Scilab (http://www.scilab.org/).

As described above, the quantity of greatest interest in terms of connecting with experiments
is the fraction of the repeats folded, 6. For homopolymeric systems, an expression for 6 could
be generated by differentiating the partition function with respect to «, and dividing by q (see
equation 6). With the closed-form homopolymer partition function, this operation is
mathematically quite simple. Here, not only is the partition function more complex, there is
no single value of « that can be used as a counter of folded repeats. Moreover, the option of
calculating an open sum of populations for all possible conformations and multiplying by the
number of folded repeats is cumbersome (2" terms) and for large arrays of repeats, fitting
requires significant computer memory.
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Instead, we favor a summation over the n positions of the folded repeat, calculating the
probability that each of the n repeats is folded, instead of the probability of each of the 2"
conformations. Clearly, the fraction of repeats that are folded is simply the average probability
that each of the repeats is folded:

1 n
6==>"0;
n
i=1

where 6; is the probability of finding it repeat in folded state. ¢;, can be connected to the q
(n) through a sub-partition function g;, which sums over all the conformational states in which
the ith repeat is folded. These quantities can be related by recognizing that the probability of
finding the it repeat folded is simply the sum of conformations where it is folded divided by
all the conformations, or

_ qi
q(n)

i

giving

1 n
o= i
ng (n) ;q

This summation emphasizes the fact that g(n) only needs to be calculated once. In contrast,
gj needs to be calculated n times (once at each position), but it can also be calculated in matrix
form:

KiTi—1 0

qi=1[0 1]W1W2-~~Wi—1[ ki 0

1
oo 1

In the statistical weight matrix, the second column corresponds to all of the conformations
where the it repeat is unfolded. Setting this column to zero in the W; matrix of g; eliminates
all of these conformations without affecting terms for conformations where the ith repeat is
folded.

VI. Solvability criteria for Ising models applied to repeat protein folding

The above sections derive equations for nearest-neighbor partition functions for repeat protein
folding. These partition functions can be used to evaluate populations of partly folded states,
and generate folding curves, given a set of thermodynamic parameters (4G;, 4G;j j+1, and
denaturant dependences). Subsequent sections will show how these models can be applied to
analyze experimental folding curves, and will analyze fitted thermodynamic parameters for
different repeat types and sequences. However, in this section, we will describe a way to
evaluate whether a set of thermodynamic parameters is likely to be determined with any
meaningful accuracy, given a set of data (folding transitions for constructs of different length,
and potentially different sequence). This analysis will also connect to a closely related issue
of determining whether a chosen model is mechanistically correct.

Much has been written regarding criteria for testing different models and estimating
uncertainties of parameter values, given a set of experimental data (see (Johnson, 2008) for a
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recent review). Models are typically rejected based on non-random residuals and/or physically
unreasonable fitted parameter values. Confidence intervals on parameter values can be
estimated by statistical methods such as bootstrapanalysis, jack-knife analysis, or simple
repetition of the experiment (all resampling methods that differ in their severity), analysis of
the parameter covariance matrix, systematic exploration of how the variance of the fit increases
as parameters are varied, and Monte Carlo simulation (Johnson, 2008). It is an unfortunate fact
that these critical tests usually come after data have been collected. Experimental analysis of
repeat protein folding is a laborious undertaking (involving cloning of multiple genes,
expression and purification of multiple proteins of different length, and quantitative analysis
of each protein (preferably multiple times) by denaturant titrations), and it would be good to
know in advance whether such efforts are likely to yield significant thermodynamic insight.

Although many aspects of the sequence in which data acquisition precedes parameter and
model testing are largely unavoidable, it is often the case that experiments can be designed a
priori so that parameters of interest can be determined with confidence, and alternative models
can be compared and discriminated. This is particularly true for repeat proteins, given their
simple linear architecture, and the simple form of the linear free energy relationships implicit
in the linear Ising model. Here we will describe how equilibrium folding studies on repeat
proteins can be designed to maximize the information content of the results, given the
framework of a particular thermodynamic model. In addition to helping to design future
experiments, these ideas help to interpret published studies on repeat-protein folding.

By considering the free energies of folding of a collection of repeat proteins of different length
as a system of linear equations, simple ideas from linear algebra relating to solvability can be
used to determine whether parameters are likely to be well-determined, and if not, what
additional constructs would be required to improve the situation. For a set of repeat proteins
of different length and composition, the free energy difference between the fully folded and
fully unfolded states can be written as

AG°= Z nAGix+ Z njAG; i1
k  repeat types J  interface types

The first sum takes into account the different intrinsic energy terms, and the second sum takes
into account the different interaction terms. Table 1 provides some examples, both for a
homopolymic repeat-protein and for a heteropolymeric repeat-protein with unique N- and C-
terminal caps.

For a set of consensus repeats without caps (lines A-C, Table 1), the three free energy equations
can be written as

32 AG®,
43 [ AAG(-;-R ]: AG?,
5 4 ii+1 AG®

c

where 4G° is the free energy difference between the native and denatured states for the
reaction defined on line A, and other 4G° values are analogously defined. Based on simple
linear equation theory, this set of linear equations has a unique solution!, because the columns
(and rows) of the matrix on the left-hand side are independent. As a result, the matrix has full

Lif there are experimental errors associated with the column on the right hand side, the solution will be inexact, but can be found using

least-squares.
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column rank (r=2); that is, elimination produces a pivot in every column (Strang, 2005). This
is fundamentally a result of the fact that linear repeat proteins have one more repeat than
interface, and thus a length dependence can resolve these two parameters.

For a set of consensus repeats with caps (lines D-G, Table 1), the free energy equations can be
written as

1112 AG, AG®,
1 213 AG, | | AG®,
1 31 4 AG, || AG®,
1 4 1 5| AGi AG°,

Although there are enough equations to solve four unknowns (the column vector on the left-
hand side), the columns are not independent. The first and third columns are equal; moreover,
the sum of the first and second columns is equal to the fourth. Thus, the matrix lacks full column
rank (again, r=2). As a result, this set of linear equations has an infinite number of solutions.
Thus, the parameters cannot be uniquely determined by elimination. This problem will not be
rectified by including additional equations (constructs) that retain both N- and C-terminal
capping repeats.

Instead, if a set of four (or more) constructs is considered in which the caps vary along with
the length, unique intrinsic folding energies can be determined for both the N- and C-terminal
caps. For example, lines B, F, H, and J of Table 1 define the system of equations

0 403 AG, AG°,
1 31 4 AG, | | AG®,
1 303 AG. | | AG°,
0 3 1 3 |[ AGiiy AG®,

The columns of this matrix are now independent, showing full column (and row) rank (r=4).
Thus, the four thermodynamic parameters can be uniquely determined (although adding
equations by including additional constructs will likely improve the robustness of the solution,
given uncertainties in free energy measurements).

In principle, this type of analysis could be applied directly to experimental unfolding free
energies determined by linear extrapolation from denaturant-induced unfolding transitions
(Pace, 1986; Street et al., 2008) assuming a two-state (high cooperativity) model. However, if
partly folded states are populated in the transition, either because of moderate values of

AG; j+1 or because stability is unevenly distributed along the repeat array, such free energy
estimates will be incorrect. In such cases, globally fitting the denaturation transitions directly
using an Ising model, which takes partly folded states into account, may improve estimates of
free energy terms, in favorable cases providing access to parameters that could not be
determined based on considerations of matrix rank above (see discussion of consensus ankyrin
arrays below). Nonetheless, this simple analysis is extremely useful both for thinking about
what constructs need to be studied to analyze a particular model, and for thinking about why
certain parameters don’t appear to be well-determined, given a set of data. This type of rank
analysis can also be applied to models that can accommodate differences between interfaces,
models that include non-nearest-neighbor interactions, and by differentiation with respect to
denaturant concentration, partitioning of m-values into intrinsic and interfacial components.
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V. Matrix homopolymer analysis of consensus TPR folding

The first study in which a homopolymeric Ising model was used to analyze repeat protein
folding involved a collection of consensus TPR arrays of different lengths (Kajander et al.,
2005). As described above, TPR units are composed of two anti parallel a-helices (termed A
and B) and are arranged in a linear array in which adjacent repeats twist along the long axis of
the domain, like the steps in a spiral staircase (Figure 1C). Using TPR units of identical
consensus sequence (termed CTPRan by the authors, where n represents the number of full 34
residue TPR units in a given construct), Regan and coworkers created a series of constructs of
different lengths that were amenable to analysis using a homopolymeric Ising model (section
I11 above). However, as with other consensus repeat arrays, to make their CTPR proteins
soluble, the authors added an additional polar C-terminal capping helix (a variant of helix A
with four polar substitutions).

By monitoring helical structure using CD spectroscopy as a function of guanidine
hydrochloride concentration, Kajandar et al. were able to generate and analyze unfolding
transitions for constructs containing from two to ten full TPR repeats, as well as the C-terminal
cap (CTPRa2 to CTPRal0; data reproduced from Fig. 2 of (Kajander et al., 2005)). The authors
developed a homopolymer partition function in which each helix, rather than each repeat, is
treated as the single repeating unit. Applying the homopolymer approximation at the single-
helix level treats the A and B helices (and the C-terminal capping helix) as energetically
equivalent, both in terms of intrinsic stability and in terms of nearest-neighbor interaction.
Using this model, Kajandar et al were able to globally fit all of these transitions (and in a
subsequent paper included even longer constructs (Kajander et al., 2007)) to a single intrinsic
folding and interfacial interaction term (Kajander et al., 2005), clearly demonstrating the
applicability of the linear Ising model to repeat protein folding.

Several aspects of this seminal study warrant further discussion. First, Kajandar et al. phrased
the interaction energies in a way that is closer to the original magnetic spin-spin interactions
than that described above (Kajander et al., 2005). Although at first glance the two
representations look different, they can be shown to be identical, and the CTPR unfolding data
can be fitted equally well with the two formulations of the homopolymer Ising model. The
curves in Figure 3 were generated by fitting the model derived above to data from (Kajander
et al., 2005); nearly identical fits and y2 values are obtained with their representation of the
model. Moreover, parameters from the two different formulations are nearly identical, when
converted using relationships given previously (Kloss et al., 2008).

Second, fitted parameter values (4G;, 4G; j+1, and the denaturant dependence, which the
authors assigned entirely to intrinsic folding) appear to be very well-determined. Kajandar et
al. reported errors of 1% (Kajander et al., 2005), although no description was given for how
these error margins were determined. To help compare the confidence levels of these
parameters with those from other studies and from other models, we have evaluated parameter
confidence intervals by Bootstrap analysis (Johnson, 2008). Briefly, the best-fitted parameters
for the model used by Kajandar were used to generate “error-free” data at each experimental
denaturant concentration for each construct. Residuals (observed minus fitted) were then used
as a source of random error, by randomly sampling (with replacement) from the experimental
residual set. The new data set (error free plus randomized residuals) was then re-fitted using
the same model to generate a new set of fitted parameters. By repeating this procedure many
times (1000-10000, depending on the distribution in parameter space) for different random
data sets, a distribution of fitted values was generated, from which confidence intervals were
approximated at the 95% level. Using the bootstrap method, we find fitted values of 4G;,
4G; j+1, and m; to be determined to within 2-3% at the 95% confidence level (Table 2), quite
similar to the bounds provided by Kajandar et al (Kajander et al., 2005). These narrowly
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bounded parameters provide significant insight into the origins of TPR folding and
cooperativity. The parameters indicate that each helix has an unfavorable free energy of folding
(+2.2 kcal-mol~1; Table 2), which is more than offset by a favorable helix-helix pairing energy
(—4.5 kcal-mol™1). As was found for the Notch ankyrin domain, and also for consensus ankyrin
constructs (see below), this leads to cooperative folding.

Third, although treatment of the A and B helices as identical is clearly consistent with the
published data, it would be surprising if the two helices were thermodynamically identical.
The A and B helices have virtually no sequence similarity in the consensus design (Main et
al., 2003). Moreover, structural analysis shows that the packing interactions of helices A and
B differ substantially. Whereas the B-helices interact mostly with A-helices, lacking contacts
with one another, the A-helices contact neighboring A-helices from adjacent TPRs, as well as
their flanking B-helices, as can be seen from the zig-zag patterns in CTPR contact maps
(Kajander et al., 2007). Adjacent A-helices have a two unit separation in a single-helix Ising
model; thus, close contacts between adjacent A-helices would suggest a more complex model
that has non-nearest neighbor terms (4G; j+2). In addition, the C-terminal polar cap may be
expected to introduce further complexity, as its folding energy may differ significantly even
from the A-helix from which it is derived.

Given all of these sequence complexities, why not use a more complicated model to describe
CTPR folding? One answer to this question is that a simple model works just fine. But does
that mean the simple model is right? Given the differences between the two types of helices,
amore complex model in which the A and B helices are treated differently makes more physical
sense. Unfortunately, all of the CTPR constructs in Kajandar et al. have the same number of
A and B helices, and thus it is not possible to separate the relative contributions of the two.
Consideration of the free energy equations describing these constructs in terms of separate A
and B helices makes this clear:

3 2 4 AGCTPRul
4 3 6 AG,
AG CTPRd3
5 4 8 AG4 — AG(TPRLA
76 12 S AG
9 8 16 Bt AG (s
11 10 20 AG trpns

The matrix on the right hand side only has a rank of 2, and thus there are an infinite number
of solutions to the set of equations. Treating each helix as identical simply adds column 1 and
2, making the unknown corresponding to this column the sum of 4G, and AGg. Such a
treatment gives full column rank, allowing a unique solution to be obtained, although it is a
solution that is blind to the differences between helices. If instead a single A helix were deleted
from one of the constructs (for example from the longest construct, making the last row [10
10 19]), the three-column matrix above would gain full column rank (r=3), and 4G, and
AGg would be resolved. This illustrates that in order to determine a particular parameter, the
structural element corresponding to that parameter must be varied relative to elements defining
the other fitted parameters.

VII. Matrix heteropolymer analysis of consensus ankyrin repeat folding

Consensus ankyrin repeats have been available for some time (Mosavi et al., 2002; Binz et
al., 2003), and have been used successfully as a platform for protein design (Steiner et al.,
2008). However, the application of Ising analyis to the folding of consensus ankyrin repeats
has been relatively recent (Wetzel et al., 2008). To maintain solubility, Pluckthun and
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coworkers added capping repeats on both termini (called N and C respectively). This
modification is similar to the C-terminal TPR-capping helix of Regan and coworkers, although
the capping N and C ankyrin repeats designed by Pluckthun and coworkers are significantly
different from their consensus sequences, with only 15/33 and 8/24 identities, respectively.

Using guanidine hydrochloride-induced unfolding, Pluckthun and coworkers obtained
complete reversible unfolding transitions that could be used for Ising analysis for three
constructs, NI1C, NI,C and NI3C (where | denotes internal consensus ankyrin repeats; (Wetzel
et al., 2008), Figure 4). These three transitions were analyzed using a linear Ising model in
which the N- and C-terminal capping repeats have intrinsic free energies (4Gcqp) that differ
from the internal consensus repeats, but are identical to one another. In contrast, a single
interfacial interaction energy was used (given the large number of sequence changes in the
capping repeats, this may or may not be a valid assumption). As with the CTPR analysis, the
denaturant dependence was attributed entirely to intrinsic parameters, although different
denaturant sensitivities were assumed for the cap and internal repeats (mcap and mj,
respectively).

As can be seen from the solid lines in Figure 4, this model describes the three fitted unfolding
transitions reasonably well. Fitted parameters from Wetzel et al. (Wetzel et al., 2008) are listed
in Table 2, along with confidence intervals provided by the authors. Again, there is no
description of how these confidence intervals were determined. Using the heteropolymer
partition function described above, and the same bootstrap method for error analysis described
to analyze the CTPR array, we obtain intrinsic and interfacial energies that agree within 1-2.5
kcal/mol, although we find significantly larger margins of uncertainty on the fitted parameters
than the authors; these values are also higher than those obtained by the same error analysis of
the CTPR data. One reason for the high level of parameter uncertainty may be none of the three
analyzed constructs have their caps removed, making it difficult to separate their contribution
to free energy from the other parameters. Representing the constructs as a system of linear
equations with a single cap free energy gives

21 2
2 23
2 3 4

In the coefficient matrix, half the first column plus the second column is equal to the third
column, giving a rank of only 2, and again, an infinite number of solutions. Although at face
value, this would severely compromise the accuracy of the fitted parameters, one feature of
the unfolding transitions of Wetzel et al. may significantly narrow parameter confidence
intervals: the appearance of a partial unfolding transition in the long native baseline of NI3C.
Interpreted as a separate unfolding event involving one or both caps, this pre-transition provides
additional information about the stability of the caps relative to the internal repeats. It is as if,
from this region of the unfolding transition, the authors have prepared the construct I3 for
analysis, which would give the coefficient matrix above full column rank. As described in
section VI above, this study illustrates the value of analyzing complete denaturant unfolding
transitions using the full partition function. Nonetheless, it appears that even with this
information, the fitted parameter values are not as well determined as for the analysis of CTPR
folding.

AG®

NI, C
=| AG®

NI, ©

AG°

NI3C

AGeqp
AGj
AGi i1

A more direct way to obtain information on the contribution of the caps would be to prepare
constructs that lack the caps. Although ankyrin consensus arrays lacking both caps show poor
solubility, we have been able to prepare arrays that lack either one cap or the other (we will
refer to these as NRy, and R,,C, since in this partly exposed context these proteins lose their
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internal (I) nature; TA & DB, manuscript in preparation). Unlike the cap sequences of Wetzel
et al., these caps differ by only four nonpolar—polar/charged substitutions on the “outside”
face of the array, which should result in NR and RC interfaces that are much closer to full
consensus (RR) interfaces. By combining these constructs with NR,C constructs, we have been
able to obtain guanidine-induced folding transitions for ten constructs that are fully resolved
and fully reversible (Figure 5). The difference in the contributions of the three types of repeats
(N, R, C) to stability is clearly illustrated in the unfolding transitions. For constructs that have
the same number of repeats (same symbols, Figure 5), the least stable construct has both caps,
indicating that the caps are less stable than the consensus repeats. Between any pair of single-
cap constructs, the one with the N-terminal cap is more stable than the one with the C-terminal
cap.

By independently removing the capping repeats, we have been able to test a number of different
parameterizations of the Ising model to determine the relative intrinsic stabilities and
contributions of the caps to denaturant-induced unfolding. The fits shown in Figure 5 are from
an Ising model with separate intrinsic free energies for each cap and consensus sequence
(4G, 4GR, 4Gg), a single interfacial energy (4G; j+1), and a single m-value that affects only
intrinsic folding energies. Fitted parameters are included in Table 2. In matrix form, the linear
free energy equations for this data set show full column rank, allowing each parameter to be
determined with minimal parameter correlation. To permit comparison to the other analyses
described above, we have calculated errors using the bootstrap method?2. Using this method,
uncertainties (at the 95% confidence level) on fitted energy values are approximately 2% of
the fitted parameters, about the same as for the CTPR studies, but significantly better than for
analysis of NIC-NI3C.

Overall, the two consensus ankyrin repeat studies show a similar view of cooperativity in which
the individual repeats are unstable, and the interfacial interaction is highly stabilizing (Table
2). Again, this is consistent with the high degree of cooperativity seen in solution, because
single folded repeats should be rarified, and conformations with a large number of interfaces
(blocks of consecutive folded repeats) should be maximized. Although this is qualitatively
similar to what was seen in the CTPR study, cooperativity is much higher for the consensus
ankyrin arrays. This is especially clear when the fitted Ising parameters from the CTPR studies
are converted to whole-repeat (rather than single-helix) parameters. The intrinsic folding
energy of anentire CTPR (4G; nelixt4G:i j+1 helix) is ~0.1 kcal/mol (nearly half-folded), whereas
the interfacial energy is —4.5 kcal/mol. Thus, individual CTPR repeats are moderately less
stable than consensus ankyrin repeats (the latter at ~3-4 kcal/mol), whereas the interfaces for
CTPRs are significantly less stable than those of consensus ankyrin repeats (—12 to —14 kcal/
mol).

The fitted Ising parameters for the two ankyrin consensus arrays are in reasonable agreement
(Table 2). Fitted A4G; values for consensus repeats and 4G; 41 values are within 1-2 kcal/mol.
Given the differences between consensus sequences from the two studies (~67% identity), this
modest difference is not surprising. These two parameters both favor folding more than the
parameters extracted from the deletion analysis (by about 3 kcal/mol; (Mello and Barrick,
2004)), which may also be a reflection of the substantial deviation from consensus seen for
naturally occurring ankyrin repeat proteins. Fitted AG; values for the capping repeats for the
two ankyrin studies show larger differences: the capping repeats of Wetzel et al are
considerably less stable. This difference may result from the greater number of sequence
differences, compared to the consensus, in that study.

2T obtain a more rigorous measure of parameter uncertainties, we have measured each unfolding transition at least three times, allowing
us to use resampling methods to fit separate transitions and compare results. This resampling approach, which employs more data, cannot
be directly compared with the other studies analyzed here, but it gives similar confidence intervals to those from the bootstrap method.
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VIIl. Summary and future directions

The studies featured in this article show quite clearly that a simple nearest-neighbor model that
has been highly successful in describing a wide variety of cooperative phenomena can be used
to study repeat-protein folding, and extract quantitative interaction energies from real data.
Although Ising-like models have been applied to model globular protein folding (for example,
see (Munoz, 2001)), the heterogeneity of globular proteins and their intrachain contacts makes
such models overparameterized, requiring assumptions about energy terms that come from
informatics or from native state structures, rather than from first principles or measurements.
A recent retrospective from Harold Scheraga, one of the major contributors to the application
of Ising analysis to biopolymers, states of his epic research trajectory “it was soon realized that
the helix—coil transition is not a good model for conformational changes in globular proteins,
because the one-dimensional Ising model does not capture the cooperative features, embodied
in the interplay between short- and long-range interactions, of the folding/unfolding transition
of globular proteins” (Scheraga, 2008). Although repeat proteins differ from globular proteins
in that they have structural simplicity and are somewhat elongated, they are the same in many
other key respects. They have large, continuous hydrophabic cores, they have significant
medium and long-range electrostatic interactions (Kloss and Barrick, 2008; Merz et al.,
2008), and they are highly cooperative (Kloss et al., 2008). Thus, repeat-proteins provide a
unique experimental system to dissect protein folding using this elegant model.

One of the most exciting aspects of the work featured here is that it provides an opportunity to
understand protein folding cooperativity in quantitative and structural detail. Determination of
AG; j+1 provides a direct measure of long-range coupling within a folded protein. Further
analysis of repeat proteins using the 1D Ising model should reveal not only the structural origins
of this cooperativity, but how such cooperativity influences the kinetics of folding.
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Figure 1. The modular architectures of repeat proteins

(A) Crystal structure of the Notch ankyrin domain (1ot8.pdb, chain A) consisting of six
structured ANK repeats (sequence repeats 2-7) and an N-terminal partly structured repeat. (B)
Crystal structure of a consensus ankyrin repeat protein (2qyj.pdb) containing three consensus
repeats (green) and N- and C-terminal caps (red and blue respectively). (C) Crystal structure
of a consensus-based TPR protein (1na0.pdb, chain A) containing three consensus repeats and
a C-terminal cap (blue). (D) Crystal structure of YopM, a leucine-rich repeat protein containing
15full LRR repeats of the bacterial subtype (15jl.pdb). For naturally occurring (heterogeneous)
proteins, individual repeats are shown in different colors; selection of boundaries between
repeats (color changes) is somewhat arbitrary, and is based on considerations such as intron
position, interresidue contact density, surface area, and visual impression. For the consensus
ankyrin and TPR proteins, consensus repeats are shown with the same color but alternate in
color saturation. This figure was prepared using PyMol (DeLano, 2003).
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Figure 2. A nearest-neighbor thermodynamic description of repeat-protein stability

The first two lines (A, B) show single-repeat steps in folding (individual folded repeats are
shown as blocks), whereas the last two lines (C, D) show overall folding reactions the fully
denatured to the fully native state. Green repeats depict identical sequences, such as consensus
repeats, the red and blue repeats represent N- and C-terminal caps.

Methods Enzymol. Author manuscript; available in PMC 2010 November 2.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Aksel and Barrick

Page 24

X CTPR2
CTPR3

Normalized CD signal at 222 nm

[gdnHCI]

Figure 3. Unfolding and 1D-Ising analysis of consensus TPR proteins

Data are from Kanandar et al. (Kajander et al., 2005), and were obtained using the the program
Digitizelt 1.5 for Mac OSX (http://www.digitizeit.de). Solid lines result from fitting a
homopolymer partition function, with single helices as individual lattice sites, to the guanidine
unfolding transitions. Fitted parameters are very close to those determined by Kajandar et al.
(Table 2; fitted parameters are re-cast to 4G; and 4G; j+1), and are well-determined by the data.
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Figure 4. Unfolding and 1D-Ising analysis of capped consensus ankyrin repeat proteins

Data are from Pluckthun et al. (Wetzel et al., 2008), and were obtained using the the program
Digitizelt 1.5 for Mac OSX (http://www.digitizeit.de). Solid lines result from fitting a
heteropolymer partition function, assuming the N- and C-caps have identical intrinsic folding
energies that differ from the value for the internal repeats. Likewise, the effect of guanidine is
partitioned into intrinsic folding energies and is allowed to vary between the capping and
internal repeats. The pre-transition for NI3C appears to partly resolve the parameters from the
capping and internal repeats.
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Figure 5. Unfolding and 1D-Ising analysis of consensus ankyrin repeat proteins with and without

terminal caps

Constructs are described in the text (TA and DB, in preparation). Lines result from fitting a
heteropolymer partition function, assuming N- and C-caps and the internal consensus repeats
(R) all have different intrinsic folding energies. The effect of guanidine is partitioned into
intrinsic folding energies and is assumed to be the same for all types of repeats. Different
contributions of the N-, C- and R repeats can be seen by noting the shifts between constructs

containing the same number of repeats, but different identities.
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Table 1

Free energies of folding of capped consensus repeat protein constructs.

Nrep  Construct  Folding free energy (D—N)

A 3 Rs AG® = 3AGg + 2AG;; 41

B 4 R, AG® = 4AGp + 3AG; 41

cC 5 Rs AG® = 5AGg + 4AG;; 11

D 3 NRC AG® = 1AGy + 1AGg + 1AG¢ + 2AG;j +1
E 4 NR,C  AG°=1AGy+ 2AGg + 1AGe + 3AGj 41
F 5 NRsC  AG°=1AGy +3AGg + 1AGe + 4AGj 41
G 6 NR,C AG® = 1AGy, + 4AGg + 1AG¢ + 5AG;j 41
H 4 NR; AG® = 1AGy + 3AGg + 3AGj 4

1 5 NR, AG® = 1AGy + 4AGg + 4AGj 4

J 4 RsC AG® = 3AGg + 1AGe + 3AGj 4

K 5 R,C AG® = 4AGg + 1AGg + 4AG;j 41

Page 27

N- and C-terminal caps are assumed to differ in intrinsic folding energy from consensus repeats (R), but have the same interfacial energy (AGj j+1).

Relaxing this restriction would introduce two additional interfacial energy terms (N:R and R:C as well as R:R).
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Table 2

Paramaters from 1D-Ising analysis of consensus repeat proteins.

Consensus TPR Consensus Ankyrin 4
(Kajander etal,, 20052  (Wetzel etal., 2008)p  CONsensus Ankyrin
10.6+0.6 5.2:0.1
46w nd. 9.2+1.1 5.2+0.1
4G 2.30£0.04 3.340.2 44201
R 2.26+0.07 1.9+1.2 4.4%0.1
10.6+0.6¢ 6.8+0.1
4Gc n.d. 9.3+1.9 6.8:0.1
G ~4.52+0.04 ~14.240.7 ~11.240.2
i+l ~4.430.1 ~11.8+15 ~11.20.2
o 0.57+0.01 1.140.1 0.75+0.01
i 0.57+0.01 1.1%0.2 0.75+0.02
0.83£0.04
Meap n.d. 0.65+0.09 nd.

Energies are in kcal-molfl; m-values are in kcal-mol~1.M™1. n.d., not determined in the model used.

a . . . . . - .
Parameters for CTPR folding are for single helices. Parameters in the top line for CTPR arrays have been converted from the original formulation
to 4Gj and 4G;j j+1 to allow comparison with the other studies. Errors were propagated assuming the published H and J values to be uncorrelated.

The top line for each parameter gives estimated parameter values and uncertainties given by the authors. To facilitate comparison, the bottom line
(italics) gives parameter values based on our fits, with uncertainties determined by bootstrap analysis as described in the text.

c . o . .
For the consensus ankyrin repeats of Wetzel et al., AGN and 4G are assumed identical, and are fitted as a single parameter.

For the consensus ankyrin repeats from our laboratory, parameters and errors in the top line come from resampling of guanidine titrations as described;
errors in the bottom line (italics) come from bootstrap analysis as described.
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