Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 10;65(Pt 1):o92. doi: 10.1107/S1600536808041330

4-Chloro-3-nitro­benzonitrile

Bo-Nian Liu a, Shi-Gui Tang b, Hao-Yuan Li a, Cheng Guo a,*
PMCID: PMC2967999  PMID: 21581730

Abstract

In the title compound, C7H3ClN2O2, the Cl, C and N atoms are coplanar with the aromatic ring. In the crystal structure, weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules. The π–π contact between the benzene rings, [centroid–centroid distances = 3.912 (3) Å] may further stabilize the structure.

Related literature

For a related structure, see: Sun & Wang (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-00o92-scheme1.jpg

Experimental

Crystal data

  • C7H3ClN2O2

  • M r = 182.56

  • Triclinic, Inline graphic

  • a = 7.2260 (14) Å

  • b = 7.7610 (16) Å

  • c = 7.7970 (16) Å

  • α = 110.27 (3)°

  • β = 91.86 (3)°

  • γ = 107.22 (3)°

  • V = 387.32 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.878, T max = 0.957

  • 1540 measured reflections

  • 1418 independent reflections

  • 1000 reflections with I > 2σ(I)

  • R int = 0.052

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.182

  • S = 1.00

  • 1418 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON .

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041330/hk2597sup1.cif

e-65-00o92-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041330/hk2597Isup2.hkl

e-65-00o92-Isup2.hkl (69.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.48 3.288 (7) 145
C5—H5A⋯N2ii 0.93 2.61 3.497 (7) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of pyridine are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. Atoms Cl, C7, N1 and N2 are -0.040 (3), -0.049 (3), 0.005 (3) and 0.036 (3) Å away from the plane of the benzene ring.

In the crystal structure, weak intermolecular C-H···O and C-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the benzene rings, Cg1—Cg1i [symmetry code: (i) 1 - x, 1 - y, -z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.912 (3) Å.

Experimental

For the preparation of the title compound, 4-chloro-3-nitrobenzamide (33.9 g, 0.17 mol) was suspended in phosphorus oxychloride (150 ml). The temperature was controlled at 333 K for 6 h, and then it was put into ice water (500 ml). It was filtered and the colorless precipitate was washed (yield; 28.2 g) (Sun et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C7H3ClN2O2 Z = 2
Mr = 182.56 F(000) = 184
Triclinic, P1 Dx = 1.565 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2260 (14) Å Cell parameters from 25 reflections
b = 7.7610 (16) Å θ = 9–12°
c = 7.7970 (16) Å µ = 0.45 mm1
α = 110.27 (3)° T = 294 K
β = 91.86 (3)° Block, colorless
γ = 107.22 (3)° 0.30 × 0.20 × 0.10 mm
V = 387.32 (18) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 1000 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.052
graphite θmax = 25.3°, θmin = 2.8°
ω/2θ scans h = −8→8
Absorption correction: ψ scan (North et al., 1968) k = −9→8
Tmin = 0.878, Tmax = 0.957 l = 0→9
1540 measured reflections 3 standard reflections every 120 min
1418 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2 + 0.880P] where P = (Fo2 + 2Fc2)/3
1418 reflections (Δ/σ)max < 0.001
103 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.08801 (17) 0.32257 (19) 0.5711 (2) 0.0767 (5)
O1 0.3498 (8) 0.0413 (6) 0.7577 (7) 0.1159 (19)
O2 0.2991 (5) 0.0203 (5) 0.4775 (6) 0.0819 (12)
N1 0.3567 (5) 0.1130 (5) 0.6413 (6) 0.0590 (10)
N2 1.0736 (7) 0.7724 (7) 1.0090 (8) 0.0942 (17)
C1 0.6103 (7) 0.7170 (6) 0.8157 (7) 0.0652 (12)
H1A 0.6681 0.8512 0.8556 0.077*
C2 0.4139 (6) 0.6306 (6) 0.7290 (7) 0.0602 (12)
H2A 0.3418 0.7057 0.7106 0.072*
C3 0.3307 (6) 0.4305 (6) 0.6717 (6) 0.0560 (12)
C4 0.4384 (6) 0.3252 (6) 0.7025 (6) 0.0502 (11)
C5 0.6290 (6) 0.4094 (6) 0.7883 (6) 0.0581 (12)
H5A 0.7001 0.3352 0.8108 0.070*
C6 0.7137 (6) 0.6118 (6) 0.8413 (6) 0.0478 (10)
C7 0.9133 (7) 0.7033 (7) 0.9310 (8) 0.0718 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0388 (6) 0.0651 (8) 0.1075 (11) 0.0117 (5) 0.0161 (6) 0.0143 (7)
O1 0.187 (5) 0.048 (2) 0.111 (4) 0.028 (3) 0.076 (3) 0.031 (2)
O2 0.064 (2) 0.047 (2) 0.098 (3) 0.0060 (16) 0.015 (2) −0.007 (2)
N1 0.046 (2) 0.038 (2) 0.078 (3) 0.0103 (16) 0.027 (2) 0.005 (2)
N2 0.059 (3) 0.068 (3) 0.110 (4) −0.004 (2) −0.001 (3) −0.001 (3)
C1 0.062 (2) 0.034 (3) 0.078 (3) 0.005 (2) 0.031 (2) 0.004 (2)
C2 0.046 (2) 0.048 (3) 0.079 (3) 0.018 (2) 0.022 (2) 0.011 (2)
C3 0.037 (2) 0.047 (2) 0.068 (3) 0.0102 (19) 0.027 (2) 0.003 (2)
C4 0.044 (2) 0.032 (2) 0.065 (3) 0.0098 (17) 0.033 (2) 0.0069 (19)
C5 0.043 (2) 0.042 (2) 0.071 (3) 0.0143 (19) 0.020 (2) −0.001 (2)
C6 0.047 (2) 0.039 (2) 0.053 (2) 0.0128 (18) 0.0204 (19) 0.0112 (18)
C7 0.050 (3) 0.048 (3) 0.088 (4) 0.004 (2) 0.016 (3) 0.001 (3)

Geometric parameters (Å, °)

Cl—C3 1.726 (4) C4—C3 1.354 (6)
N1—O1 1.213 (6) C4—C5 1.370 (6)
N1—O2 1.214 (5) C5—C6 1.406 (6)
C1—H1A 0.9300 C5—H5A 0.9300
C2—C1 1.407 (7) C6—C1 1.316 (6)
C2—C3 1.386 (6) C6—C7 1.434 (7)
C2—H2A 0.9300 C7—N2 1.166 (6)
C4—N1 1.466 (5)
O1—N1—O2 124.2 (4) C2—C3—Cl 118.9 (4)
O1—N1—C4 117.9 (4) C4—C3—Cl 121.5 (3)
O2—N1—C4 117.9 (4) C4—C3—C2 119.5 (4)
C1—C2—H2A 120.9 C3—C4—N1 121.1 (4)
C1—C6—C5 120.8 (4) C3—C4—C5 122.2 (4)
C1—C6—C7 120.3 (4) C5—C4—N1 116.6 (4)
C2—C1—H1A 119.4 C4—C5—C6 117.8 (4)
C6—C1—C2 121.3 (4) C4—C5—H5A 121.1
C6—C1—H1A 119.4 C6—C5—H5A 121.1
C3—C2—C1 118.3 (4) C5—C6—C7 118.8 (4)
C3—C2—H2A 120.9 N2—C7—C6 176.8 (6)
C3—C2—C1—C6 0.4 (7) C5—C4—C3—Cl −177.5 (4)
C1—C2—C3—C4 0.9 (7) N1—C4—C3—Cl 3.8 (6)
C1—C2—C3—Cl 178.2 (4) C3—C4—C5—C6 −1.4 (7)
C3—C4—N1—O1 −120.7 (5) N1—C4—C5—C6 177.3 (4)
C5—C4—N1—O1 60.6 (6) C4—C5—C6—C1 2.6 (7)
C3—C4—N1—O2 58.9 (5) C4—C5—C6—C7 −179.8 (4)
C5—C4—N1—O2 −119.8 (5) C5—C6—C1—C2 −2.1 (7)
C5—C4—C3—C2 −0.3 (7) C7—C6—C1—C2 −179.6 (5)
N1—C4—C3—C2 −179.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O1i 0.93 2.48 3.288 (7) 145
C5—H5A···N2ii 0.93 2.61 3.497 (7) 159

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2597).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft. The Netherlands.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Sun, Y. W. & Wang, J. W. (2006). Hua Xue Shi Ji, 28, 124–125.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041330/hk2597sup1.cif

e-65-00o92-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041330/hk2597Isup2.hkl

e-65-00o92-Isup2.hkl (69.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES