Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o173. doi: 10.1107/S1600536808042864

2-(1,3-Dithian-2-yl)-1,3-dithiane-2-carbaldehyde

Hoong-Kun Fun a,*, Reza Kia a, Annada C Maity b, Shyamaprosad Goswami b
PMCID: PMC2968084  PMID: 21581630

Abstract

The asymmetric unit of the title compound, C9H14OS4, comprises two crystallographically independent mol­ecules with similar conformations. In each mol­ecule, an intra­molecular C—H⋯O hydrogen bond generates a six-membered ring, producing an S(6) ring motif. All of the six-membered dithia­cyclo­hexane rings adopt chair conformations. The crystal structure is stabilized by four inter­molecular C—H⋯O and one C—H⋯S inter­action.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For ring puckering analysis, see: Cremer & Pople (1975). For related literature, see: Goswami & Maity (2008); Rubin & Gleiter (2000); Wasserman & Parr (2004).graphic file with name e-65-0o173-scheme1.jpg

Experimental

Crystal data

  • C9H14OS4

  • M r = 266.44

  • Monoclinic, Inline graphic

  • a = 13.0028 (2) Å

  • b = 13.6790 (2) Å

  • c = 13.4244 (2) Å

  • β = 91.873 (1)°

  • V = 2386.46 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 100.0 (1) K

  • 0.39 × 0.28 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.754, T max = 0.871

  • 68856 measured reflections

  • 12473 independent reflections

  • 9371 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.087

  • S = 1.07

  • 12473 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042864/is2376sup1.cif

e-65-0o173-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042864/is2376Isup2.hkl

e-65-0o173-Isup2.hkl (609.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AB⋯O1Ai 0.97 2.51 3.3530 (15) 146
C3A—H3AB⋯O1A 0.97 2.48 3.1024 (16) 122
C6A—H6AB⋯O1Bii 0.97 2.51 3.4292 (15) 159
C1B—H1BA⋯O1B 0.97 2.44 3.0508 (16) 121
C2B—H2BA⋯O1Biii 0.97 2.54 3.1913 (16) 124
C3B—H3BA⋯S2Aiv 0.97 2.81 3.5932 (12) 138
C7B—H7BA⋯O1Av 0.97 2.54 3.3436 (17) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. We thank the DST [SR /S1/OC-13/2005], Government of India, for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Vicinal tricarbonyl compounds are powerful electrophiles with widespread applications in organic synthesis (Rubin & Gleiter, 2000; Wasserman & Parr, 2004). They act as useful precursors to synthesis of elaborate heterocylic compounds and numerous novel biologically important substances such as FK-506, rapamycin and related immunosuppressants. They are also used to develop protease inhibitors derived from peptide carboxylic acids. Thioacetalization of carbonyl compounds (Goswami & Maity, 2008) plays an important role in organic synthesis. Dithioacetals have become widely used tools for C—C bond formation. Here we reported the first synthesis of 2,2'-bis(1,3-dithianyl)-2-carbaldehyde from the smallest vicinal tricarbonyl compound, 2-oxo-1,3-propandial.

In the title compound (I), Fig. 1, intramolecular C—H···O hydrogen bonds (Table 1) generate six-membered rings, producing S(6) ring motifs (Bernstein et al., 1995). The S1A/C1A–C3A/S2A/C4A, S3A/C5A/S4A/C8A/C7A/C6A, S1B/C1B–C3B/S2B/C4B, and S3B/C5B/S4B/C8B/C7B/C6B rings adopt chair conformations with the ring puckering parameters (Cremer & Pople, 1975) of Q = 0.6979 (10) Å, Θ = 5.43 (8)°, Φ = 3.4 (9)°; Q = 0.7467 (10) Å, Θ = 171.28 (8)°, Φ = 246.6 (5)°; Q = 0.6967 (11) Å, Θ = 7.22 (9)°, Φ = 247.2 (7)°; Q = 0.7475 (11) Å, Θ = 170.82 (9)°, Φ = 248.2 (5)°, respectively. The crystal structure is stabilized by intermolecular C—H···O (× 4) and C—H···S interactions (Fig. 2).

Experimental

To a stirred solution of 2-oxo-1,3-propandial (250 mg, 0.34 mmol) and boron trifluoride etherate (0.5 mL) in dichloromethane (50 mL) cooled at 0 °C is added propane dithiol (450 mg, 4.1 mmol) dropwise over 15 min with stirring. The mixture is stirred at room temperature for 3h. The progress of the reaction is monitored by TLC. After completion of the reaction, NaHCO3 solution is added slowly and carefully to neutralize the mixture at room temperature, which is then extracted with dichloromethane. The organic layer is dried (anhydrous Na2SO4) and then the solvent is removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 20% ethyl acetate in petroleum ether as eluant to afford 2,2'-bis(1,3-dithianyl)-2-carbaldehyde (247 mg, 32%) as a colorless crystalline solid along with other thiane derivatives.

Refinement

All of the hydrogen atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines show intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal packing for (I), viewed down the b axis showing linking of molecules through C—H···O and C—H···S interactions. Intermolecular interactions are drawn as dashed lines.

Crystal data

C9H14OS4 F(000) = 1120
Mr = 266.44 Dx = 1.483 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6037 reflections
a = 13.0028 (2) Å θ = 2.6–35.5°
b = 13.6790 (2) Å µ = 0.76 mm1
c = 13.4244 (2) Å T = 100 K
β = 91.873 (1)° Block, colourless
V = 2386.46 (6) Å3 0.39 × 0.28 × 0.19 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 12473 independent reflections
Radiation source: fine-focus sealed tube 9371 reflections with I > 2σ(I)
graphite Rint = 0.055
φ and ω scans θmax = 37.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −22→20
Tmin = 0.754, Tmax = 0.871 k = −22→23
68856 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.5359P] where P = (Fo2 + 2Fc2)/3
12473 reflections (Δ/σ)max = 0.002
253 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.46746 (2) 0.654917 (19) 0.92342 (2) 0.01556 (5)
S2A 0.62228 (2) 0.66697 (2) 0.75806 (2) 0.01787 (5)
S3A 0.74126 (2) 0.47975 (2) 0.86715 (2) 0.01958 (6)
S4A 0.71041 (2) 0.65781 (2) 0.99797 (2) 0.02006 (6)
O1A 0.48320 (8) 0.48599 (7) 0.72999 (8) 0.02660 (19)
C1A 0.37902 (8) 0.68880 (8) 0.82162 (9) 0.01741 (19)
H1AA 0.3555 0.6300 0.7875 0.021*
H1AB 0.3194 0.7206 0.8487 0.021*
C2A 0.42752 (9) 0.75689 (8) 0.74674 (9) 0.0190 (2)
H2AA 0.3740 0.7823 0.7019 0.023*
H2AB 0.4586 0.8118 0.7822 0.023*
C3A 0.50888 (9) 0.70711 (9) 0.68583 (9) 0.0201 (2)
H3AA 0.5305 0.7520 0.6347 0.024*
H3AB 0.4781 0.6508 0.6526 0.024*
C4A 0.56675 (8) 0.59204 (7) 0.85376 (8) 0.01396 (17)
C5A 0.65016 (8) 0.55798 (7) 0.92955 (8) 0.01432 (17)
H5AA 0.6159 0.5171 0.9784 0.017*
C6A 0.80918 (9) 0.43427 (9) 0.97830 (10) 0.0229 (2)
H6AA 0.7612 0.3980 1.0180 0.027*
H6AB 0.8622 0.3891 0.9583 0.027*
C7A 0.85868 (10) 0.51357 (9) 1.04276 (11) 0.0247 (2)
H7AA 0.9051 0.5512 1.0027 0.030*
H7AB 0.8993 0.4830 1.0961 0.030*
C8A 0.78136 (10) 0.58263 (9) 1.08808 (10) 0.0238 (2)
H8AA 0.8176 0.6252 1.1352 0.029*
H8AB 0.7327 0.5443 1.1250 0.029*
C9A 0.51184 (9) 0.50023 (8) 0.81473 (9) 0.0182 (2)
H9AA 0.4995 0.4511 0.8607 0.022*
S1B 0.86151 (2) 0.28160 (2) 0.29985 (2) 0.01813 (6)
S2B 1.02461 (2) 0.43886 (2) 0.33386 (2) 0.01876 (6)
S3B 0.78758 (2) 0.51420 (2) 0.34283 (2) 0.01985 (6)
S4B 0.75193 (2) 0.35947 (2) 0.49927 (2) 0.02279 (6)
O1B 1.00970 (7) 0.22837 (7) 0.47436 (7) 0.02534 (18)
C1B 0.96908 (9) 0.21483 (9) 0.24967 (10) 0.0238 (2)
H1BA 0.9986 0.1732 0.3017 0.029*
H1BB 0.9432 0.1727 0.1964 0.029*
C2B 1.05386 (10) 0.27878 (11) 0.20949 (10) 0.0276 (3)
H2BA 1.0246 0.3201 0.1571 0.033*
H2BB 1.1049 0.2371 0.1799 0.033*
C3B 1.10724 (9) 0.34340 (10) 0.28785 (10) 0.0239 (2)
H3BA 1.1672 0.3732 0.2593 0.029*
H3BB 1.1308 0.3030 0.3434 0.029*
C4B 0.92466 (8) 0.36320 (7) 0.38847 (8) 0.01385 (17)
C5B 0.84575 (8) 0.43202 (8) 0.43385 (8) 0.01527 (18)
H5BA 0.8826 0.4723 0.4837 0.018*
C6B 0.71805 (10) 0.58963 (9) 0.42935 (10) 0.0251 (2)
H6BA 0.7675 0.6215 0.4742 0.030*
H6BB 0.6818 0.6403 0.3919 0.030*
C7B 0.64127 (10) 0.53471 (10) 0.49091 (10) 0.0256 (2)
H7BA 0.5930 0.5012 0.4462 0.031*
H7BB 0.6026 0.5816 0.5290 0.031*
C8B 0.68984 (11) 0.46041 (11) 0.56230 (10) 0.0275 (3)
H8BA 0.6370 0.4344 0.6043 0.033*
H8BB 0.7404 0.4932 0.6052 0.033*
C9B 0.98274 (9) 0.31267 (8) 0.47398 (9) 0.01764 (19)
H9BA 0.9988 0.3497 0.5305 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.01482 (11) 0.01624 (11) 0.01573 (12) 0.00201 (8) 0.00224 (9) −0.00020 (9)
S2A 0.01485 (11) 0.02094 (12) 0.01797 (13) 0.00106 (9) 0.00283 (9) 0.00538 (9)
S3A 0.01766 (12) 0.01907 (12) 0.02204 (14) 0.00508 (9) 0.00125 (10) −0.00104 (10)
S4A 0.02219 (13) 0.01382 (11) 0.02366 (14) 0.00037 (9) −0.00701 (10) −0.00098 (9)
O1A 0.0337 (5) 0.0184 (4) 0.0268 (5) 0.0044 (3) −0.0117 (4) −0.0054 (3)
C1A 0.0144 (4) 0.0167 (5) 0.0210 (5) 0.0019 (3) −0.0002 (4) 0.0004 (4)
C2A 0.0185 (5) 0.0158 (5) 0.0226 (5) 0.0031 (4) −0.0013 (4) 0.0032 (4)
C3A 0.0206 (5) 0.0216 (5) 0.0180 (5) 0.0030 (4) 0.0008 (4) 0.0063 (4)
C4A 0.0146 (4) 0.0122 (4) 0.0152 (5) 0.0007 (3) 0.0017 (3) 0.0002 (3)
C5A 0.0140 (4) 0.0120 (4) 0.0170 (5) 0.0001 (3) 0.0004 (3) 0.0008 (3)
C6A 0.0200 (5) 0.0180 (5) 0.0306 (6) 0.0042 (4) −0.0018 (4) 0.0039 (4)
C7A 0.0199 (5) 0.0217 (5) 0.0320 (7) 0.0011 (4) −0.0078 (5) 0.0051 (5)
C8A 0.0246 (5) 0.0226 (5) 0.0236 (6) 0.0005 (4) −0.0089 (4) 0.0013 (4)
C9A 0.0180 (5) 0.0137 (4) 0.0229 (5) 0.0016 (3) −0.0010 (4) −0.0010 (4)
S1B 0.01571 (11) 0.01880 (12) 0.01966 (13) 0.00048 (9) −0.00272 (9) −0.00554 (9)
S2B 0.01721 (11) 0.01821 (12) 0.02107 (13) −0.00308 (9) 0.00389 (10) 0.00171 (9)
S3B 0.02317 (13) 0.01821 (12) 0.01821 (13) 0.00516 (9) 0.00150 (10) 0.00249 (9)
S4B 0.02262 (13) 0.02165 (13) 0.02473 (15) 0.00012 (10) 0.01028 (11) 0.00316 (11)
O1B 0.0301 (5) 0.0229 (4) 0.0227 (4) 0.0064 (3) −0.0031 (4) 0.0032 (3)
C1B 0.0233 (5) 0.0241 (6) 0.0239 (6) 0.0056 (4) −0.0001 (4) −0.0093 (4)
C2B 0.0267 (6) 0.0357 (7) 0.0207 (6) 0.0061 (5) 0.0059 (5) −0.0043 (5)
C3B 0.0179 (5) 0.0285 (6) 0.0258 (6) 0.0027 (4) 0.0075 (4) 0.0016 (5)
C4B 0.0142 (4) 0.0144 (4) 0.0129 (4) −0.0013 (3) 0.0005 (3) −0.0001 (3)
C5B 0.0170 (4) 0.0145 (4) 0.0143 (5) −0.0005 (3) 0.0006 (3) 0.0000 (3)
C6B 0.0277 (6) 0.0199 (5) 0.0278 (6) 0.0083 (4) −0.0003 (5) −0.0044 (4)
C7B 0.0218 (5) 0.0311 (6) 0.0238 (6) 0.0065 (4) 0.0022 (4) −0.0093 (5)
C8B 0.0260 (6) 0.0360 (7) 0.0211 (6) 0.0051 (5) 0.0085 (5) −0.0033 (5)
C9B 0.0179 (4) 0.0207 (5) 0.0143 (5) −0.0006 (4) 0.0001 (4) 0.0015 (4)

Geometric parameters (Å, °)

S1A—C1A 1.8171 (12) S1B—C4B 1.8088 (11)
S1A—C4A 1.8330 (10) S1B—C1B 1.8183 (12)
S2A—C4A 1.8119 (11) S2B—C3B 1.8123 (13)
S2A—C3A 1.8227 (12) S2B—C4B 1.8329 (10)
S3A—C6A 1.8185 (13) S3B—C5B 1.8079 (11)
S3A—C5A 1.8207 (11) S3B—C6B 1.8165 (13)
S4A—C5A 1.8099 (11) S4B—C5B 1.8206 (11)
S4A—C8A 1.8162 (13) S4B—C8B 1.8218 (13)
O1A—C9A 1.2013 (15) O1B—C9B 1.2052 (14)
C1A—C2A 1.5222 (16) C1B—C2B 1.5200 (19)
C1A—H1AA 0.9700 C1B—H1BA 0.9700
C1A—H1AB 0.9700 C1B—H1BB 0.9700
C2A—C3A 1.5193 (16) C2B—C3B 1.524 (2)
C2A—H2AA 0.9700 C2B—H2BA 0.9700
C2A—H2AB 0.9700 C2B—H2BB 0.9700
C3A—H3AA 0.9700 C3B—H3BA 0.9700
C3A—H3AB 0.9700 C3B—H3BB 0.9700
C4A—C9A 1.5287 (15) C4B—C9B 1.5197 (16)
C4A—C5A 1.5350 (15) C4B—C5B 1.5333 (15)
C5A—H5AA 0.9800 C5B—H5BA 0.9800
C6A—C7A 1.5177 (19) C6B—C7B 1.5159 (19)
C6A—H6AA 0.9700 C6B—H6BA 0.9700
C6A—H6AB 0.9700 C6B—H6BB 0.9700
C7A—C8A 1.5210 (19) C7B—C8B 1.520 (2)
C7A—H7AA 0.9700 C7B—H7BA 0.9700
C7A—H7AB 0.9700 C7B—H7BB 0.9700
C8A—H8AA 0.9700 C8B—H8BA 0.9700
C8A—H8AB 0.9700 C8B—H8BB 0.9700
C9A—H9AA 0.9300 C9B—H9BA 0.9300
C1A—S1A—C4A 100.07 (5) C4B—S1B—C1B 102.44 (5)
C4A—S2A—C3A 102.32 (5) C3B—S2B—C4B 99.53 (5)
C6A—S3A—C5A 97.44 (6) C5B—S3B—C6B 97.30 (6)
C5A—S4A—C8A 96.48 (5) C5B—S4B—C8B 97.18 (6)
C2A—C1A—S1A 112.77 (8) C2B—C1B—S1B 114.71 (9)
C2A—C1A—H1AA 109.0 C2B—C1B—H1BA 108.6
S1A—C1A—H1AA 109.0 S1B—C1B—H1BA 108.6
C2A—C1A—H1AB 109.0 C2B—C1B—H1BB 108.6
S1A—C1A—H1AB 109.0 S1B—C1B—H1BB 108.6
H1AA—C1A—H1AB 107.8 H1BA—C1B—H1BB 107.6
C3A—C2A—C1A 113.07 (9) C1B—C2B—C3B 114.09 (11)
C3A—C2A—H2AA 109.0 C1B—C2B—H2BA 108.7
C1A—C2A—H2AA 109.0 C3B—C2B—H2BA 108.7
C3A—C2A—H2AB 109.0 C1B—C2B—H2BB 108.7
C1A—C2A—H2AB 109.0 C3B—C2B—H2BB 108.7
H2AA—C2A—H2AB 107.8 H2BA—C2B—H2BB 107.6
C2A—C3A—S2A 114.46 (9) C2B—C3B—S2B 113.05 (9)
C2A—C3A—H3AA 108.6 C2B—C3B—H3BA 109.0
S2A—C3A—H3AA 108.6 S2B—C3B—H3BA 109.0
C2A—C3A—H3AB 108.6 C2B—C3B—H3BB 109.0
S2A—C3A—H3AB 108.6 S2B—C3B—H3BB 109.0
H3AA—C3A—H3AB 107.6 H3BA—C3B—H3BB 107.8
C9A—C4A—C5A 106.84 (8) C9B—C4B—C5B 107.55 (9)
C9A—C4A—S2A 114.46 (8) C9B—C4B—S1B 114.83 (8)
C5A—C4A—S2A 110.63 (7) C5B—C4B—S1B 110.18 (7)
C9A—C4A—S1A 103.39 (7) C9B—C4B—S2B 102.57 (7)
C5A—C4A—S1A 107.36 (7) C5B—C4B—S2B 107.74 (7)
S2A—C4A—S1A 113.58 (5) S1B—C4B—S2B 113.45 (6)
C4A—C5A—S4A 113.09 (7) C4B—C5B—S3B 112.57 (7)
C4A—C5A—S3A 109.25 (7) C4B—C5B—S4B 108.94 (7)
S4A—C5A—S3A 113.55 (6) S3B—C5B—S4B 113.13 (6)
C4A—C5A—H5AA 106.8 C4B—C5B—H5BA 107.3
S4A—C5A—H5AA 106.8 S3B—C5B—H5BA 107.3
S3A—C5A—H5AA 106.8 S4B—C5B—H5BA 107.3
C7A—C6A—S3A 114.14 (8) C7B—C6B—S3B 114.68 (9)
C7A—C6A—H6AA 108.7 C7B—C6B—H6BA 108.6
S3A—C6A—H6AA 108.7 S3B—C6B—H6BA 108.6
C7A—C6A—H6AB 108.7 C7B—C6B—H6BB 108.6
S3A—C6A—H6AB 108.7 S3B—C6B—H6BB 108.6
H6AA—C6A—H6AB 107.6 H6BA—C6B—H6BB 107.6
C6A—C7A—C8A 113.48 (10) C6B—C7B—C8B 114.05 (11)
C6A—C7A—H7AA 108.9 C6B—C7B—H7BA 108.7
C8A—C7A—H7AA 108.9 C8B—C7B—H7BA 108.7
C6A—C7A—H7AB 108.9 C6B—C7B—H7BB 108.7
C8A—C7A—H7AB 108.9 C8B—C7B—H7BB 108.7
H7AA—C7A—H7AB 107.7 H7BA—C7B—H7BB 107.6
C7A—C8A—S4A 114.41 (10) C7B—C8B—S4B 113.28 (9)
C7A—C8A—H8AA 108.7 C7B—C8B—H8BA 108.9
S4A—C8A—H8AA 108.7 S4B—C8B—H8BA 108.9
C7A—C8A—H8AB 108.7 C7B—C8B—H8BB 108.9
S4A—C8A—H8AB 108.7 S4B—C8B—H8BB 108.9
H8AA—C8A—H8AB 107.6 H8BA—C8B—H8BB 107.7
O1A—C9A—C4A 125.78 (11) O1B—C9B—C4B 125.14 (11)
O1A—C9A—H9AA 117.1 O1B—C9B—H9BA 117.4
C4A—C9A—H9AA 117.1 C4B—C9B—H9BA 117.4
C4A—S1A—C1A—C2A −61.63 (9) C4B—S1B—C1B—C2B −53.25 (11)
S1A—C1A—C2A—C3A 69.59 (12) S1B—C1B—C2B—C3B 62.79 (14)
C1A—C2A—C3A—S2A −65.11 (12) C1B—C2B—C3B—S2B −68.27 (13)
C4A—S2A—C3A—C2A 54.44 (10) C4B—S2B—C3B—C2B 61.78 (10)
C3A—S2A—C4A—C9A 64.43 (9) C1B—S1B—C4B—C9B −62.56 (9)
C3A—S2A—C4A—C5A −174.81 (7) C1B—S1B—C4B—C5B 175.84 (8)
C3A—S2A—C4A—S1A −54.00 (7) C1B—S1B—C4B—S2B 54.96 (7)
C1A—S1A—C4A—C9A −67.55 (8) C3B—S2B—C4B—C9B 65.98 (8)
C1A—S1A—C4A—C5A 179.71 (7) C3B—S2B—C4B—C5B 179.29 (8)
C1A—S1A—C4A—S2A 57.08 (7) C3B—S2B—C4B—S1B −58.47 (7)
C9A—C4A—C5A—S4A −171.08 (7) C9B—C4B—C5B—S3B 169.01 (7)
S2A—C4A—C5A—S4A 63.73 (9) S1B—C4B—C5B—S3B −65.16 (8)
S1A—C4A—C5A—S4A −60.71 (8) S2B—C4B—C5B—S3B 59.08 (8)
C9A—C4A—C5A—S3A 61.41 (9) C9B—C4B—C5B—S4B −64.66 (9)
S2A—C4A—C5A—S3A −63.79 (8) S1B—C4B—C5B—S4B 61.17 (8)
S1A—C4A—C5A—S3A 171.78 (5) S2B—C4B—C5B—S4B −174.59 (5)
C8A—S4A—C5A—C4A 170.50 (8) C6B—S3B—C5B—C4B −172.25 (8)
C8A—S4A—C5A—S3A −64.27 (7) C6B—S3B—C5B—S4B 63.71 (7)
C6A—S3A—C5A—C4A −168.90 (7) C8B—S4B—C5B—C4B 169.19 (8)
C6A—S3A—C5A—S4A 63.85 (7) C8B—S4B—C5B—S3B −64.81 (7)
C5A—S3A—C6A—C7A −59.07 (10) C5B—S3B—C6B—C7B −59.23 (10)
S3A—C6A—C7A—C8A 64.76 (13) S3B—C6B—C7B—C8B 64.90 (14)
C6A—C7A—C8A—S4A −66.24 (13) C6B—C7B—C8B—S4B −65.45 (14)
C5A—S4A—C8A—C7A 61.09 (10) C5B—S4B—C8B—C7B 60.64 (11)
C5A—C4A—C9A—O1A −140.54 (12) C5B—C4B—C9B—O1B 141.54 (11)
S2A—C4A—C9A—O1A −17.70 (15) S1B—C4B—C9B—O1B 18.52 (15)
S1A—C4A—C9A—O1A 106.35 (12) S2B—C4B—C9B—O1B −105.02 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2A—H2AB···O1Ai 0.97 2.51 3.3530 (15) 146
C3A—H3AB···O1A 0.97 2.48 3.1024 (16) 122
C6A—H6AB···O1Bii 0.97 2.51 3.4292 (15) 159
C1B—H1BA···O1B 0.97 2.44 3.0508 (16) 121
C2B—H2BA···O1Biii 0.97 2.54 3.1913 (16) 124
C3B—H3BA···S2Aiv 0.97 2.81 3.5932 (12) 138
C7B—H7BA···O1Av 0.97 2.54 3.3436 (17) 140

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2376).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett.49, 3092–3096.
  5. Rubin, M. B. & Gleiter, R. (2000). Chem. Rev.100, 1121–1164. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Wasserman, H. H. & Parr, J. (2004). Acc. Chem. Res.37, 687–701. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042864/is2376sup1.cif

e-65-0o173-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042864/is2376Isup2.hkl

e-65-0o173-Isup2.hkl (609.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES