Abstract
The asymmetric unit of the title compound, C9H14OS4, comprises two crystallographically independent molecules with similar conformations. In each molecule, an intramolecular C—H⋯O hydrogen bond generates a six-membered ring, producing an S(6) ring motif. All of the six-membered dithiacyclohexane rings adopt chair conformations. The crystal structure is stabilized by four intermolecular C—H⋯O and one C—H⋯S interaction.
Related literature
For details of hydrogen-bond motifs, see: Bernstein et al. (1995 ▶). For ring puckering analysis, see: Cremer & Pople (1975 ▶). For related literature, see: Goswami & Maity (2008 ▶); Rubin & Gleiter (2000 ▶); Wasserman & Parr (2004 ▶).
Experimental
Crystal data
C9H14OS4
M r = 266.44
Monoclinic,
a = 13.0028 (2) Å
b = 13.6790 (2) Å
c = 13.4244 (2) Å
β = 91.873 (1)°
V = 2386.46 (6) Å3
Z = 8
Mo Kα radiation
μ = 0.76 mm−1
T = 100.0 (1) K
0.39 × 0.28 × 0.19 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.754, T max = 0.871
68856 measured reflections
12473 independent reflections
9371 reflections with I > 2σ(I)
R int = 0.055
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.087
S = 1.07
12473 reflections
253 parameters
H-atom parameters constrained
Δρmax = 0.46 e Å−3
Δρmin = −0.38 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042864/is2376sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042864/is2376Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C2A—H2AB⋯O1Ai | 0.97 | 2.51 | 3.3530 (15) | 146 |
| C3A—H3AB⋯O1A | 0.97 | 2.48 | 3.1024 (16) | 122 |
| C6A—H6AB⋯O1Bii | 0.97 | 2.51 | 3.4292 (15) | 159 |
| C1B—H1BA⋯O1B | 0.97 | 2.44 | 3.0508 (16) | 121 |
| C2B—H2BA⋯O1Biii | 0.97 | 2.54 | 3.1913 (16) | 124 |
| C3B—H3BA⋯S2Aiv | 0.97 | 2.81 | 3.5932 (12) | 138 |
| C7B—H7BA⋯O1Av | 0.97 | 2.54 | 3.3436 (17) | 140 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Acknowledgments
HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. We thank the DST [SR /S1/OC-13/2005], Government of India, for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
supplementary crystallographic information
Comment
Vicinal tricarbonyl compounds are powerful electrophiles with widespread applications in organic synthesis (Rubin & Gleiter, 2000; Wasserman & Parr, 2004). They act as useful precursors to synthesis of elaborate heterocylic compounds and numerous novel biologically important substances such as FK-506, rapamycin and related immunosuppressants. They are also used to develop protease inhibitors derived from peptide carboxylic acids. Thioacetalization of carbonyl compounds (Goswami & Maity, 2008) plays an important role in organic synthesis. Dithioacetals have become widely used tools for C—C bond formation. Here we reported the first synthesis of 2,2'-bis(1,3-dithianyl)-2-carbaldehyde from the smallest vicinal tricarbonyl compound, 2-oxo-1,3-propandial.
In the title compound (I), Fig. 1, intramolecular C—H···O hydrogen bonds (Table 1) generate six-membered rings, producing S(6) ring motifs (Bernstein et al., 1995). The S1A/C1A–C3A/S2A/C4A, S3A/C5A/S4A/C8A/C7A/C6A, S1B/C1B–C3B/S2B/C4B, and S3B/C5B/S4B/C8B/C7B/C6B rings adopt chair conformations with the ring puckering parameters (Cremer & Pople, 1975) of Q = 0.6979 (10) Å, Θ = 5.43 (8)°, Φ = 3.4 (9)°; Q = 0.7467 (10) Å, Θ = 171.28 (8)°, Φ = 246.6 (5)°; Q = 0.6967 (11) Å, Θ = 7.22 (9)°, Φ = 247.2 (7)°; Q = 0.7475 (11) Å, Θ = 170.82 (9)°, Φ = 248.2 (5)°, respectively. The crystal structure is stabilized by intermolecular C—H···O (× 4) and C—H···S interactions (Fig. 2).
Experimental
To a stirred solution of 2-oxo-1,3-propandial (250 mg, 0.34 mmol) and boron trifluoride etherate (0.5 mL) in dichloromethane (50 mL) cooled at 0 °C is added propane dithiol (450 mg, 4.1 mmol) dropwise over 15 min with stirring. The mixture is stirred at room temperature for 3h. The progress of the reaction is monitored by TLC. After completion of the reaction, NaHCO3 solution is added slowly and carefully to neutralize the mixture at room temperature, which is then extracted with dichloromethane. The organic layer is dried (anhydrous Na2SO4) and then the solvent is removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 20% ethyl acetate in petroleum ether as eluant to afford 2,2'-bis(1,3-dithianyl)-2-carbaldehyde (247 mg, 32%) as a colorless crystalline solid along with other thiane derivatives.
Refinement
All of the hydrogen atoms were positioned geometrically with C—H = 0.93–0.98 Å and refined in the riding model approximation, with Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines show intramolecular hydrogen bonds.
Fig. 2.
The crystal packing for (I), viewed down the b axis showing linking of molecules through C—H···O and C—H···S interactions. Intermolecular interactions are drawn as dashed lines.
Crystal data
| C9H14OS4 | F(000) = 1120 |
| Mr = 266.44 | Dx = 1.483 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 6037 reflections |
| a = 13.0028 (2) Å | θ = 2.6–35.5° |
| b = 13.6790 (2) Å | µ = 0.76 mm−1 |
| c = 13.4244 (2) Å | T = 100 K |
| β = 91.873 (1)° | Block, colourless |
| V = 2386.46 (6) Å3 | 0.39 × 0.28 × 0.19 mm |
| Z = 8 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 12473 independent reflections |
| Radiation source: fine-focus sealed tube | 9371 reflections with I > 2σ(I) |
| graphite | Rint = 0.055 |
| φ and ω scans | θmax = 37.5°, θmin = 1.6° |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −22→20 |
| Tmin = 0.754, Tmax = 0.871 | k = −22→23 |
| 68856 measured reflections | l = −22→22 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.087 | H-atom parameters constrained |
| S = 1.07 | w = 1/[σ2(Fo2) + (0.0325P)2 + 0.5359P] where P = (Fo2 + 2Fc2)/3 |
| 12473 reflections | (Δ/σ)max = 0.002 |
| 253 parameters | Δρmax = 0.46 e Å−3 |
| 0 restraints | Δρmin = −0.37 e Å−3 |
Special details
| Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1A | 0.46746 (2) | 0.654917 (19) | 0.92342 (2) | 0.01556 (5) | |
| S2A | 0.62228 (2) | 0.66697 (2) | 0.75806 (2) | 0.01787 (5) | |
| S3A | 0.74126 (2) | 0.47975 (2) | 0.86715 (2) | 0.01958 (6) | |
| S4A | 0.71041 (2) | 0.65781 (2) | 0.99797 (2) | 0.02006 (6) | |
| O1A | 0.48320 (8) | 0.48599 (7) | 0.72999 (8) | 0.02660 (19) | |
| C1A | 0.37902 (8) | 0.68880 (8) | 0.82162 (9) | 0.01741 (19) | |
| H1AA | 0.3555 | 0.6300 | 0.7875 | 0.021* | |
| H1AB | 0.3194 | 0.7206 | 0.8487 | 0.021* | |
| C2A | 0.42752 (9) | 0.75689 (8) | 0.74674 (9) | 0.0190 (2) | |
| H2AA | 0.3740 | 0.7823 | 0.7019 | 0.023* | |
| H2AB | 0.4586 | 0.8118 | 0.7822 | 0.023* | |
| C3A | 0.50888 (9) | 0.70711 (9) | 0.68583 (9) | 0.0201 (2) | |
| H3AA | 0.5305 | 0.7520 | 0.6347 | 0.024* | |
| H3AB | 0.4781 | 0.6508 | 0.6526 | 0.024* | |
| C4A | 0.56675 (8) | 0.59204 (7) | 0.85376 (8) | 0.01396 (17) | |
| C5A | 0.65016 (8) | 0.55798 (7) | 0.92955 (8) | 0.01432 (17) | |
| H5AA | 0.6159 | 0.5171 | 0.9784 | 0.017* | |
| C6A | 0.80918 (9) | 0.43427 (9) | 0.97830 (10) | 0.0229 (2) | |
| H6AA | 0.7612 | 0.3980 | 1.0180 | 0.027* | |
| H6AB | 0.8622 | 0.3891 | 0.9583 | 0.027* | |
| C7A | 0.85868 (10) | 0.51357 (9) | 1.04276 (11) | 0.0247 (2) | |
| H7AA | 0.9051 | 0.5512 | 1.0027 | 0.030* | |
| H7AB | 0.8993 | 0.4830 | 1.0961 | 0.030* | |
| C8A | 0.78136 (10) | 0.58263 (9) | 1.08808 (10) | 0.0238 (2) | |
| H8AA | 0.8176 | 0.6252 | 1.1352 | 0.029* | |
| H8AB | 0.7327 | 0.5443 | 1.1250 | 0.029* | |
| C9A | 0.51184 (9) | 0.50023 (8) | 0.81473 (9) | 0.0182 (2) | |
| H9AA | 0.4995 | 0.4511 | 0.8607 | 0.022* | |
| S1B | 0.86151 (2) | 0.28160 (2) | 0.29985 (2) | 0.01813 (6) | |
| S2B | 1.02461 (2) | 0.43886 (2) | 0.33386 (2) | 0.01876 (6) | |
| S3B | 0.78758 (2) | 0.51420 (2) | 0.34283 (2) | 0.01985 (6) | |
| S4B | 0.75193 (2) | 0.35947 (2) | 0.49927 (2) | 0.02279 (6) | |
| O1B | 1.00970 (7) | 0.22837 (7) | 0.47436 (7) | 0.02534 (18) | |
| C1B | 0.96908 (9) | 0.21483 (9) | 0.24967 (10) | 0.0238 (2) | |
| H1BA | 0.9986 | 0.1732 | 0.3017 | 0.029* | |
| H1BB | 0.9432 | 0.1727 | 0.1964 | 0.029* | |
| C2B | 1.05386 (10) | 0.27878 (11) | 0.20949 (10) | 0.0276 (3) | |
| H2BA | 1.0246 | 0.3201 | 0.1571 | 0.033* | |
| H2BB | 1.1049 | 0.2371 | 0.1799 | 0.033* | |
| C3B | 1.10724 (9) | 0.34340 (10) | 0.28785 (10) | 0.0239 (2) | |
| H3BA | 1.1672 | 0.3732 | 0.2593 | 0.029* | |
| H3BB | 1.1308 | 0.3030 | 0.3434 | 0.029* | |
| C4B | 0.92466 (8) | 0.36320 (7) | 0.38847 (8) | 0.01385 (17) | |
| C5B | 0.84575 (8) | 0.43202 (8) | 0.43385 (8) | 0.01527 (18) | |
| H5BA | 0.8826 | 0.4723 | 0.4837 | 0.018* | |
| C6B | 0.71805 (10) | 0.58963 (9) | 0.42935 (10) | 0.0251 (2) | |
| H6BA | 0.7675 | 0.6215 | 0.4742 | 0.030* | |
| H6BB | 0.6818 | 0.6403 | 0.3919 | 0.030* | |
| C7B | 0.64127 (10) | 0.53471 (10) | 0.49091 (10) | 0.0256 (2) | |
| H7BA | 0.5930 | 0.5012 | 0.4462 | 0.031* | |
| H7BB | 0.6026 | 0.5816 | 0.5290 | 0.031* | |
| C8B | 0.68984 (11) | 0.46041 (11) | 0.56230 (10) | 0.0275 (3) | |
| H8BA | 0.6370 | 0.4344 | 0.6043 | 0.033* | |
| H8BB | 0.7404 | 0.4932 | 0.6052 | 0.033* | |
| C9B | 0.98274 (9) | 0.31267 (8) | 0.47398 (9) | 0.01764 (19) | |
| H9BA | 0.9988 | 0.3497 | 0.5305 | 0.021* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1A | 0.01482 (11) | 0.01624 (11) | 0.01573 (12) | 0.00201 (8) | 0.00224 (9) | −0.00020 (9) |
| S2A | 0.01485 (11) | 0.02094 (12) | 0.01797 (13) | 0.00106 (9) | 0.00283 (9) | 0.00538 (9) |
| S3A | 0.01766 (12) | 0.01907 (12) | 0.02204 (14) | 0.00508 (9) | 0.00125 (10) | −0.00104 (10) |
| S4A | 0.02219 (13) | 0.01382 (11) | 0.02366 (14) | 0.00037 (9) | −0.00701 (10) | −0.00098 (9) |
| O1A | 0.0337 (5) | 0.0184 (4) | 0.0268 (5) | 0.0044 (3) | −0.0117 (4) | −0.0054 (3) |
| C1A | 0.0144 (4) | 0.0167 (5) | 0.0210 (5) | 0.0019 (3) | −0.0002 (4) | 0.0004 (4) |
| C2A | 0.0185 (5) | 0.0158 (5) | 0.0226 (5) | 0.0031 (4) | −0.0013 (4) | 0.0032 (4) |
| C3A | 0.0206 (5) | 0.0216 (5) | 0.0180 (5) | 0.0030 (4) | 0.0008 (4) | 0.0063 (4) |
| C4A | 0.0146 (4) | 0.0122 (4) | 0.0152 (5) | 0.0007 (3) | 0.0017 (3) | 0.0002 (3) |
| C5A | 0.0140 (4) | 0.0120 (4) | 0.0170 (5) | 0.0001 (3) | 0.0004 (3) | 0.0008 (3) |
| C6A | 0.0200 (5) | 0.0180 (5) | 0.0306 (6) | 0.0042 (4) | −0.0018 (4) | 0.0039 (4) |
| C7A | 0.0199 (5) | 0.0217 (5) | 0.0320 (7) | 0.0011 (4) | −0.0078 (5) | 0.0051 (5) |
| C8A | 0.0246 (5) | 0.0226 (5) | 0.0236 (6) | 0.0005 (4) | −0.0089 (4) | 0.0013 (4) |
| C9A | 0.0180 (5) | 0.0137 (4) | 0.0229 (5) | 0.0016 (3) | −0.0010 (4) | −0.0010 (4) |
| S1B | 0.01571 (11) | 0.01880 (12) | 0.01966 (13) | 0.00048 (9) | −0.00272 (9) | −0.00554 (9) |
| S2B | 0.01721 (11) | 0.01821 (12) | 0.02107 (13) | −0.00308 (9) | 0.00389 (10) | 0.00171 (9) |
| S3B | 0.02317 (13) | 0.01821 (12) | 0.01821 (13) | 0.00516 (9) | 0.00150 (10) | 0.00249 (9) |
| S4B | 0.02262 (13) | 0.02165 (13) | 0.02473 (15) | 0.00012 (10) | 0.01028 (11) | 0.00316 (11) |
| O1B | 0.0301 (5) | 0.0229 (4) | 0.0227 (4) | 0.0064 (3) | −0.0031 (4) | 0.0032 (3) |
| C1B | 0.0233 (5) | 0.0241 (6) | 0.0239 (6) | 0.0056 (4) | −0.0001 (4) | −0.0093 (4) |
| C2B | 0.0267 (6) | 0.0357 (7) | 0.0207 (6) | 0.0061 (5) | 0.0059 (5) | −0.0043 (5) |
| C3B | 0.0179 (5) | 0.0285 (6) | 0.0258 (6) | 0.0027 (4) | 0.0075 (4) | 0.0016 (5) |
| C4B | 0.0142 (4) | 0.0144 (4) | 0.0129 (4) | −0.0013 (3) | 0.0005 (3) | −0.0001 (3) |
| C5B | 0.0170 (4) | 0.0145 (4) | 0.0143 (5) | −0.0005 (3) | 0.0006 (3) | 0.0000 (3) |
| C6B | 0.0277 (6) | 0.0199 (5) | 0.0278 (6) | 0.0083 (4) | −0.0003 (5) | −0.0044 (4) |
| C7B | 0.0218 (5) | 0.0311 (6) | 0.0238 (6) | 0.0065 (4) | 0.0022 (4) | −0.0093 (5) |
| C8B | 0.0260 (6) | 0.0360 (7) | 0.0211 (6) | 0.0051 (5) | 0.0085 (5) | −0.0033 (5) |
| C9B | 0.0179 (4) | 0.0207 (5) | 0.0143 (5) | −0.0006 (4) | 0.0001 (4) | 0.0015 (4) |
Geometric parameters (Å, °)
| S1A—C1A | 1.8171 (12) | S1B—C4B | 1.8088 (11) |
| S1A—C4A | 1.8330 (10) | S1B—C1B | 1.8183 (12) |
| S2A—C4A | 1.8119 (11) | S2B—C3B | 1.8123 (13) |
| S2A—C3A | 1.8227 (12) | S2B—C4B | 1.8329 (10) |
| S3A—C6A | 1.8185 (13) | S3B—C5B | 1.8079 (11) |
| S3A—C5A | 1.8207 (11) | S3B—C6B | 1.8165 (13) |
| S4A—C5A | 1.8099 (11) | S4B—C5B | 1.8206 (11) |
| S4A—C8A | 1.8162 (13) | S4B—C8B | 1.8218 (13) |
| O1A—C9A | 1.2013 (15) | O1B—C9B | 1.2052 (14) |
| C1A—C2A | 1.5222 (16) | C1B—C2B | 1.5200 (19) |
| C1A—H1AA | 0.9700 | C1B—H1BA | 0.9700 |
| C1A—H1AB | 0.9700 | C1B—H1BB | 0.9700 |
| C2A—C3A | 1.5193 (16) | C2B—C3B | 1.524 (2) |
| C2A—H2AA | 0.9700 | C2B—H2BA | 0.9700 |
| C2A—H2AB | 0.9700 | C2B—H2BB | 0.9700 |
| C3A—H3AA | 0.9700 | C3B—H3BA | 0.9700 |
| C3A—H3AB | 0.9700 | C3B—H3BB | 0.9700 |
| C4A—C9A | 1.5287 (15) | C4B—C9B | 1.5197 (16) |
| C4A—C5A | 1.5350 (15) | C4B—C5B | 1.5333 (15) |
| C5A—H5AA | 0.9800 | C5B—H5BA | 0.9800 |
| C6A—C7A | 1.5177 (19) | C6B—C7B | 1.5159 (19) |
| C6A—H6AA | 0.9700 | C6B—H6BA | 0.9700 |
| C6A—H6AB | 0.9700 | C6B—H6BB | 0.9700 |
| C7A—C8A | 1.5210 (19) | C7B—C8B | 1.520 (2) |
| C7A—H7AA | 0.9700 | C7B—H7BA | 0.9700 |
| C7A—H7AB | 0.9700 | C7B—H7BB | 0.9700 |
| C8A—H8AA | 0.9700 | C8B—H8BA | 0.9700 |
| C8A—H8AB | 0.9700 | C8B—H8BB | 0.9700 |
| C9A—H9AA | 0.9300 | C9B—H9BA | 0.9300 |
| C1A—S1A—C4A | 100.07 (5) | C4B—S1B—C1B | 102.44 (5) |
| C4A—S2A—C3A | 102.32 (5) | C3B—S2B—C4B | 99.53 (5) |
| C6A—S3A—C5A | 97.44 (6) | C5B—S3B—C6B | 97.30 (6) |
| C5A—S4A—C8A | 96.48 (5) | C5B—S4B—C8B | 97.18 (6) |
| C2A—C1A—S1A | 112.77 (8) | C2B—C1B—S1B | 114.71 (9) |
| C2A—C1A—H1AA | 109.0 | C2B—C1B—H1BA | 108.6 |
| S1A—C1A—H1AA | 109.0 | S1B—C1B—H1BA | 108.6 |
| C2A—C1A—H1AB | 109.0 | C2B—C1B—H1BB | 108.6 |
| S1A—C1A—H1AB | 109.0 | S1B—C1B—H1BB | 108.6 |
| H1AA—C1A—H1AB | 107.8 | H1BA—C1B—H1BB | 107.6 |
| C3A—C2A—C1A | 113.07 (9) | C1B—C2B—C3B | 114.09 (11) |
| C3A—C2A—H2AA | 109.0 | C1B—C2B—H2BA | 108.7 |
| C1A—C2A—H2AA | 109.0 | C3B—C2B—H2BA | 108.7 |
| C3A—C2A—H2AB | 109.0 | C1B—C2B—H2BB | 108.7 |
| C1A—C2A—H2AB | 109.0 | C3B—C2B—H2BB | 108.7 |
| H2AA—C2A—H2AB | 107.8 | H2BA—C2B—H2BB | 107.6 |
| C2A—C3A—S2A | 114.46 (9) | C2B—C3B—S2B | 113.05 (9) |
| C2A—C3A—H3AA | 108.6 | C2B—C3B—H3BA | 109.0 |
| S2A—C3A—H3AA | 108.6 | S2B—C3B—H3BA | 109.0 |
| C2A—C3A—H3AB | 108.6 | C2B—C3B—H3BB | 109.0 |
| S2A—C3A—H3AB | 108.6 | S2B—C3B—H3BB | 109.0 |
| H3AA—C3A—H3AB | 107.6 | H3BA—C3B—H3BB | 107.8 |
| C9A—C4A—C5A | 106.84 (8) | C9B—C4B—C5B | 107.55 (9) |
| C9A—C4A—S2A | 114.46 (8) | C9B—C4B—S1B | 114.83 (8) |
| C5A—C4A—S2A | 110.63 (7) | C5B—C4B—S1B | 110.18 (7) |
| C9A—C4A—S1A | 103.39 (7) | C9B—C4B—S2B | 102.57 (7) |
| C5A—C4A—S1A | 107.36 (7) | C5B—C4B—S2B | 107.74 (7) |
| S2A—C4A—S1A | 113.58 (5) | S1B—C4B—S2B | 113.45 (6) |
| C4A—C5A—S4A | 113.09 (7) | C4B—C5B—S3B | 112.57 (7) |
| C4A—C5A—S3A | 109.25 (7) | C4B—C5B—S4B | 108.94 (7) |
| S4A—C5A—S3A | 113.55 (6) | S3B—C5B—S4B | 113.13 (6) |
| C4A—C5A—H5AA | 106.8 | C4B—C5B—H5BA | 107.3 |
| S4A—C5A—H5AA | 106.8 | S3B—C5B—H5BA | 107.3 |
| S3A—C5A—H5AA | 106.8 | S4B—C5B—H5BA | 107.3 |
| C7A—C6A—S3A | 114.14 (8) | C7B—C6B—S3B | 114.68 (9) |
| C7A—C6A—H6AA | 108.7 | C7B—C6B—H6BA | 108.6 |
| S3A—C6A—H6AA | 108.7 | S3B—C6B—H6BA | 108.6 |
| C7A—C6A—H6AB | 108.7 | C7B—C6B—H6BB | 108.6 |
| S3A—C6A—H6AB | 108.7 | S3B—C6B—H6BB | 108.6 |
| H6AA—C6A—H6AB | 107.6 | H6BA—C6B—H6BB | 107.6 |
| C6A—C7A—C8A | 113.48 (10) | C6B—C7B—C8B | 114.05 (11) |
| C6A—C7A—H7AA | 108.9 | C6B—C7B—H7BA | 108.7 |
| C8A—C7A—H7AA | 108.9 | C8B—C7B—H7BA | 108.7 |
| C6A—C7A—H7AB | 108.9 | C6B—C7B—H7BB | 108.7 |
| C8A—C7A—H7AB | 108.9 | C8B—C7B—H7BB | 108.7 |
| H7AA—C7A—H7AB | 107.7 | H7BA—C7B—H7BB | 107.6 |
| C7A—C8A—S4A | 114.41 (10) | C7B—C8B—S4B | 113.28 (9) |
| C7A—C8A—H8AA | 108.7 | C7B—C8B—H8BA | 108.9 |
| S4A—C8A—H8AA | 108.7 | S4B—C8B—H8BA | 108.9 |
| C7A—C8A—H8AB | 108.7 | C7B—C8B—H8BB | 108.9 |
| S4A—C8A—H8AB | 108.7 | S4B—C8B—H8BB | 108.9 |
| H8AA—C8A—H8AB | 107.6 | H8BA—C8B—H8BB | 107.7 |
| O1A—C9A—C4A | 125.78 (11) | O1B—C9B—C4B | 125.14 (11) |
| O1A—C9A—H9AA | 117.1 | O1B—C9B—H9BA | 117.4 |
| C4A—C9A—H9AA | 117.1 | C4B—C9B—H9BA | 117.4 |
| C4A—S1A—C1A—C2A | −61.63 (9) | C4B—S1B—C1B—C2B | −53.25 (11) |
| S1A—C1A—C2A—C3A | 69.59 (12) | S1B—C1B—C2B—C3B | 62.79 (14) |
| C1A—C2A—C3A—S2A | −65.11 (12) | C1B—C2B—C3B—S2B | −68.27 (13) |
| C4A—S2A—C3A—C2A | 54.44 (10) | C4B—S2B—C3B—C2B | 61.78 (10) |
| C3A—S2A—C4A—C9A | 64.43 (9) | C1B—S1B—C4B—C9B | −62.56 (9) |
| C3A—S2A—C4A—C5A | −174.81 (7) | C1B—S1B—C4B—C5B | 175.84 (8) |
| C3A—S2A—C4A—S1A | −54.00 (7) | C1B—S1B—C4B—S2B | 54.96 (7) |
| C1A—S1A—C4A—C9A | −67.55 (8) | C3B—S2B—C4B—C9B | 65.98 (8) |
| C1A—S1A—C4A—C5A | 179.71 (7) | C3B—S2B—C4B—C5B | 179.29 (8) |
| C1A—S1A—C4A—S2A | 57.08 (7) | C3B—S2B—C4B—S1B | −58.47 (7) |
| C9A—C4A—C5A—S4A | −171.08 (7) | C9B—C4B—C5B—S3B | 169.01 (7) |
| S2A—C4A—C5A—S4A | 63.73 (9) | S1B—C4B—C5B—S3B | −65.16 (8) |
| S1A—C4A—C5A—S4A | −60.71 (8) | S2B—C4B—C5B—S3B | 59.08 (8) |
| C9A—C4A—C5A—S3A | 61.41 (9) | C9B—C4B—C5B—S4B | −64.66 (9) |
| S2A—C4A—C5A—S3A | −63.79 (8) | S1B—C4B—C5B—S4B | 61.17 (8) |
| S1A—C4A—C5A—S3A | 171.78 (5) | S2B—C4B—C5B—S4B | −174.59 (5) |
| C8A—S4A—C5A—C4A | 170.50 (8) | C6B—S3B—C5B—C4B | −172.25 (8) |
| C8A—S4A—C5A—S3A | −64.27 (7) | C6B—S3B—C5B—S4B | 63.71 (7) |
| C6A—S3A—C5A—C4A | −168.90 (7) | C8B—S4B—C5B—C4B | 169.19 (8) |
| C6A—S3A—C5A—S4A | 63.85 (7) | C8B—S4B—C5B—S3B | −64.81 (7) |
| C5A—S3A—C6A—C7A | −59.07 (10) | C5B—S3B—C6B—C7B | −59.23 (10) |
| S3A—C6A—C7A—C8A | 64.76 (13) | S3B—C6B—C7B—C8B | 64.90 (14) |
| C6A—C7A—C8A—S4A | −66.24 (13) | C6B—C7B—C8B—S4B | −65.45 (14) |
| C5A—S4A—C8A—C7A | 61.09 (10) | C5B—S4B—C8B—C7B | 60.64 (11) |
| C5A—C4A—C9A—O1A | −140.54 (12) | C5B—C4B—C9B—O1B | 141.54 (11) |
| S2A—C4A—C9A—O1A | −17.70 (15) | S1B—C4B—C9B—O1B | 18.52 (15) |
| S1A—C4A—C9A—O1A | 106.35 (12) | S2B—C4B—C9B—O1B | −105.02 (12) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C2A—H2AB···O1Ai | 0.97 | 2.51 | 3.3530 (15) | 146 |
| C3A—H3AB···O1A | 0.97 | 2.48 | 3.1024 (16) | 122 |
| C6A—H6AB···O1Bii | 0.97 | 2.51 | 3.4292 (15) | 159 |
| C1B—H1BA···O1B | 0.97 | 2.44 | 3.0508 (16) | 121 |
| C2B—H2BA···O1Biii | 0.97 | 2.54 | 3.1913 (16) | 124 |
| C3B—H3BA···S2Aiv | 0.97 | 2.81 | 3.5932 (12) | 138 |
| C7B—H7BA···O1Av | 0.97 | 2.54 | 3.3436 (17) | 140 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2376).
References
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
- Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett.49, 3092–3096.
- Rubin, M. B. & Gleiter, R. (2000). Chem. Rev.100, 1121–1164. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Wasserman, H. H. & Parr, J. (2004). Acc. Chem. Res.37, 687–701. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042864/is2376sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042864/is2376Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


