Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o236. doi: 10.1107/S160053680804395X

(Z)-Ethyl 2,4-diphenyl-3-(propyl­amino)­but-2-enoate

Huimin Jin a,*, Peifan Li a, Bin Liu a, Xiaoqing Cheng a
PMCID: PMC2968183  PMID: 21581853

Abstract

The title compound, C21H25NO2, adopts a Z conformation about the C=C double bond. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond and the dihedral angle between the aromatic ring planes is 76.04 (12)°. The atoms of the ethyl substituent are disordered over two sets of sites in a 0.60 (2):0.40 (2) ratio.

Related literature

For the synthesis, see: Du et al. (2006). For background, see: Xue et al. (2007).graphic file with name e-65-0o236-scheme1.jpg

Experimental

Crystal data

  • C21H25NO2

  • M r = 323.42

  • Monoclinic, Inline graphic

  • a = 12.186 (2) Å

  • b = 8.4771 (17) Å

  • c = 19.080 (4) Å

  • β = 106.33 (3)°

  • V = 1891.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.980, T max = 0.987

  • 12325 measured reflections

  • 3323 independent reflections

  • 2290 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.198

  • S = 1.06

  • 3323 reflections

  • 232 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804395X/hb2886sup1.cif

e-65-0o236-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804395X/hb2886Isup2.hkl

e-65-0o236-Isup2.hkl (163KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.905 (16) 1.925 (17) 2.653 (3) 136.3 (14)

Acknowledgments

We thank the Technology Fund of Tianjin Bureau of Public Health (grant No. 04KY36) for financial support.

supplementary crystallographic information

Comment

Enamine compounds have been considered to be potential antibacterial agents (Xue et al., 2007) and found important application in the synthesis of N-containint heterocylcles (Du et al., 2006). To further study the structure and activity relationship, we determine the crystal structure of the title compound, (I).

In the molecular structure (Fig. 1), the torsion angles of N1—C11—C7—C6 and C8—C7—C11—C12 are -177.32 (17) and -175.14 (16)°, respectively. Furthermore, the distances C7—C11 and C11—N1 are 1.381 (3), 1.348 (3)Å, respectively. Both of these features confirm the enamine structure formation. The two phenyl rings constructed an angle of 76.04 (12)°. The molecule adopts a Z-conformation, being stabilised by an intramolecular N—H···O hydrogen bond (Table 1).

Experimental

The title compound was prepared according to the method of the literature (Du, et al., 2006). Colourless blocks of (I) were grown from a mixture of ethyl actate and petroleum ether.

Refinement

The non-N H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(CH and CH2) or 1.5Ueq(CH3). The N—H distance was refined with the restraint of 0.90 (1) Å, and the C19—C20, C20—C21, C9—C10 and C9—C10' with the restraint of 1.54 (1) Å. The ethyl radical of the ester moiety was found to be disordered, with the site occupancy ratio of 0.40 (2):0.60 (2).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 50% probability displacement ellipsoids. The dashed line indicates the intramolecular N—H···O hydrogen bond.

Crystal data

C21H25NO2 F(000) = 696
Mr = 323.42 Dx = 1.136 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4099 reflections
a = 12.186 (2) Å θ = 2.2–27.1°
b = 8.4771 (17) Å µ = 0.07 mm1
c = 19.080 (4) Å T = 293 K
β = 106.33 (3)° Block, colourless
V = 1891.4 (7) Å3 0.28 × 0.22 × 0.18 mm
Z = 4

Data collection

Rigaku Saturn diffractometer 3323 independent reflections
Radiation source: rotating anode 2290 reflections with I > 2σ(I)
confocal Rint = 0.034
Detector resolution: 7.31 pixels mm-1 θmax = 25.0°, θmin = 2.2°
ω scans h = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −9→10
Tmin = 0.980, Tmax = 0.987 l = −21→22
12325 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.198 w = 1/[σ2(Fo2) + (0.1207P)2 + 0.019P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3323 reflections Δρmax = 0.24 e Å3
232 parameters Δρmin = −0.19 e Å3
5 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.079 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.98880 (16) 0.7415 (2) 0.24987 (10) 0.0936 (6)
O2 1.07264 (14) 0.97745 (19) 0.24972 (8) 0.0791 (5)
N1 0.95170 (17) 1.1941 (2) 0.16036 (11) 0.0710 (6)
C1 0.7770 (2) 0.7362 (3) 0.07667 (13) 0.0723 (7)
H1 0.8213 0.7655 0.0463 0.087*
C2 0.6935 (2) 0.6239 (3) 0.05278 (16) 0.0864 (8)
H2A 0.6812 0.5794 0.0067 0.104*
C3 0.6286 (2) 0.5778 (3) 0.09719 (18) 0.0906 (8)
H3A 0.5719 0.5018 0.0814 0.109*
C4 0.6473 (2) 0.6434 (4) 0.16427 (18) 0.0977 (9)
H4A 0.6038 0.6115 0.1947 0.117*
C5 0.7302 (2) 0.7568 (3) 0.18764 (14) 0.0829 (8)
H5A 0.7415 0.8007 0.2338 0.099*
C6 0.79728 (17) 0.8072 (2) 0.14437 (11) 0.0591 (6)
C7 0.88662 (17) 0.9301 (2) 0.16911 (10) 0.0572 (6)
C8 0.99038 (19) 0.8903 (3) 0.22513 (12) 0.0654 (6)
C9 1.0852 (3) 0.6899 (4) 0.30878 (18) 0.1159 (11) 0.60 (2)
H9A 1.1075 0.5855 0.2971 0.139* 0.60 (2)
H9B 1.1489 0.7602 0.3112 0.139* 0.60 (2)
C10 1.0665 (11) 0.684 (2) 0.3778 (4) 0.133 (4) 0.60 (2)
H10A 1.1353 0.6512 0.4133 0.199* 0.60 (2)
H10B 1.0063 0.6106 0.3770 0.199* 0.60 (2)
H10C 1.0450 0.7871 0.3904 0.199* 0.60 (2)
C9' 1.0852 (3) 0.6899 (4) 0.30878 (18) 0.1159 (11) 0.40 (2)
H9'A 1.1328 0.7787 0.3306 0.139* 0.40 (2)
H9'B 1.1314 0.6146 0.2913 0.139* 0.40 (2)
C10' 1.0339 (12) 0.616 (2) 0.3618 (8) 0.111 (4) 0.40 (2)
H10D 1.0935 0.5788 0.4030 0.166* 0.40 (2)
H10E 0.9871 0.5285 0.3392 0.166* 0.40 (2)
H10F 0.9879 0.6918 0.3779 0.166* 0.40 (2)
C11 0.87065 (17) 1.0815 (2) 0.14123 (11) 0.0588 (6)
C12 0.75990 (17) 1.1280 (2) 0.08755 (11) 0.0618 (6)
H12A 0.7336 1.2250 0.1045 0.074*
H12B 0.7036 1.0471 0.0876 0.074*
C13 0.76341 (16) 1.1525 (2) 0.00975 (11) 0.0565 (5)
C14 0.6757 (2) 1.2334 (3) −0.03842 (14) 0.0745 (7)
H14A 0.6150 1.2716 −0.0228 0.089*
C15 0.6773 (3) 1.2584 (3) −0.11014 (15) 0.0918 (8)
H15A 0.6185 1.3148 −0.1419 0.110*
C16 0.7651 (2) 1.2003 (3) −0.13433 (14) 0.0849 (8)
H16A 0.7663 1.2175 −0.1822 0.102*
C17 0.8495 (2) 1.1182 (3) −0.08805 (14) 0.0803 (7)
H17A 0.9085 1.0766 −0.1045 0.096*
C18 0.84946 (18) 1.0953 (3) −0.01624 (12) 0.0706 (6)
H18A 0.9093 1.0397 0.0151 0.085*
C19 0.9397 (2) 1.3609 (3) 0.14108 (16) 0.0837 (8)
H19A 0.9085 1.4167 0.1755 0.100*
H19B 0.8867 1.3728 0.0928 0.100*
C20 1.0546 (3) 1.4324 (3) 0.14196 (19) 0.1120 (11)
H20A 1.0446 1.5452 0.1344 0.134*
H20B 1.1070 1.4167 0.1902 0.134*
C21 1.1081 (3) 1.3697 (4) 0.0878 (3) 0.1381 (14)
H21A 1.1817 1.4177 0.0946 0.207*
H21B 1.0605 1.3929 0.0396 0.207*
H21C 1.1169 1.2576 0.0937 0.207*
H1A 1.0180 (11) 1.163 (2) 0.1924 (9) 0.065 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0861 (12) 0.0898 (12) 0.0851 (13) 0.0094 (9) −0.0083 (10) 0.0275 (9)
O2 0.0732 (11) 0.0914 (11) 0.0625 (10) 0.0011 (8) 0.0026 (8) −0.0069 (8)
N1 0.0710 (13) 0.0671 (11) 0.0688 (13) −0.0032 (9) 0.0099 (11) 0.0003 (9)
C1 0.0817 (16) 0.0716 (13) 0.0667 (15) −0.0068 (11) 0.0257 (13) −0.0040 (11)
C2 0.0884 (17) 0.0779 (15) 0.0873 (18) −0.0122 (13) 0.0156 (15) −0.0051 (13)
C3 0.0755 (16) 0.0790 (16) 0.107 (2) −0.0092 (12) 0.0090 (16) 0.0195 (15)
C4 0.0823 (18) 0.119 (2) 0.094 (2) −0.0134 (16) 0.0297 (17) 0.0302 (18)
C5 0.0798 (17) 0.1103 (19) 0.0628 (15) −0.0056 (14) 0.0270 (14) 0.0115 (13)
C6 0.0591 (12) 0.0645 (12) 0.0522 (12) 0.0079 (9) 0.0132 (10) 0.0094 (10)
C7 0.0629 (12) 0.0659 (12) 0.0428 (11) 0.0084 (9) 0.0148 (9) 0.0027 (9)
C8 0.0712 (14) 0.0745 (13) 0.0487 (12) 0.0090 (11) 0.0138 (11) −0.0020 (11)
C9 0.096 (2) 0.133 (2) 0.094 (2) 0.0225 (18) −0.0132 (18) 0.040 (2)
C10 0.102 (6) 0.194 (10) 0.081 (5) 0.043 (6) −0.010 (4) −0.022 (5)
C9' 0.096 (2) 0.133 (2) 0.094 (2) 0.0225 (18) −0.0132 (18) 0.040 (2)
C10' 0.119 (8) 0.129 (9) 0.060 (6) −0.016 (7) −0.015 (5) 0.041 (6)
C11 0.0645 (12) 0.0669 (12) 0.0475 (11) 0.0055 (9) 0.0197 (10) −0.0032 (9)
C12 0.0585 (12) 0.0668 (12) 0.0617 (13) 0.0101 (9) 0.0196 (10) 0.0044 (10)
C13 0.0568 (12) 0.0509 (10) 0.0576 (12) −0.0005 (8) 0.0092 (10) 0.0023 (9)
C14 0.0717 (15) 0.0751 (14) 0.0690 (16) 0.0136 (11) 0.0071 (12) 0.0039 (12)
C15 0.095 (2) 0.0952 (18) 0.0692 (17) 0.0136 (14) −0.0033 (15) 0.0173 (14)
C16 0.0953 (19) 0.0984 (18) 0.0556 (14) −0.0162 (15) 0.0123 (14) 0.0129 (13)
C17 0.0747 (16) 0.1049 (18) 0.0626 (15) 0.0008 (13) 0.0213 (13) 0.0083 (13)
C18 0.0618 (13) 0.0874 (15) 0.0608 (14) 0.0117 (11) 0.0144 (11) 0.0121 (11)
C19 0.0904 (17) 0.0636 (14) 0.099 (2) −0.0011 (12) 0.0290 (15) −0.0085 (13)
C20 0.129 (3) 0.0726 (16) 0.138 (3) −0.0143 (16) 0.044 (2) −0.0030 (17)
C21 0.136 (3) 0.100 (2) 0.205 (4) −0.006 (2) 0.092 (3) −0.004 (2)

Geometric parameters (Å, °)

O1—C8 1.349 (3) C10'—H10E 0.9600
O1—C9 1.446 (3) C10'—H10F 0.9600
O2—C8 1.227 (3) C11—C12 1.499 (3)
N1—C11 1.348 (3) C12—C13 1.511 (3)
N1—C19 1.458 (3) C12—H12A 0.9700
N1—H1A 0.905 (10) C12—H12B 0.9700
C1—C2 1.374 (3) C13—C18 1.369 (3)
C1—C6 1.383 (3) C13—C14 1.381 (3)
C1—H1 0.9300 C14—C15 1.390 (4)
C2—C3 1.369 (4) C14—H14A 0.9300
C2—H2A 0.9300 C15—C16 1.370 (4)
C3—C4 1.355 (4) C15—H15A 0.9300
C3—H3A 0.9300 C16—C17 1.346 (3)
C4—C5 1.375 (4) C16—H16A 0.9300
C4—H4A 0.9300 C17—C18 1.384 (3)
C5—C6 1.383 (3) C17—H17A 0.9300
C5—H5A 0.9300 C18—H18A 0.9300
C6—C7 1.485 (3) C19—C20 1.522 (3)
C7—C11 1.381 (3) C19—H19A 0.9700
C7—C8 1.448 (3) C19—H19B 0.9700
C9—C10 1.399 (7) C20—C21 1.467 (4)
C9—H9A 0.9700 C20—H20A 0.9700
C9—H9B 0.9700 C20—H20B 0.9700
C10—H10A 0.9600 C21—H21A 0.9600
C10—H10B 0.9600 C21—H21B 0.9600
C10—H10C 0.9600 C21—H21C 0.9600
C10'—H10D 0.9600
C8—O1—C9 117.8 (2) N1—C11—C12 116.66 (18)
C11—N1—C19 127.2 (2) C7—C11—C12 120.63 (19)
C11—N1—H1A 114.9 (13) C11—C12—C13 116.00 (16)
C19—N1—H1A 117.5 (13) C11—C12—H12A 108.3
C2—C1—C6 122.2 (2) C13—C12—H12A 108.3
C2—C1—H1 118.9 C11—C12—H12B 108.3
C6—C1—H1 118.9 C13—C12—H12B 108.3
C3—C2—C1 119.7 (3) H12A—C12—H12B 107.4
C3—C2—H2A 120.2 C18—C13—C14 117.6 (2)
C1—C2—H2A 120.2 C18—C13—C12 122.92 (19)
C4—C3—C2 119.6 (3) C14—C13—C12 119.44 (18)
C4—C3—H3A 120.2 C13—C14—C15 120.5 (2)
C2—C3—H3A 120.2 C13—C14—H14A 119.7
C3—C4—C5 120.4 (2) C15—C14—H14A 119.7
C3—C4—H4A 119.8 C16—C15—C14 120.4 (2)
C5—C4—H4A 119.8 C16—C15—H15A 119.8
C4—C5—C6 121.8 (2) C14—C15—H15A 119.8
C4—C5—H5A 119.1 C17—C16—C15 119.3 (2)
C6—C5—H5A 119.1 C17—C16—H16A 120.3
C1—C6—C5 116.3 (2) C15—C16—H16A 120.3
C1—C6—C7 121.66 (17) C16—C17—C18 120.6 (2)
C5—C6—C7 122.1 (2) C16—C17—H17A 119.7
C11—C7—C8 120.0 (2) C18—C17—H17A 119.7
C11—C7—C6 121.21 (19) C13—C18—C17 121.5 (2)
C8—C7—C6 118.74 (18) C13—C18—H18A 119.2
O2—C8—O1 121.3 (2) C17—C18—H18A 119.2
O2—C8—C7 126.3 (2) N1—C19—C20 110.9 (2)
O1—C8—C7 112.4 (2) N1—C19—H19A 109.5
C10—C9—O1 115.5 (5) C20—C19—H19A 109.5
C10—C9—H9A 108.4 N1—C19—H19B 109.5
O1—C9—H9A 108.4 C20—C19—H19B 109.5
C10—C9—H9B 108.4 H19A—C19—H19B 108.0
O1—C9—H9B 108.4 C21—C20—C19 115.9 (3)
H9A—C9—H9B 107.5 C21—C20—H20A 108.3
C9—C10—H10A 109.5 C19—C20—H20A 108.3
C9—C10—H10B 109.5 C21—C20—H20B 108.3
H10A—C10—H10B 109.5 C19—C20—H20B 108.3
C9—C10—H10C 109.5 H20A—C20—H20B 107.4
H10A—C10—H10C 109.5 C20—C21—H21A 109.5
H10B—C10—H10C 109.5 C20—C21—H21B 109.5
H10D—C10'—H10E 109.5 H21A—C21—H21B 109.5
H10D—C10'—H10F 109.5 C20—C21—H21C 109.5
H10E—C10'—H10F 109.5 H21A—C21—H21C 109.5
N1—C11—C7 122.7 (2) H21B—C21—H21C 109.5
C6—C1—C2—C3 −0.9 (4) C19—N1—C11—C12 7.4 (3)
C1—C2—C3—C4 0.0 (4) C8—C7—C11—N1 4.6 (3)
C2—C3—C4—C5 0.6 (4) C6—C7—C11—N1 −177.32 (17)
C3—C4—C5—C6 −0.3 (4) C8—C7—C11—C12 −175.14 (16)
C2—C1—C6—C5 1.2 (3) C6—C7—C11—C12 2.9 (3)
C2—C1—C6—C7 −179.1 (2) N1—C11—C12—C13 71.9 (2)
C4—C5—C6—C1 −0.5 (4) C7—C11—C12—C13 −108.3 (2)
C4—C5—C6—C7 179.7 (2) C11—C12—C13—C18 17.9 (3)
C1—C6—C7—C11 74.3 (3) C11—C12—C13—C14 −163.29 (19)
C5—C6—C7—C11 −105.9 (2) C18—C13—C14—C15 −1.5 (3)
C1—C6—C7—C8 −107.6 (2) C12—C13—C14—C15 179.6 (2)
C5—C6—C7—C8 72.1 (3) C13—C14—C15—C16 1.2 (4)
C9—O1—C8—O2 2.7 (3) C14—C15—C16—C17 0.3 (4)
C9—O1—C8—C7 −176.8 (2) C15—C16—C17—C18 −1.4 (4)
C11—C7—C8—O2 −3.9 (3) C14—C13—C18—C17 0.4 (3)
C6—C7—C8—O2 178.02 (18) C12—C13—C18—C17 179.3 (2)
C11—C7—C8—O1 175.63 (17) C16—C17—C18—C13 1.1 (4)
C6—C7—C8—O1 −2.5 (2) C11—N1—C19—C20 −154.4 (2)
C8—O1—C9—C10 103.2 (10) N1—C19—C20—C21 64.4 (4)
C19—N1—C11—C7 −172.39 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.91 (2) 1.93 (2) 2.653 (3) 136 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2886).

References

  1. Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett.8, 5919–5922. [DOI] [PubMed]
  2. Rigaku/MSC (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Xue, J. Y., Xiao, Z. P., Shi, L., Tan, S. H., Li, H. Q. & Zhu, H. L. (2007). Aust. J. Chem.60, 957–962.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804395X/hb2886sup1.cif

e-65-0o236-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804395X/hb2886Isup2.hkl

e-65-0o236-Isup2.hkl (163KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES