Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o220. doi: 10.1107/S1600536808043705

Dimethyl 4,4-diacetyl­hepta­nedioate

Ling-hua Zhuang a, Guo-wei Wang b,*
PMCID: PMC2968235  PMID: 21581838

Abstract

The mol­ecule of the title dicarbonyl compound, C13H20O6, possesses approximate local twofold symmetry. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, generating a chain structure.

Related literature

For general background, see: Kim et al. (2001); Chetia et al. (2004); Ranu & Banerjee (2005); Wang et al. (2008). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o220-scheme1.jpg

Experimental

Crystal data

  • C13H20O6

  • M r = 272.29

  • Monoclinic, Inline graphic

  • a = 11.402 (2) Å

  • b = 8.6910 (17) Å

  • c = 14.845 (3) Å

  • β = 107.35 (3)°

  • V = 1404.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.970, T max = 0.990

  • 2531 measured reflections

  • 2531 independent reflections

  • 1783 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.202

  • S = 1.01

  • 2531 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043705/sj2570sup1.cif

e-65-0o220-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043705/sj2570Isup2.hkl

e-65-0o220-Isup2.hkl (124.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O5i 0.97 2.58 3.418 (4) 145
C3—H3B⋯O2ii 0.97 2.55 3.500 (4) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Dicarbonyl compounds represent an important class of starting materials used to increase the carbon number of organic compounds (Kim et al., 2001). Some dicarbonyl compounds are useful for the synthesis of enantiomerically pure alcohols (Chetia et al., 2004). Many dicarbonyl compounds have been synthesized with Michael Addition method using diethyl malonate as the starting mateiral, but only a few Michael Addition diadducts have been synthesized under normal condition (Ranu & Banerjee, 2005; Wang et al., 2008). We are focusing our synthetic and structural studies on new products of Michael Addition diadducts from dicarbonyl compounds. We report here the crystal structure of the title dicarbonyl compound (I), Fig 1.

All bond lengths in the compound are within normal ranges (Allen et al., 1987). The central C13 atom lies on a lies on a non-crystallographic pseudo twofold rotation axis. Intermolecular C—H···O hydrogen bond (Table 1, Fig.2) help to establish the one-dimensional supramolecular structure.

Experimental

Acetylacetone (50 mmol), anhydrous potassium carbonate (100 mmol), tetrabutylammonium bromide (1 g) were dissolved in toluene (20 ml) and methyl acrylate (100 mmol) was slowly dropped to the mixture which was stirred for 24 h at 303–333 K, then 100 ml water was added. The organic layer was dried with magnesium sulfate and the solvent removed under vacuum to obtain the crude product, (I). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution. 1H NMR (CDCl3, δ, p.p.m.) 3.62(s, 6H), 2.23(m, 4H), 2.144 (m, 10H).

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I) Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H20O6 F(000) = 584
Mr = 272.29 Dx = 1.288 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 27 reflections
a = 11.402 (2) Å θ = 8–15°
b = 8.6910 (17) Å µ = 0.10 mm1
c = 14.845 (3) Å T = 293 K
β = 107.35 (3)° Block, colourless
V = 1404.1 (5) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.0000
graphite θmax = 25.3°, θmin = 1.9°
ω/2θ scans h = −13→13
Absorption correction: ψ scan (North et al., 1968) k = 0→10
Tmin = 0.970, Tmax = 0.990 l = 0→17
2531 measured reflections 3 standard reflections every 200 reflections
2531 independent reflections intensity decay: 9%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3
2531 reflections (Δ/σ)max = 0.001
172 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.1970 (2) −0.2798 (3) 0.80271 (19) 0.0587 (7)
O2 1.1274 (2) −0.0419 (2) 0.80976 (18) 0.0552 (7)
O3 0.5191 (2) −0.3553 (3) 0.66776 (18) 0.0646 (7)
O4 0.5065 (2) −0.1212 (3) 0.60519 (17) 0.0585 (7)
O5 0.7976 (2) 0.0496 (2) 0.94983 (17) 0.0506 (6)
O6 0.8453 (2) −0.4676 (2) 0.96422 (18) 0.0567 (7)
C1 1.2919 (4) −0.2184 (5) 0.7683 (3) 0.0710 (12)
H1A 1.3430 −0.3006 0.7586 0.106*
H1B 1.3407 −0.1472 0.8136 0.106*
H1C 1.2556 −0.1660 0.7097 0.106*
C2 1.1177 (3) −0.1782 (3) 0.8194 (2) 0.0401 (7)
C3 1.0191 (3) −0.2557 (3) 0.8502 (2) 0.0408 (7)
H3A 1.0564 −0.3225 0.9033 0.049*
H3B 0.9697 −0.3190 0.7991 0.049*
C4 0.9365 (2) −0.1393 (3) 0.8785 (2) 0.0360 (7)
H4A 0.9057 −0.0673 0.8269 0.043*
H4B 0.9858 −0.0814 0.9324 0.043*
C5 0.4002 (3) −0.1660 (5) 0.5299 (3) 0.0597 (10)
H5A 0.3724 −0.0805 0.4881 0.089*
H5B 0.3361 −0.1974 0.5557 0.089*
H5C 0.4211 −0.2501 0.4957 0.089*
C6 0.5572 (3) −0.2265 (4) 0.6703 (2) 0.0430 (7)
C7 0.6632 (3) −0.1613 (4) 0.7454 (2) 0.0513 (8)
H7A 0.6340 −0.0785 0.7769 0.062*
H7B 0.7214 −0.1179 0.7163 0.062*
C8 0.7290 (3) −0.2793 (3) 0.8186 (2) 0.0413 (7)
H8A 0.7683 −0.3542 0.7887 0.050*
H8B 0.6686 −0.3333 0.8410 0.050*
C9 0.6618 (3) −0.1291 (4) 0.9838 (3) 0.0582 (9)
H9A 0.6315 −0.0401 1.0081 0.087*
H9B 0.6907 −0.2033 1.0334 0.087*
H9C 0.5967 −0.1734 0.9338 0.087*
C10 0.7649 (3) −0.0831 (4) 0.9467 (2) 0.0393 (7)
C11 0.9581 (3) −0.2844 (4) 1.0738 (2) 0.0539 (9)
H11A 0.9808 −0.3720 1.1146 0.081*
H11B 0.9172 −0.2102 1.1018 0.081*
H11C 1.0305 −0.2389 1.0648 0.081*
C12 0.8733 (3) −0.3344 (3) 0.9802 (2) 0.0394 (7)
C13 0.8265 (2) −0.2094 (3) 0.9038 (2) 0.0341 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0587 (14) 0.0424 (13) 0.0902 (18) 0.0057 (11) 0.0453 (14) 0.0031 (12)
O2 0.0663 (15) 0.0377 (13) 0.0743 (16) −0.0010 (11) 0.0403 (13) 0.0039 (11)
O3 0.0630 (16) 0.0488 (15) 0.0686 (16) −0.0126 (12) −0.0008 (13) 0.0054 (12)
O4 0.0587 (15) 0.0523 (14) 0.0544 (14) −0.0080 (11) 0.0015 (11) 0.0059 (11)
O5 0.0508 (13) 0.0329 (12) 0.0712 (16) 0.0012 (10) 0.0228 (11) −0.0047 (10)
O6 0.0595 (15) 0.0344 (13) 0.0714 (16) −0.0049 (10) 0.0123 (12) 0.0102 (11)
C1 0.065 (2) 0.063 (2) 0.105 (3) −0.0007 (19) 0.055 (2) −0.006 (2)
C2 0.0444 (17) 0.0383 (17) 0.0393 (16) −0.0001 (13) 0.0149 (13) −0.0041 (12)
C3 0.0439 (16) 0.0348 (15) 0.0472 (17) 0.0000 (13) 0.0188 (13) 0.0000 (12)
C4 0.0335 (15) 0.0300 (14) 0.0444 (16) −0.0032 (12) 0.0114 (12) −0.0044 (12)
C5 0.0441 (19) 0.075 (3) 0.053 (2) 0.0015 (18) 0.0036 (16) 0.0057 (18)
C6 0.0394 (16) 0.0485 (19) 0.0436 (17) −0.0009 (14) 0.0163 (14) −0.0008 (14)
C7 0.0530 (19) 0.0474 (19) 0.0449 (17) −0.0104 (15) 0.0013 (15) 0.0036 (15)
C8 0.0409 (16) 0.0355 (16) 0.0468 (17) −0.0046 (13) 0.0122 (14) −0.0004 (13)
C9 0.050 (2) 0.060 (2) 0.075 (2) 0.0021 (17) 0.0360 (18) 0.0016 (18)
C10 0.0316 (15) 0.0415 (17) 0.0423 (16) 0.0022 (13) 0.0072 (12) −0.0005 (13)
C11 0.065 (2) 0.0460 (19) 0.0474 (19) 0.0052 (16) 0.0111 (16) 0.0047 (15)
C12 0.0385 (15) 0.0337 (16) 0.0499 (17) 0.0005 (12) 0.0191 (13) 0.0033 (13)
C13 0.0322 (14) 0.0293 (14) 0.0408 (15) −0.0007 (11) 0.0108 (12) −0.0010 (11)

Geometric parameters (Å, °)

O1—C2 1.339 (4) C5—H5B 0.9600
O1—C1 1.430 (4) C5—H5C 0.9600
O2—C2 1.202 (4) C6—C7 1.491 (4)
O3—C6 1.197 (4) C7—C8 1.519 (4)
O4—C6 1.331 (4) C7—H7A 0.9700
O4—C5 1.436 (4) C7—H7B 0.9700
O5—C10 1.209 (4) C8—C13 1.538 (4)
O6—C12 1.206 (4) C8—H8A 0.9700
C1—H1A 0.9600 C8—H8B 0.9700
C1—H1B 0.9600 C9—C10 1.494 (4)
C1—H1C 0.9600 C9—H9A 0.9600
C2—C3 1.495 (4) C9—H9B 0.9600
C3—C4 1.524 (4) C9—H9C 0.9600
C3—H3A 0.9700 C10—C13 1.540 (4)
C3—H3B 0.9700 C11—C12 1.501 (5)
C4—C13 1.539 (4) C11—H11A 0.9600
C4—H4A 0.9700 C11—H11B 0.9600
C4—H4B 0.9700 C11—H11C 0.9600
C5—H5A 0.9600 C12—C13 1.546 (4)
C2—O1—C1 116.4 (3) C8—C7—H7A 108.9
C6—O4—C5 117.5 (3) C6—C7—H7B 108.9
O1—C1—H1A 109.5 C8—C7—H7B 108.9
O1—C1—H1B 109.5 H7A—C7—H7B 107.7
H1A—C1—H1B 109.5 C7—C8—C13 113.8 (2)
O1—C1—H1C 109.5 C7—C8—H8A 108.8
H1A—C1—H1C 109.5 C13—C8—H8A 108.8
H1B—C1—H1C 109.5 C7—C8—H8B 108.8
O2—C2—O1 122.5 (3) C13—C8—H8B 108.8
O2—C2—C3 125.8 (3) H8A—C8—H8B 107.7
O1—C2—C3 111.8 (3) C10—C9—H9A 109.5
C2—C3—C4 111.6 (2) C10—C9—H9B 109.5
C2—C3—H3A 109.3 H9A—C9—H9B 109.5
C4—C3—H3A 109.3 C10—C9—H9C 109.5
C2—C3—H3B 109.3 H9A—C9—H9C 109.5
C4—C3—H3B 109.3 H9B—C9—H9C 109.5
H3A—C3—H3B 108.0 O5—C10—C9 120.6 (3)
C3—C4—C13 114.8 (2) O5—C10—C13 121.5 (3)
C3—C4—H4A 108.6 C9—C10—C13 117.9 (3)
C13—C4—H4A 108.6 C12—C11—H11A 109.5
C3—C4—H4B 108.6 C12—C11—H11B 109.5
C13—C4—H4B 108.6 H11A—C11—H11B 109.5
H4A—C4—H4B 107.5 C12—C11—H11C 109.5
O4—C5—H5A 109.5 H11A—C11—H11C 109.5
O4—C5—H5B 109.5 H11B—C11—H11C 109.5
H5A—C5—H5B 109.5 O6—C12—C11 121.3 (3)
O4—C5—H5C 109.5 O6—C12—C13 121.1 (3)
H5A—C5—H5C 109.5 C11—C12—C13 117.5 (3)
H5B—C5—H5C 109.5 C8—C13—C4 113.4 (2)
O3—C6—O4 123.0 (3) C8—C13—C10 108.4 (2)
O3—C6—C7 125.7 (3) C4—C13—C10 108.9 (2)
O4—C6—C7 111.2 (3) C8—C13—C12 109.4 (2)
C6—C7—C8 113.3 (3) C4—C13—C12 109.2 (2)
C6—C7—H7A 108.9 C10—C13—C12 107.3 (2)
C1—O1—C2—O2 −2.7 (5) C3—C4—C13—C10 170.5 (2)
C1—O1—C2—C3 177.0 (3) C3—C4—C13—C12 53.6 (3)
O2—C2—C3—C4 −5.9 (4) O5—C10—C13—C8 −118.2 (3)
O1—C2—C3—C4 174.3 (3) C9—C10—C13—C8 61.1 (3)
C2—C3—C4—C13 175.5 (2) O5—C10—C13—C4 5.6 (4)
C5—O4—C6—O3 0.9 (5) C9—C10—C13—C4 −175.1 (3)
C5—O4—C6—C7 −177.8 (3) O5—C10—C13—C12 123.7 (3)
O3—C6—C7—C8 4.6 (5) C9—C10—C13—C12 −57.0 (3)
O4—C6—C7—C8 −176.7 (3) O6—C12—C13—C8 9.0 (4)
C6—C7—C8—C13 −171.8 (3) C11—C12—C13—C8 −172.9 (3)
C7—C8—C13—C4 −66.3 (3) O6—C12—C13—C4 −115.7 (3)
C7—C8—C13—C10 54.8 (3) C11—C12—C13—C4 62.4 (3)
C7—C8—C13—C12 171.5 (3) O6—C12—C13—C10 126.4 (3)
C3—C4—C13—C8 −68.8 (3) C11—C12—C13—C10 −55.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4B···O5i 0.97 2.58 3.418 (4) 145
C3—H3B···O2ii 0.97 2.55 3.500 (4) 165

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2570).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Chetia, A., Saikia, C. J., Lekhok, K. C. & Boruah, R. C. (2004). Tetrahedron Lett.45, 2649–2651.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Kim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett.42, 6299–6301.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Ranu, B. C. & Banerjee, S. (2005). Org. Lett.7, 3049–3052. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, G.-W., Zhuang, L.-H., Wu, W.-Y. & Wang, J.-T. (2008). Acta Cryst. E64, o856. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043705/sj2570sup1.cif

e-65-0o220-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043705/sj2570Isup2.hkl

e-65-0o220-Isup2.hkl (124.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES