Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):m228–m229. doi: 10.1107/S1600536809002360

Bis(2,2′-bipyridine){ethyl 4′-[N-(4-carbamoylphen­yl)carbamo­yl]-2,2′-bi­pyridine-4-carboxyl­ate}ruthenium(II) bis­[hexa­fluorido­phosphate(V)]

Masanari Hirahara a, Shigeyuki Masaoka a, Ken Sakai a,*
PMCID: PMC2968400  PMID: 21581819

Abstract

In the title compound, [Ru(C10H8N2)2(C21H18N4O4)](PF6)2, the RuII complex cation reveals a slightly distorted octa­hedral coordination. The coordination bonds of the 4,4′-substituted bipyridyl donors [Ru—N = 2.038 (3) and 2.051 (3) Å] are shorter than those of the 2,2′-bipyridyl donors [Ru—N1 = 2.065 (3)–2.077 (3) Å], due to the electron-withdrawing effects of the substituents at the 4,4′-positions. The angles between the pyridyl planes of the three bipyridyl ligands are 1.5 (2), 6.3 (3) and 8.7 (2)°, respectively. The cations are connected by anions via N—H⋯F inter­actions.

Related literature

For related literature, see: Gillaizeau-Gauthier et al. (2001); Ozawa & Sakai (2007); Ozawa et al. (2006, 2007); Sakai & Ozawa (2007); Sakai et al. (1993). For discussion of attractive inter­actions between negatively-charged atoms and alpha C atoms from heterocyclic rings, see: Schottel et al. (2008).graphic file with name e-65-0m228-scheme1.jpg

Experimental

Crystal data

  • [Ru(C10H8N2)2(C21H18N4O4)](PF6)2

  • M r = 1093.77

  • Monoclinic, Inline graphic

  • a = 18.400 (3) Å

  • b = 13.187 (2) Å

  • c = 18.863 (3) Å

  • β = 111.344 (2)°

  • V = 4262.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 100 (s.u.?) K

  • 0.20 × 0.10 × 0.03 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.717, T max = 0.986

  • 23329 measured reflections

  • 9357 independent reflections

  • 6405 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.113

  • S = 1.00

  • 9357 reflections

  • 614 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002360/kp2198sup1.cif

e-65-0m228-sup1.cif (38KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002360/kp2198Isup2.hkl

e-65-0m228-Isup2.hkl (473.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ru1—N1 2.077 (3)
Ru1—N2 2.070 (3)
Ru1—N3 2.076 (3)
Ru1—N4 2.065 (3)
Ru1—N5 2.051 (3)
Ru1—N6 2.038 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯F2i 0.86 2.34 3.181 (4) 168
N8—H8B⋯F10i 0.86 2.29 2.999 (5) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was in part supported by a Grant-in-Aid for Scientific Research (A) (No. 17205008), a Grant-in-Aid for Specially Promoted Research (No. 18002016), and a Grant-in-Aid for the Global COE Program (‘Science for Future Molecular Systems’) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

supplementary crystallographic information

Comment

Continuous efforts have been made to elucidate the molecular catalysis of platinum(II) complexes in photochemical hydrogen production from water (Sakai et al., 1993; Sakai & Ozawa, 2007; Ozawa et al., 2007; Ozawa & Sakai, 2007). The results obtained so far suggest that destabilization of the HOMO, which generally corresponds to the filled PtIIdz2 orbital, gives rise to the higher H2-evolving activity of the complexes (Sakai & Ozawa, 2007). It has also been ascertained that the amidate-bridged dinuclear platinum(II) complexes having a strong metal–metal interaction exhibit considerably higher H2-evolving activity in comparison with the mononuclear complexes, which has been attributed to their highly destabilized HOMOs arising from the anti-bonding couple of the filled PtIIdz2 orbitals (Sakai & Ozawa, 2007). Moreover, the first effective model of a `photo-hydrogen-evolving' molecular device possessing both a light-harvesting capability and an H2-evolving activity was developed in our group (Ozawa & Sakai, 2006). Since this molecular device is made up of a photosensitizing tris(2,2'-bipyridine)ruthenium(II) derivative and a mononuclear (4-carbamoyl-4'-carboxy-2,2'-bipyridine)dichloroplatinum(II) fragment, it is important to develop an amidate-bridged diplatinum(II) complex tethered to tris(2,2'-bipyridine)ruthenium(II) photosensitizers. In order to develop such systems, tris(2,2'-bipyridine)ruthenium(II) derivatives having an uncoordinated amide group must be prepared as a synthetic precursor. The title compound has been prepared as one of such precursor compounds. The actual application of this complex ligand will be separately reported elsewhere.

In (I) (Fig. 1), the coordination bonds from the 4,4'-substituted bipyridine ligand [Ru1—N5 = 2.051 (3) and Ru1—N6 = 2.038 (3) Å] are meaningfully shorter than those from the non-substituted 2,2'-bipyridine ligands [Ru1—N1 = 2.077 (3), Ru1—N2 = 2.070 (3), Ru1—N3 = 2.076 (3), and Ru1—N4 = 2.065 (3) Å] (Table 1). This can be interpreted in terms of the stronger backdonation in the former bonds due to the electron-withdrawing effects of the carbamoyl and ethoxycarbonyl groups in the 4,4'-substituted bipyridyl ligand.

All the three bipyridyl units do not form a planar geometry but the two pyridyl planes within each bipyridyl unit are tilted with each other as follows. Two pyridyl planes consisting of N1→C5 and N2→C10 are only slightly tilted at an angle of 1.5 (2)°. On the other hand, the dihedral angles between the N3→C15 and N4→C20 planes and that between the N5→C25 and N6→-C30 planes are somewhat larger: 6.3 (3) and 8.7 (2)°, respectively. The six-atom r.m.s. deviations given in the best-plane calculations for the N1→C5, N2→C10, N3→C15, N4→C20, N5→C25, and N6→C30 planes are 0.0053, 0.0038, 0.0079, 0.0019, 0.0181, and 0.0129, respectively.

On the other hand, the plane defined by atoms C31, O1, and O2 from the ethoxycarbonyl unit is slightly tilted with respect to the connecting pyridyl plane (N5→C25) at an angle of 4.5 (4)°. The carbamoyl plane defined with atoms C34, O3, and N7 is even more tilted with respect to the connecting pyridyl plane (N6→C30) at an angle of 15.1 (5)°. The aromatic plane consisting of atoms C35—C40 is tilted with respect to the above-mentioned carbamoyl unit (C34/O3/N7) at an angle of 26.6 (3)°, where the six-atom r.m.s. deviation given in the best-plane calculation for the C35–C40 plane was 0.0056. The C35–C40 plane is also tilted with regard to the terminal carbamoyl unit (C41/O4/N8) at an angle of 7.9 (2)°.

The crystal packing is stabilized with van der Waals interactions with contributions of the hydrogen bonds formed between the F atoms of PF6- and the N—H units of carbamoyl groups (Table 2). Short intermolecular contacts [F4—C11 = 2.965 (4) Å and F3—C10 = 2.946 (5) Å] may be assigned as relatively weak hydrogen bonds. The other two short intermolecular contacts [O4—C1 = 2.974 (6) Å and O4—C26 = 3.010 (5) Å] may be due to attractive interactions between negatively-charged atoms and alpha C atoms from heterocyclic rings (Schottel et al., 2008).

Experimental

As described below, the ligand L was synthesized in three steps and was finally reacted with cis-RuCl2(bpy)2.2H2O to give the final product (I).

First, 4,4'-diethoxycarbonyl-2,2'-bipyridine was prepared according to the literature (Gillaizeau-Gauthier et al., 2001).

Next, 4-carboxy-4'-ethoxycarbonyl-2,2'-bipyridine monohydrate was prepared from the partial hydrolysis of 4,4'-diethoxycarbonyl-2,2'-bipyridine as follows. To a solution of 4,4'-diethoxycarbonyl-2,2'-bipyridine (1.50 g, 5.0 mmol) in absolute dichloromethane (200 ml) was dropwisely added a solution of potassium hydroxide (0.23 g, 5.00 mmol) in ethanol (50 ml) at 273 K over 1 h. This procedure was carried out under Ar atmosphere. The reaction mixture was further stirred for 1 d, during which the temperature of the solution was gradually raised to room temperature. The colourless solid precipitated was collected by filtration and washed with ethyl acetate. The ethyl acetate washing was evaporated to dryness to collect the unreacted 4,4'-diethoxycarbonyl-2,2'-bipyridine (0.525 g, 35%). The colourless precipitate was re-dissolved in water and acidified by 1 N hydrochloric acid to give the product as a colourless solid, which was collected by filtration and dried in vacuo (yield 0.812 g, 60%). Anal. Calcd for C14N2H14O5: C, 57.92; H, 4.86; N, 9.65. Found: C, 57.27; H, 4.68; N, 9.67. 1H NMR (300.27 MHz, d-DMSO): δ 1.38 (t, 3H, J = 7.0 Hz), 4.42 (q, 2H, J = 7.0 Hz), 7.93 (m, 2H), 8.84 (s, 2H), 8.93 (t, 2H, J = 4.6 Hz), 13.84 (s, 1H).

As the final step in the synthesis of ligand L, 4-carboxy-4'-ethoxycarbonyl-2,2'-bipyridine monohydrate (397 mg, 1.46 mmol), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl, 337 mg, 1.76 mmol) and 1-hydroxybenzotriazole (HOBT.H2O, 280 mg, 1.77 mmol) were dissolved in DMF (dimethylformamide) (40 ml). To a solution of 4-aminobenzamide (235 mg, 1.72 mmol) and N-methylmorpholine (0.3 ml) in DMF (20 ml) was dropwisely added the former solution at 273 K over 20 min. The reaction mixture was further stirred for 1 d in Ar, during which the temperature of the mixture was gradually raised to room temperature. The reaction mixture was then evaporated to a total volume of 5 ml followed by addition of water (200 ml). The white solid precipitated was collected by filtration and washed with water (20 ml), with an aqueous 5% NaHCO3 solution (20 ml), with an aqueous 5% citric acid solution (20 ml), and finally with water (20 ml). The white solid was dried in vacuo (yield 208 mg, 36.5%). The washing from the aqueous 5% NaHCO3 solution was acidified by HCl to give the unreacted starting bpy derivative (147.3 mg 37.1%). Anal. Calcd for L, C21H18N4O4: C, 64.61; H, 4.65; N, 14.35. Found: C, 64.17; H, 4.84; N, 13.89. 1H NMR (300.27 MHz, d-DMSO): δ 1.39 (t, 3H), 4.42 (q, 2H), 7.31 (s, broad), 7.87 (s, broad), 7.90 (s, 4H), 7.96 (d, 1H), 8.00 (d, 1H), 8.89 (d, 2H), 8.97 (t, 2H), 10.96 (s, 1H).

Compound (I) [RuL(bpy)2](PF6)2 was prepared as follows. A solution of ligand L (0.396 g, 1.02 mmol) and cis-RuCl2(bpy)2.2H2O (0.545, 1.05 mmol) in ethanol (150 ml) was refluxed for 12 h followed by filtration for the removal of insoluble materials. The filtrate was evaporated to dryness. The residue was redissolved in water (2–3 ml) followed by filtration for the removal of insoluble materials. To the filtrated was added an aqueous saturated NH4PF6 solution (2 ml). The dark red solid precipitated was collected by filtration and washed with a minimum amount of cold water. The crude product (1.08 g) was recrystallized twice from a 1:1 mixture of ethanol and water (yield, 0.60 g, 55%). Anal. Calcd for [RuL(bpy)2](PF6)2, C41H34N8O4RuP2F12: C, 45.02; H, 3.13; N, 10.24. Found: C, 44.95; H, 3.25; N, 10.18. 1H NMR (300.27 MHz, CD3CN): δ 1.40 (t, 3H, J = 7.0 Hz), 4.46 (q, 2H, J = 7.0 Hz), 5.98 (s, broad, 1H), 6.74 (s, broad, 1H) 7.42 (m, 4H), 7.71 (t, 4H, J = 5.5 Hz), 7.84 (m, 2H), 7.88 (s, 4H), 7.95 (d, 1H, J = 5.8 Hz), 7.96 (d, 1H, J = 5.8 Hz), 8.09 (m, 4H), 8.52 (d, 4H, J = 7.7 Hz), 9.03 (s, 2H), 9.10 (s, 2H), 9.30 (s, 1H). ESI-TOF MS (m/z): 402 ([RuL(bpy)2]2+), 949 ({[RuL(bpy)2](PF6)}+).

Refinement

All H atoms were placed in idealized positions (methyl C—H = 0.96 Å, methylene C—H = 0.97 Å, aromatic C—H = 0.95 Å, and amide N—H = 0.86 Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.5Ueq(methyl C) and Uiso(H) = 1.2Ueq(methylene C, aromatic C, and amide N). In the final difference Fourier map, the highest peak was located 0.88 Å from atom Ru1. The deepest hole was located 0.47 Å from atom P1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the complex cation and anions showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The ligand L.

Crystal data

[Ru(C10H8N2)2(C21H18N4O4)](PF6)2 F(000) = 2200
Mr = 1093.77 Dx = 1.704 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7706 reflections
a = 18.400 (3) Å θ = 2.2–27.5°
b = 13.187 (2) Å µ = 0.55 mm1
c = 18.863 (3) Å T = 100 K
β = 111.344 (2)° Block, red
V = 4262.9 (11) Å3 0.2 × 0.1 × 0.03 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 9357 independent reflections
Radiation source: rotating anode with a mirror focusing unit 6405 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 27.1°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) h = −23→19
Tmin = 0.717, Tmax = 0.986 k = −16→16
23329 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0524P)2 + 2.5961P] where P = (Fo2 + 2Fc2)/3
9357 reflections (Δ/σ)max = 0.001
614 parameters Δρmax = 0.79 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)- 12.7740 (0.0188) x - 4.2078 (0.0170) y + 16.1006 (0.0145) z = 0.0050 (0.0090)* -0.0058 (0.0021) N1 * 0.0092 (0.0023) C1 * -0.0056 (0.0026) C2 * -0.0010 (0.0026) C3 * 0.0042 (0.0024) C4 * -0.0009 (0.0022) C5Rms deviation of fitted atoms = 0.0053-12.4144 (0.0196) x - 4.3031 (0.0184) y + 16.2635 (0.0138) z = 0.1580 (0.0125)Angle to previous plane (with approximate e.s.d.) = 1.54 (1/5)* 0.0017 (0.0022) N2 * -0.0044 (0.0023) C6 * 0.0017 (0.0025) C7 * 0.0035 (0.0027) C8 * -0.0061 (0.0027) C9 * 0.0036 (0.0025) C10Rms deviation of fitted atoms = 0.00388.6305 (0.0228) x + 5.1793 (0.0182) y + 10.6773 (0.0218) z = 5.3175 (0.0062)Angle to previous plane (with approximate e.s.d.) = 85.47 (0.09)* 0.0065 (0.0022) N3 * 0.0045 (0.0024) C11 * -0.0115 (0.0026) C12 * 0.0077 (0.0027) C13 * 0.0033 (0.0025) C14 * -0.0105 (0.0023) C15Rms deviation of fitted atoms = 0.00799.8523 (0.0240) x + 4.0319 (0.0188) y + 10.1554 (0.0254) z = 5.7461 (0.0068)Angle to previous plane (with approximate e.s.d.) = 6.28 (0.26)* 0.0018 (0.0023) N4 * -0.0026 (0.0024) C16 * 0.0007 (0.0026) C17 * 0.0019 (0.0028) C18 * -0.0026 (0.0028) C19 * 0.0009 (0.0026) C20Rms deviation of fitted atoms = 0.00195.2914 (0.0916) x - 12.4015 (0.0303) y + 1.2118 (0.0485) z = 1.7169 (0.0084)Angle to previous plane (with approximate e.s.d.) = 89.47 (0.22)* 0.0000 (0.0000) C31 * 0.0000 (0.0000) O1 * 0.0000 (0.0000) O2Rms deviation of fitted atoms = 0.00006.6694 (0.0231) x - 12.0776 (0.0072) y + 0.5442 (0.0266) z = 1.6902 (0.0034)Angle to previous plane (with approximate e.s.d.) = 4.54 (0.40)* -0.0271 (0.0023) N5 * 0.0077 (0.0025) C21 * 0.0156 (0.0025) C22 * -0.0197 (0.0024) C23 * 0.0005 (0.0024) C24 * 0.0229 (0.0023) C25Rms deviation of fitted atoms = 0.01819.0772 (0.0232) x - 11.3634 (0.0101) y - 1.3032 (0.0274) z = 1.6621 (0.0095)Angle to previous plane (with approximate e.s.d.) = 8.69 (0.16)* 0.0155 (0.0024) N6 * -0.0114 (0.0024) C26 * -0.0060 (0.0026) C27 * 0.0191 (0.0026) C28 * -0.0152 (0.0027) C29 * -0.0021 (0.0026) C30Rms deviation of fitted atoms = 0.01295.9317 (0.1164) x - 12.4552 (0.0320) y - 3.3218 (0.1161) z = 0.5112 (0.0477)Angle to previous plane (with approximate e.s.d.) = 15.10 (0.48)* 0.0000 (0.0000) C34 * 0.0000 (0.0000) O3 * 0.0000 (0.0000) N7Rms deviation of fitted atoms = 0.00002.1032 (0.0288) x + 12.8237 (0.0053) y + 2.7844 (0.0287) z = 0.1928 (0.0183)Angle to previous plane (with approximate e.s.d.) = 26.56 (0.29)* 0.0082 (0.0027) C35 * -0.0073 (0.0028) C36 * 0.0001 (0.0028) C37 * 0.0062 (0.0027) C38 * -0.0054 (0.0027) C39 * -0.0018 (0.0027) C40Rms deviation of fitted atoms = 0.0056-0.9384 (0.1032) x - 13.1238 (0.0039) y - 1.1164 (0.1264) z = 1.0753 (0.0983)Angle to previous plane (with approximate e.s.d.) = 7.87 (0.23)* 0.0000 (0.0000) C41 * 0.0000 (0.0000) O4 * 0.0000 (0.0000) N8Rms deviation of fitted atoms = 0.00002.1032 (0.0288) x + 12.8237 (0.0053) y + 2.7844 (0.0287) z = 0.1928 (0.0183)Angle to previous plane (with approximate e.s.d.) = 7.87 (0.23)* 0.0082 (0.0027) C35 * -0.0073 (0.0028) C36 * 0.0001 (0.0028) C37 * 0.0062 (0.0027) C38 * -0.0054 (0.0027) C39 * -0.0018 (0.0027) C40Rms deviation of fitted atoms = 0.00569.0772 (0.0232) x - 11.3634 (0.0101) y - 1.3032 (0.0274) z = 1.6621 (0.0095)Angle to previous plane (with approximate e.s.d.) = 40.76 (0.09)* 0.0155 (0.0024) N6 * -0.0114 (0.0024) C26 * -0.0060 (0.0026) C27 * 0.0191 (0.0026) C28 * -0.0152 (0.0027) C29 * -0.0021 (0.0026) C30Rms deviation of fitted atoms = 0.0129
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.294461 (16) 0.04801 (2) 0.250977 (15) 0.02158 (8)
P1 0.35302 (6) 0.46905 (8) 0.15958 (6) 0.0353 (2)
P2 0.29204 (6) 0.62723 (9) 0.45315 (6) 0.0387 (3)
F1 0.26565 (15) 0.4258 (2) 0.12279 (15) 0.0540 (7)
F2 0.32351 (14) 0.57383 (17) 0.11340 (13) 0.0438 (6)
F3 0.43974 (13) 0.51275 (18) 0.19471 (13) 0.0428 (6)
F4 0.38170 (15) 0.36573 (18) 0.20517 (13) 0.0478 (6)
F5 0.37108 (15) 0.42579 (18) 0.08811 (13) 0.0496 (6)
F6 0.33452 (15) 0.51482 (18) 0.22961 (13) 0.0472 (6)
F7 0.26997 (18) 0.5185 (2) 0.47525 (18) 0.0704 (9)
F8 0.37419 (15) 0.5834 (2) 0.45629 (16) 0.0562 (7)
F9 0.31532 (17) 0.7367 (2) 0.43274 (16) 0.0643 (8)
F10 0.20992 (15) 0.6720 (2) 0.44945 (17) 0.0688 (8)
F11 0.25655 (19) 0.5986 (3) 0.36555 (15) 0.0821 (10)
F12 0.32822 (17) 0.6553 (2) 0.54043 (14) 0.0601 (7)
O1 −0.03074 (15) −0.15596 (19) −0.04502 (13) 0.0319 (6)
O2 −0.06958 (14) −0.16271 (19) 0.05549 (14) 0.0318 (6)
O3 0.03822 (16) −0.1340 (2) 0.41695 (15) 0.0451 (7)
O4 −0.06524 (18) −0.1397 (2) 0.73340 (17) 0.0510 (8)
N1 0.24580 (17) 0.1913 (2) 0.24496 (16) 0.0242 (6)
N2 0.38261 (16) 0.1246 (2) 0.33484 (16) 0.0261 (7)
N3 0.35294 (16) 0.0746 (2) 0.17716 (15) 0.0232 (6)
N4 0.35305 (16) −0.0874 (2) 0.25818 (16) 0.0246 (6)
N5 0.19777 (16) −0.0206 (2) 0.17421 (15) 0.0231 (6)
N6 0.23667 (16) 0.0047 (2) 0.31992 (15) 0.0240 (6)
N7 0.14210 (19) −0.1138 (2) 0.52667 (16) 0.0342 (8)
H7 0.1919 −0.1061 0.5438 0.041*
N8 0.0512 (2) −0.1560 (3) 0.82715 (18) 0.0451 (9)
H8A 0.0302 −0.1573 0.8611 0.054*
H8B 0.1010 −0.1607 0.8405 0.054*
C1 0.1751 (2) 0.2201 (3) 0.1973 (2) 0.0296 (8)
H1 0.1448 0.1731 0.1623 0.036*
C2 0.1449 (2) 0.3159 (3) 0.1975 (2) 0.0360 (9)
H2 0.0961 0.3335 0.1626 0.043*
C3 0.1892 (2) 0.3850 (3) 0.2510 (2) 0.0396 (10)
H3 0.1702 0.4499 0.2528 0.048*
C4 0.2621 (2) 0.3569 (3) 0.3018 (2) 0.0343 (9)
H4 0.2922 0.4028 0.3381 0.041*
C5 0.2899 (2) 0.2597 (3) 0.2982 (2) 0.0260 (8)
C6 0.3667 (2) 0.2223 (3) 0.3481 (2) 0.0272 (8)
C7 0.4208 (2) 0.2798 (3) 0.4051 (2) 0.0346 (9)
H7A 0.4093 0.3462 0.4140 0.042*
C8 0.4918 (2) 0.2374 (3) 0.4481 (2) 0.0409 (10)
H8 0.5282 0.2752 0.4864 0.049*
C9 0.5087 (2) 0.1396 (3) 0.4345 (2) 0.0402 (10)
H9 0.5566 0.1106 0.4627 0.048*
C10 0.4523 (2) 0.0848 (3) 0.3776 (2) 0.0328 (9)
H10 0.4632 0.0182 0.3688 0.039*
C11 0.3504 (2) 0.1599 (3) 0.1376 (2) 0.0277 (8)
H11 0.3173 0.2119 0.1401 0.033*
C12 0.3955 (2) 0.1735 (3) 0.0931 (2) 0.0339 (9)
H12 0.3915 0.2329 0.0654 0.041*
C13 0.4458 (2) 0.0983 (3) 0.0907 (2) 0.0344 (9)
H13 0.4775 0.1068 0.0624 0.041*
C14 0.4490 (2) 0.0100 (3) 0.1306 (2) 0.0303 (8)
H14 0.4827 −0.0419 0.1291 0.036*
C15 0.4019 (2) −0.0014 (3) 0.17289 (19) 0.0247 (7)
C16 0.3991 (2) −0.0939 (3) 0.21569 (19) 0.0267 (8)
C17 0.4383 (2) −0.1823 (3) 0.2130 (2) 0.0325 (9)
H17 0.4696 −0.1854 0.1840 0.039*
C18 0.4307 (2) −0.2657 (3) 0.2536 (2) 0.0376 (9)
H18 0.4569 −0.3255 0.2523 0.045*
C19 0.3840 (2) −0.2599 (3) 0.2962 (2) 0.0379 (9)
H19 0.3779 −0.3156 0.3237 0.045*
C20 0.3464 (2) −0.1700 (3) 0.2973 (2) 0.0324 (9)
H20 0.3151 −0.1662 0.3263 0.039*
C21 0.1834 (2) −0.0348 (3) 0.09948 (19) 0.0260 (8)
H21 0.2217 −0.0162 0.0806 0.031*
C22 0.1148 (2) −0.0756 (3) 0.04975 (19) 0.0264 (8)
H22 0.1072 −0.0845 −0.0014 0.032*
C23 0.05712 (19) −0.1033 (2) 0.07734 (19) 0.0228 (7)
C24 0.07228 (19) −0.0931 (2) 0.15475 (18) 0.0217 (7)
H24 0.0350 −0.1127 0.1747 0.026*
C25 0.14324 (19) −0.0536 (3) 0.20223 (18) 0.0220 (7)
C26 0.16747 (19) −0.0442 (3) 0.28556 (18) 0.0228 (7)
C27 0.1254 (2) −0.0832 (3) 0.3282 (2) 0.0276 (8)
H27 0.0784 −0.1168 0.3040 0.033*
C28 0.1542 (2) −0.0714 (3) 0.40656 (19) 0.0271 (8)
C29 0.2228 (2) −0.0174 (3) 0.4403 (2) 0.0323 (9)
H29 0.2419 −0.0054 0.4925 0.039*
C30 0.2623 (2) 0.0180 (3) 0.3961 (2) 0.0303 (8)
H30 0.3089 0.0528 0.4197 0.036*
C31 −0.0182 (2) −0.1441 (3) 0.0220 (2) 0.0260 (8)
C32 −0.1427 (2) −0.2112 (3) 0.0082 (2) 0.0359 (9)
H32A −0.1322 −0.2763 −0.0100 0.043*
H32B −0.1702 −0.1689 −0.0355 0.043*
C33 −0.1909 (2) −0.2249 (3) 0.0568 (2) 0.0429 (10)
H33A −0.1612 −0.2612 0.1022 0.064*
H33B −0.2372 −0.2627 0.0290 0.064*
H33C −0.2053 −0.1598 0.0702 0.064*
C34 0.1056 (2) −0.1108 (3) 0.4501 (2) 0.0315 (9)
C35 0.1075 (2) −0.1283 (3) 0.5818 (2) 0.0308 (8)
C36 0.0286 (2) −0.1128 (3) 0.5644 (2) 0.0378 (9)
H36 −0.0040 −0.0978 0.5149 0.045*
C37 −0.0014 (2) −0.1198 (3) 0.6221 (2) 0.0348 (9)
H37 −0.0544 −0.1085 0.6104 0.042*
C38 0.0448 (2) −0.1430 (3) 0.6962 (2) 0.0319 (9)
C39 0.1243 (2) −0.1606 (3) 0.7128 (2) 0.0348 (9)
H39 0.1565 −0.1773 0.7622 0.042*
C40 0.1555 (2) −0.1530 (3) 0.6560 (2) 0.0335 (9)
H40 0.2085 −0.1646 0.6675 0.040*
C41 0.0065 (2) −0.1465 (3) 0.7539 (2) 0.0341 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01934 (14) 0.02957 (16) 0.01735 (14) −0.00295 (12) 0.00850 (10) −0.00124 (11)
P1 0.0359 (6) 0.0409 (6) 0.0276 (5) −0.0005 (5) 0.0101 (4) 0.0018 (4)
P2 0.0341 (6) 0.0527 (7) 0.0279 (6) −0.0078 (5) 0.0097 (5) 0.0066 (5)
F1 0.0469 (16) 0.0628 (17) 0.0498 (16) −0.0160 (12) 0.0143 (13) −0.0035 (12)
F2 0.0455 (15) 0.0457 (14) 0.0387 (14) 0.0057 (11) 0.0135 (12) 0.0049 (10)
F3 0.0342 (13) 0.0524 (15) 0.0399 (14) 0.0004 (11) 0.0113 (11) 0.0025 (11)
F4 0.0603 (17) 0.0414 (14) 0.0410 (14) 0.0030 (12) 0.0178 (13) 0.0071 (11)
F5 0.0636 (17) 0.0508 (16) 0.0392 (14) 0.0076 (12) 0.0245 (13) −0.0018 (11)
F6 0.0551 (16) 0.0537 (15) 0.0400 (14) −0.0018 (12) 0.0258 (13) −0.0037 (11)
F7 0.085 (2) 0.0571 (18) 0.089 (2) −0.0241 (15) 0.0552 (19) −0.0047 (15)
F8 0.0436 (16) 0.0684 (18) 0.0612 (17) 0.0038 (13) 0.0246 (14) 0.0138 (14)
F9 0.071 (2) 0.0601 (18) 0.0712 (19) 0.0054 (14) 0.0375 (16) 0.0281 (15)
F10 0.0386 (16) 0.092 (2) 0.076 (2) −0.0015 (15) 0.0206 (15) 0.0006 (17)
F11 0.076 (2) 0.119 (3) 0.0323 (15) 0.0066 (19) −0.0030 (15) −0.0111 (16)
F12 0.074 (2) 0.0638 (18) 0.0302 (13) 0.0033 (14) 0.0043 (13) 0.0000 (12)
O1 0.0321 (15) 0.0444 (16) 0.0177 (13) −0.0067 (12) 0.0075 (11) −0.0026 (11)
O2 0.0277 (14) 0.0437 (16) 0.0232 (13) −0.0095 (11) 0.0083 (11) −0.0018 (11)
O3 0.0375 (17) 0.075 (2) 0.0254 (15) −0.0233 (15) 0.0148 (13) −0.0040 (14)
O4 0.048 (2) 0.075 (2) 0.0376 (17) 0.0021 (16) 0.0254 (16) 0.0076 (15)
N1 0.0264 (16) 0.0279 (16) 0.0231 (15) −0.0044 (12) 0.0149 (13) −0.0010 (12)
N2 0.0201 (15) 0.0392 (18) 0.0212 (15) −0.0069 (13) 0.0102 (13) −0.0022 (12)
N3 0.0225 (15) 0.0300 (17) 0.0166 (14) −0.0072 (12) 0.0066 (12) −0.0024 (11)
N4 0.0213 (15) 0.0286 (16) 0.0228 (15) −0.0019 (12) 0.0066 (12) 0.0000 (12)
N5 0.0227 (15) 0.0296 (17) 0.0181 (14) −0.0035 (12) 0.0088 (12) −0.0030 (11)
N6 0.0240 (16) 0.0301 (16) 0.0187 (15) −0.0019 (12) 0.0088 (12) 0.0007 (12)
N7 0.0313 (18) 0.052 (2) 0.0209 (16) −0.0144 (15) 0.0118 (14) −0.0006 (14)
N8 0.047 (2) 0.072 (3) 0.0225 (18) −0.0069 (18) 0.0205 (17) −0.0020 (16)
C1 0.0241 (19) 0.039 (2) 0.0270 (19) −0.0012 (16) 0.0113 (16) 0.0035 (16)
C2 0.030 (2) 0.041 (2) 0.039 (2) 0.0045 (18) 0.0141 (19) 0.0054 (18)
C3 0.042 (3) 0.036 (2) 0.049 (3) 0.0061 (18) 0.026 (2) 0.0044 (18)
C4 0.038 (2) 0.035 (2) 0.035 (2) −0.0044 (17) 0.0192 (19) −0.0051 (17)
C5 0.0273 (19) 0.031 (2) 0.0248 (19) −0.0051 (15) 0.0161 (16) −0.0002 (14)
C6 0.028 (2) 0.037 (2) 0.0233 (18) −0.0071 (16) 0.0172 (16) −0.0057 (15)
C7 0.033 (2) 0.043 (2) 0.032 (2) −0.0116 (17) 0.0164 (18) −0.0117 (17)
C8 0.029 (2) 0.065 (3) 0.029 (2) −0.014 (2) 0.0116 (18) −0.0170 (19)
C9 0.024 (2) 0.063 (3) 0.031 (2) −0.0044 (19) 0.0069 (17) −0.0087 (19)
C10 0.025 (2) 0.047 (2) 0.028 (2) 0.0003 (17) 0.0110 (16) −0.0025 (17)
C11 0.029 (2) 0.029 (2) 0.0257 (19) −0.0028 (15) 0.0111 (16) −0.0026 (15)
C12 0.037 (2) 0.037 (2) 0.032 (2) −0.0074 (17) 0.0170 (18) 0.0010 (16)
C13 0.034 (2) 0.044 (2) 0.031 (2) −0.0093 (18) 0.0193 (18) 0.0002 (17)
C14 0.027 (2) 0.039 (2) 0.028 (2) −0.0009 (16) 0.0133 (16) −0.0057 (16)
C15 0.0215 (18) 0.032 (2) 0.0191 (17) −0.0036 (15) 0.0059 (15) −0.0048 (14)
C16 0.0234 (19) 0.036 (2) 0.0192 (18) −0.0033 (15) 0.0057 (15) −0.0044 (15)
C17 0.032 (2) 0.039 (2) 0.027 (2) 0.0024 (17) 0.0118 (17) −0.0041 (16)
C18 0.041 (2) 0.033 (2) 0.035 (2) 0.0064 (18) 0.0092 (19) −0.0026 (17)
C19 0.041 (2) 0.035 (2) 0.038 (2) −0.0015 (18) 0.0141 (19) 0.0076 (17)
C20 0.032 (2) 0.034 (2) 0.031 (2) 0.0028 (16) 0.0105 (17) 0.0042 (16)
C21 0.0257 (18) 0.035 (2) 0.0215 (17) −0.0024 (15) 0.0132 (15) −0.0013 (14)
C22 0.029 (2) 0.035 (2) 0.0182 (17) −0.0023 (15) 0.0119 (15) −0.0032 (14)
C23 0.0239 (18) 0.0220 (18) 0.0227 (18) 0.0014 (14) 0.0087 (15) 0.0003 (13)
C24 0.0218 (18) 0.0244 (18) 0.0208 (17) −0.0014 (14) 0.0102 (14) 0.0005 (13)
C25 0.0246 (17) 0.0242 (18) 0.0189 (16) −0.0013 (14) 0.0099 (14) −0.0013 (13)
C26 0.0219 (17) 0.0287 (19) 0.0190 (17) −0.0008 (15) 0.0087 (14) −0.0026 (14)
C27 0.0275 (19) 0.034 (2) 0.0238 (19) −0.0088 (15) 0.0118 (16) −0.0020 (15)
C28 0.030 (2) 0.033 (2) 0.0209 (18) −0.0034 (15) 0.0115 (16) 0.0007 (14)
C29 0.037 (2) 0.043 (2) 0.0173 (18) −0.0094 (17) 0.0108 (16) −0.0038 (15)
C30 0.027 (2) 0.044 (2) 0.0201 (18) −0.0108 (16) 0.0078 (15) −0.0031 (15)
C31 0.0248 (19) 0.027 (2) 0.0241 (19) −0.0011 (14) 0.0070 (15) 0.0018 (14)
C32 0.027 (2) 0.049 (3) 0.027 (2) −0.0105 (17) 0.0040 (17) 0.0000 (17)
C33 0.036 (2) 0.055 (3) 0.040 (2) −0.005 (2) 0.016 (2) 0.008 (2)
C34 0.032 (2) 0.042 (2) 0.0246 (19) −0.0125 (17) 0.0154 (17) −0.0040 (16)
C35 0.037 (2) 0.035 (2) 0.0250 (19) −0.0136 (17) 0.0166 (17) −0.0004 (15)
C36 0.040 (2) 0.051 (3) 0.025 (2) −0.0049 (19) 0.0137 (18) 0.0051 (17)
C37 0.032 (2) 0.043 (2) 0.031 (2) −0.0001 (17) 0.0130 (18) 0.0044 (17)
C38 0.044 (2) 0.033 (2) 0.0236 (19) −0.0080 (17) 0.0173 (18) −0.0026 (15)
C39 0.039 (2) 0.042 (2) 0.0223 (19) −0.0121 (18) 0.0102 (18) −0.0018 (16)
C40 0.033 (2) 0.039 (2) 0.027 (2) −0.0105 (17) 0.0085 (17) −0.0013 (16)
C41 0.039 (2) 0.037 (2) 0.028 (2) −0.0061 (18) 0.0153 (18) 0.0008 (16)

Geometric parameters (Å, °)

Ru1—N1 2.077 (3) C9—C10 1.392 (5)
Ru1—N2 2.070 (3) C9—H9 0.9300
Ru1—N3 2.076 (3) C10—H10 0.9300
Ru1—N4 2.065 (3) C11—C12 1.389 (5)
Ru1—N5 2.051 (3) C11—H11 0.9300
Ru1—N6 2.038 (3) C12—C13 1.369 (5)
P1—F4 1.595 (2) C12—H12 0.9300
P1—F3 1.596 (2) C13—C14 1.376 (5)
P1—F6 1.598 (2) C13—H13 0.9300
P1—F5 1.606 (2) C14—C15 1.384 (5)
P1—F1 1.606 (3) C14—H14 0.9300
P1—F2 1.618 (2) C15—C16 1.474 (5)
P2—F12 1.579 (3) C16—C17 1.381 (5)
P2—F11 1.585 (3) C17—C18 1.376 (5)
P2—F7 1.587 (3) C17—H17 0.9300
P2—F9 1.592 (3) C18—C19 1.375 (5)
P2—F8 1.599 (3) C18—H18 0.9300
P2—F10 1.600 (3) C19—C20 1.376 (5)
O1—C31 1.210 (4) C19—H19 0.9300
O2—C31 1.337 (4) C20—H20 0.9300
O2—C32 1.463 (4) C21—C22 1.380 (5)
O3—C34 1.208 (4) C21—H21 0.9300
O4—C41 1.237 (5) C22—C23 1.389 (4)
N1—C1 1.338 (4) C22—H22 0.9300
N1—C5 1.373 (4) C23—C24 1.390 (4)
N2—C10 1.348 (5) C23—C31 1.499 (5)
N2—C6 1.364 (5) C24—C25 1.388 (4)
N3—C11 1.341 (4) C24—H24 0.9300
N3—C15 1.369 (4) C25—C26 1.475 (4)
N4—C20 1.345 (4) C26—C27 1.401 (4)
N4—C16 1.364 (4) C27—C28 1.386 (5)
N5—C21 1.349 (4) C27—H27 0.9300
N5—C25 1.364 (4) C28—C29 1.386 (5)
N6—C30 1.351 (4) C28—C34 1.509 (5)
N6—C26 1.363 (4) C29—C30 1.372 (5)
N7—C34 1.354 (5) C29—H29 0.9300
N7—C35 1.415 (4) C30—H30 0.9300
N7—H7 0.8600 C32—C33 1.502 (5)
N8—C41 1.332 (5) C32—H32A 0.9700
N8—H8A 0.8600 C32—H32B 0.9700
N8—H8B 0.8600 C33—H33A 0.9600
C1—C2 1.381 (5) C33—H33B 0.9600
C1—H1 0.9300 C33—H33C 0.9600
C2—C3 1.384 (6) C35—C36 1.384 (5)
C2—H2 0.9300 C35—C40 1.394 (5)
C3—C4 1.384 (5) C36—C37 1.391 (5)
C3—H3 0.9300 C36—H36 0.9300
C4—C5 1.392 (5) C37—C38 1.380 (5)
C4—H4 0.9300 C37—H37 0.9300
C5—C6 1.468 (5) C38—C39 1.399 (5)
C6—C7 1.394 (5) C38—C41 1.497 (5)
C7—C8 1.380 (6) C39—C40 1.392 (5)
C7—H7A 0.9300 C39—H39 0.9300
C8—C9 1.373 (6) C40—H40 0.9300
C8—H8 0.9300
N6—Ru1—N5 78.87 (11) N3—C11—C12 122.5 (3)
N6—Ru1—N4 95.56 (11) N3—C11—H11 118.8
N5—Ru1—N4 87.86 (11) C12—C11—H11 118.8
N6—Ru1—N2 95.43 (11) C13—C12—C11 119.1 (4)
N5—Ru1—N2 172.71 (11) C13—C12—H12 120.5
N4—Ru1—N2 97.28 (11) C11—C12—H12 120.5
N6—Ru1—N3 173.37 (11) C12—C13—C14 119.4 (3)
N5—Ru1—N3 97.42 (11) C12—C13—H13 120.3
N4—Ru1—N3 78.73 (11) C14—C13—H13 120.3
N2—Ru1—N3 88.68 (10) C13—C14—C15 119.7 (3)
N6—Ru1—N1 88.57 (11) C13—C14—H14 120.2
N5—Ru1—N1 96.73 (11) C15—C14—H14 120.2
N4—Ru1—N1 174.36 (11) N3—C15—C14 121.2 (3)
N2—Ru1—N1 78.46 (12) N3—C15—C16 114.8 (3)
N3—Ru1—N1 97.36 (11) C14—C15—C16 124.0 (3)
F4—P1—F3 90.00 (14) N4—C16—C17 121.2 (3)
F4—P1—F6 90.29 (13) N4—C16—C15 115.0 (3)
F3—P1—F6 90.11 (13) C17—C16—C15 123.8 (3)
F4—P1—F5 91.16 (13) C18—C17—C16 119.6 (3)
F3—P1—F5 89.76 (14) C18—C17—H17 120.2
F6—P1—F5 178.54 (15) C16—C17—H17 120.2
F4—P1—F1 90.70 (14) C19—C18—C17 119.5 (4)
F3—P1—F1 179.00 (15) C19—C18—H18 120.3
F6—P1—F1 90.59 (14) C17—C18—H18 120.3
F5—P1—F1 89.52 (14) C18—C19—C20 118.7 (4)
F4—P1—F2 179.71 (15) C18—C19—H19 120.6
F3—P1—F2 90.23 (13) C20—C19—H19 120.6
F6—P1—F2 89.53 (13) N4—C20—C19 122.9 (3)
F5—P1—F2 89.02 (13) N4—C20—H20 118.5
F1—P1—F2 89.07 (14) C19—C20—H20 118.5
F12—P2—F11 179.42 (19) N5—C21—C22 123.1 (3)
F12—P2—F7 89.37 (16) N5—C21—H21 118.4
F11—P2—F7 90.63 (19) C22—C21—H21 118.4
F12—P2—F9 89.49 (16) C21—C22—C23 118.9 (3)
F11—P2—F9 90.51 (18) C21—C22—H22 120.6
F7—P2—F9 178.83 (19) C23—C22—H22 120.6
F12—P2—F8 90.69 (16) C22—C23—C24 118.6 (3)
F11—P2—F8 88.73 (17) C22—C23—C31 118.2 (3)
F7—P2—F8 89.58 (16) C24—C23—C31 123.2 (3)
F9—P2—F8 90.15 (15) C25—C24—C23 119.7 (3)
F12—P2—F10 89.54 (16) C25—C24—H24 120.1
F11—P2—F10 91.04 (17) C23—C24—H24 120.1
F7—P2—F10 90.98 (17) N5—C25—C24 121.4 (3)
F9—P2—F10 89.30 (16) N5—C25—C26 114.0 (3)
F8—P2—F10 179.40 (17) C24—C25—C26 124.6 (3)
C31—O2—C32 116.3 (3) N6—C26—C27 121.1 (3)
C1—N1—C5 118.4 (3) N6—C26—C25 114.5 (3)
C1—N1—Ru1 126.1 (2) C27—C26—C25 124.4 (3)
C5—N1—Ru1 115.4 (2) C28—C27—C26 119.6 (3)
C10—N2—C6 118.6 (3) C28—C27—H27 120.2
C10—N2—Ru1 125.3 (3) C26—C27—H27 120.2
C6—N2—Ru1 116.1 (2) C27—C28—C29 118.6 (3)
C11—N3—C15 118.1 (3) C27—C28—C34 118.0 (3)
C11—N3—Ru1 126.4 (2) C29—C28—C34 123.2 (3)
C15—N3—Ru1 115.4 (2) C30—C29—C28 119.4 (3)
C20—N4—C16 118.1 (3) C30—C29—H29 120.3
C20—N4—Ru1 126.0 (2) C28—C29—H29 120.3
C16—N4—Ru1 115.9 (2) N6—C30—C29 123.0 (3)
C21—N5—C25 118.0 (3) N6—C30—H30 118.5
C21—N5—Ru1 126.0 (2) C29—C30—H30 118.5
C25—N5—Ru1 116.0 (2) O1—C31—O2 124.8 (3)
C30—N6—C26 118.1 (3) O1—C31—C23 123.4 (3)
C30—N6—Ru1 125.5 (2) O2—C31—C23 111.8 (3)
C26—N6—Ru1 116.3 (2) O2—C32—C33 107.3 (3)
C34—N7—C35 127.4 (3) O2—C32—H32A 110.3
C34—N7—H7 116.3 C33—C32—H32A 110.3
C35—N7—H7 116.3 O2—C32—H32B 110.3
C41—N8—H8A 120.0 C33—C32—H32B 110.3
C41—N8—H8B 120.0 H32A—C32—H32B 108.5
H8A—N8—H8B 120.0 C32—C33—H33A 109.5
N1—C1—C2 123.5 (4) C32—C33—H33B 109.5
N1—C1—H1 118.3 H33A—C33—H33B 109.5
C2—C1—H1 118.3 C32—C33—H33C 109.5
C1—C2—C3 118.3 (4) H33A—C33—H33C 109.5
C1—C2—H2 120.9 H33B—C33—H33C 109.5
C3—C2—H2 120.9 O3—C34—N7 124.2 (3)
C2—C3—C4 119.6 (4) O3—C34—C28 120.4 (3)
C2—C3—H3 120.2 N7—C34—C28 115.4 (3)
C4—C3—H3 120.2 C36—C35—C40 120.0 (3)
C3—C4—C5 119.6 (4) C36—C35—N7 121.3 (3)
C3—C4—H4 120.2 C40—C35—N7 118.6 (3)
C5—C4—H4 120.2 C35—C36—C37 119.1 (4)
N1—C5—C4 120.7 (3) C35—C36—H36 120.4
N1—C5—C6 115.0 (3) C37—C36—H36 120.4
C4—C5—C6 124.3 (3) C38—C37—C36 122.2 (4)
N2—C6—C7 120.9 (3) C38—C37—H37 118.9
N2—C6—C5 114.8 (3) C36—C37—H37 118.9
C7—C6—C5 124.2 (3) C37—C38—C39 118.2 (3)
C8—C7—C6 119.4 (4) C37—C38—C41 117.6 (4)
C8—C7—H7A 120.3 C39—C38—C41 124.2 (3)
C6—C7—H7A 120.3 C40—C39—C38 120.4 (4)
C9—C8—C7 120.0 (4) C40—C39—H39 119.8
C9—C8—H8 120.0 C38—C39—H39 119.8
C7—C8—H8 120.0 C39—C40—C35 120.1 (4)
C8—C9—C10 118.4 (4) C39—C40—H40 120.0
C8—C9—H9 120.8 C35—C40—H40 120.0
C10—C9—H9 120.8 O4—C41—N8 121.1 (4)
N2—C10—C9 122.6 (4) O4—C41—C38 120.2 (4)
N2—C10—H10 118.7 N8—C41—C38 118.8 (4)
C9—C10—H10 118.7
C5—N1—C1—C2 1.7 (5) C21—N5—C25—C26 174.2 (3)
N1—C1—C2—C3 −1.7 (5) C23—C24—C25—N5 2.6 (5)
C1—C2—C3—C4 0.7 (6) C23—C24—C25—C26 −176.7 (3)
C2—C3—C4—C5 0.3 (5) C30—N6—C26—C27 −2.4 (5)
C1—N1—C5—C4 −0.7 (5) C30—N6—C26—C25 178.9 (3)
C1—N1—C5—C6 −180.0 (3) N5—C25—C26—N6 6.1 (4)
C3—C4—C5—N1 −0.3 (5) C24—C25—C26—N6 −174.6 (3)
C3—C4—C5—C6 178.9 (3) N5—C25—C26—C27 −172.6 (3)
C10—N2—C6—C7 −0.5 (5) C24—C25—C26—C27 6.7 (6)
C10—N2—C6—C5 179.2 (3) N6—C26—C27—C28 0.4 (5)
N1—C5—C6—N2 −0.6 (4) C25—C26—C27—C28 179.0 (3)
C4—C5—C6—N2 −179.8 (3) C26—C27—C28—C29 2.5 (6)
N1—C5—C6—C7 179.1 (3) C26—C27—C28—C34 177.6 (3)
C4—C5—C6—C7 −0.2 (5) C27—C28—C29—C30 −3.4 (6)
N2—C6—C7—C8 0.5 (5) C34—C28—C29—C30 −178.2 (4)
C5—C6—C7—C8 −179.1 (3) C26—N6—C30—C29 1.5 (6)
C6—C7—C8—C9 0.3 (6) C28—C29—C30—N6 1.4 (6)
C7—C8—C9—C10 −1.0 (6) C32—O2—C31—O1 6.9 (5)
C6—N2—C10—C9 −0.3 (5) C32—O2—C31—C23 −174.8 (3)
C8—C9—C10—N2 1.0 (6) C22—C23—C31—O1 1.5 (5)
C15—N3—C11—C12 −0.1 (5) C24—C23—C31—O1 −177.7 (3)
N3—C11—C12—C13 −1.6 (6) C22—C23—C31—O2 −176.9 (3)
C11—C12—C13—C14 1.9 (6) C24—C23—C31—O2 4.0 (5)
C12—C13—C14—C15 −0.5 (6) C31—O2—C32—C33 179.9 (3)
C11—N3—C15—C14 1.6 (5) C35—N7—C34—O3 −10.7 (7)
C11—N3—C15—C16 −177.9 (3) C35—N7—C34—C28 166.9 (3)
C13—C14—C15—N3 −1.3 (5) C27—C28—C34—O3 −13.6 (6)
C13—C14—C15—C16 178.1 (3) C29—C28—C34—O3 161.2 (4)
C20—N4—C16—C17 −0.4 (5) C27—C28—C34—N7 168.7 (3)
C20—N4—C16—C15 178.5 (3) C29—C28—C34—N7 −16.4 (6)
N3—C15—C16—N4 −5.1 (4) C34—N7—C35—C36 −18.7 (6)
C14—C15—C16—N4 175.5 (3) C34—N7—C35—C40 165.0 (4)
N3—C15—C16—C17 173.8 (3) C40—C35—C36—C37 1.5 (6)
C14—C15—C16—C17 −5.6 (6) N7—C35—C36—C37 −174.7 (4)
N4—C16—C17—C18 0.3 (5) C35—C36—C37—C38 −0.8 (6)
C15—C16—C17—C18 −178.5 (3) C36—C37—C38—C39 −0.5 (6)
C16—C17—C18—C19 0.1 (6) C36—C37—C38—C41 178.8 (4)
C17—C18—C19—C20 −0.4 (6) C37—C38—C39—C40 1.0 (6)
C16—N4—C20—C19 0.1 (5) C41—C38—C39—C40 −178.3 (4)
C18—C19—C20—N4 0.3 (6) C38—C39—C40—C35 −0.2 (6)
C25—N5—C21—C22 3.7 (5) C36—C35—C40—C39 −1.0 (6)
N5—C21—C22—C23 0.3 (5) N7—C35—C40—C39 175.3 (3)
C21—C22—C23—C24 −2.9 (5) C37—C38—C41—O4 7.6 (6)
C21—C22—C23—C31 177.9 (3) C39—C38—C41—O4 −173.1 (4)
C22—C23—C24—C25 1.5 (5) C37—C38—C41—N8 −171.6 (4)
C31—C23—C24—C25 −179.3 (3) C39—C38—C41—N8 7.7 (6)
C21—N5—C25—C24 −5.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H7···F2i 0.86 2.34 3.181 (4) 168
N8—H8B···F10i 0.86 2.29 2.999 (5) 139

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2198).

References

  1. Bruker (2004). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gillaizeau-Gauthier, I., Odobel, F., Alebbi, M., Argazzi, R., Costa, E., Bignozzi, C. A., Qu, P. & Meyer, G. J. (2001). Inorg. Chem.40, 6073–6079. [DOI] [PubMed]
  4. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  5. Molecular Structure Corporation (2001). TEXSAN MSC, The Woodlands, Texas, USA.
  6. Ozawa, H., Haga, M. & Sakai, K. (2006). J. Am. Chem. Soc.128, 4926–4927. [DOI] [PubMed]
  7. Ozawa, H. & Sakai, K. (2007). Chem. Lett.36, 920–921.
  8. Ozawa, H., Yokoyama, Y., Haga, M. & Sakai, K. (2007). Dalton Trans. pp. 1197–1206. [DOI] [PubMed]
  9. Sakai, K. (2004). KENX Kyushu University, Japan.
  10. Sakai, K., Kizaki, Y., Tsubomura, T. & Matumoto, K. (1993). J. Mol. Catal.79, 141–152.
  11. Sakai, K. & Ozawa, H. (2007). Coord. Chem. Rev.251, 2753–2766.
  12. Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. (2008). Chem. Soc. Rev.37, 68–83. [DOI] [PubMed]
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002360/kp2198sup1.cif

e-65-0m228-sup1.cif (38KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002360/kp2198Isup2.hkl

e-65-0m228-Isup2.hkl (473.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES