Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o232. doi: 10.1107/S1600536808043687

(25R)-5a-Spiro­stane-3,12-dione

Tie-Ying Zi a, Zhi-He Zang b, Ming-Yong Yuan a, Ling-Li Zheng a,*
PMCID: PMC2968410  PMID: 21581849

Abstract

The title compound, C27H40O4, was obtained from the oxidation of (25R)-3b-hydr­oxy-5a-spiro­stan-12-one (Hecogenin) by Jone’s reagent. The mol­ecule contains six alicyclic and heterocyclic rings, all trans-fused, among which four six-membered rings adopt similar chair conformations while two five-membered rings assume an envelope conformation.

Related literature

For general background, see: Chakravarti et al. (1953); Djerassi et al. (1962); Huang et al. (2002).graphic file with name e-65-0o232-scheme1.jpg

Experimental

Crystal data

  • C27H40O4

  • M r = 428.59

  • Monoclinic, Inline graphic

  • a = 12.660 (3) Å

  • b = 6.443 (3) Å

  • c = 30.167 (3) Å

  • β = 98.02 (3)°

  • V = 2436.8 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 (2) K

  • 0.44 × 0.40 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2837 measured reflections

  • 2407 independent reflections

  • 919 reflections with I > 2σ(I)

  • R int = 0.136

  • 3 standard reflections every 150 reflections intensity decay: 2.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078

  • wR(F 2) = 0.202

  • S = 1.07

  • 2407 reflections

  • 284 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043687/xu2465sup1.cif

e-65-0o232-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043687/xu2465Isup2.hkl

e-65-0o232-Isup2.hkl (131.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Scientific Research Fund of Chengdu Medical College, China (No. CYZ07–010).

supplementary crystallographic information

Comment

Steroid sapogenins are a class of important compounds, which present many significant bioactivities in platelet aggregation, arteriosclerosis and so on (Huang et al., 2002). The hecogenin (25R-5a-Spirostane-3b-ol-12-one) is an important steroid (Djerassi et al., 1962; Chakravarti et al., 1953), which has been isolated from Chinese traditional medicine Tribulus terrestris. The title compound was recently obtained by Jone's oxidation of hecogenin in our laboratory, and its crystal structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The molecule contains six alicylic and heterocyclic rings with trans-fused. Cyclohexane rings A (C1/C2/C3/C4/C5/C10), B (C5/C6/C7/C8/C9/C10), C (C8/C9/C11/C12/C13/C14) and six-membered heterocyclic ring F (C22/C23/C24/C25/C26/O4) adopt chair conformation. Cyclopetane ring D (C13/C14/C15/C16/C17) and five-membered heterocyclic ring E (C16/C17/C20/C22/O3) have envelope conformation.

Experimental

A solution of hecogenin (200 mg) in acetone (10 ml) was added by Jone's reagent drops by drops. The reaction solution was stirred for 20 min and quenched by water (10 ml). The mixture was extracted with CH2Cl2 (5 ml×3) and the organic phase was concentrated to give the title compound. The crystals suitable for X-ray analysis were obtained by slow evaporation from acetone solution at room temperature. The absolute configuration was deduced not by the present experiment but by the synthetic path from Hecognin, whose absolute configuration is known.

Refinement

H atoms were located geometrically with C—H = 0.93–0.98 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C). Friedel pairs were merged and the absolute configuration was not determined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound.

Crystal data

C27H40O4 F(000) = 936
Mr = 428.59 Dx = 1.168 Mg m3
Monoclinic, C2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2y Cell parameters from 12 reflections
a = 12.660 (3) Å θ = 4.3–5.6°
b = 6.443 (3) Å µ = 0.08 mm1
c = 30.167 (3) Å T = 292 K
β = 98.02 (3)° Block, colourless
V = 2436.8 (14) Å3 0.44 × 0.40 × 0.30 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.136
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 1.4°
graphite h = −15→15
ω/2θ scans k = −7→7
2837 measured reflections l = −35→36
2407 independent reflections 3 standard reflections every 150 reflections
919 reflections with I > 2σ(I) intensity decay: 2.6%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0752P)2] where P = (Fo2 + 2Fc2)/3
2407 reflections (Δ/σ)max < 0.001
284 parameters Δρmax = 0.19 e Å3
2 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.7481 (5) 0.2933 (11) 0.4779 (2) 0.0958 (19)
O2 0.6375 (4) 0.7105 (13) 0.7368 (2) 0.117 (3)
O3 1.0031 (4) 0.7234 (9) 0.83970 (17) 0.0791 (17)
O4 0.9410 (5) 1.0093 (10) 0.8752 (2) 0.096 (2)
C1 0.6736 (5) 0.3818 (15) 0.5873 (2) 0.076 (2)
H1A 0.6156 0.3421 0.6035 0.091*
H1B 0.6664 0.5291 0.5809 0.091*
C2 0.6615 (6) 0.2652 (16) 0.5435 (3) 0.086 (2)
H2A 0.5996 0.3182 0.5243 0.104*
H2B 0.6485 0.1200 0.5493 0.104*
C3 0.7588 (7) 0.2814 (15) 0.5186 (4) 0.079 (2)
C4 0.8630 (6) 0.2756 (16) 0.5476 (2) 0.080 (2)
H4A 0.9174 0.3246 0.5304 0.096*
H4B 0.8795 0.1325 0.5557 0.096*
C5 0.8694 (5) 0.4009 (12) 0.5893 (2) 0.0635 (19)
H5 0.8585 0.5464 0.5804 0.076*
C6 0.9812 (5) 0.3854 (15) 0.6177 (2) 0.081 (2)
H6A 1.0353 0.4246 0.5995 0.097*
H6B 0.9944 0.2429 0.6273 0.097*
C7 0.9890 (5) 0.5280 (16) 0.6591 (2) 0.076 (3)
H7A 1.0577 0.5077 0.6773 0.092*
H7B 0.9848 0.6717 0.6494 0.092*
C8 0.9014 (5) 0.4848 (13) 0.6870 (2) 0.0585 (19)
H8 0.9136 0.3454 0.6996 0.070*
C9 0.7921 (5) 0.4852 (11) 0.6594 (2) 0.0541 (18)
H9 0.7852 0.6255 0.6468 0.065*
C10 0.7822 (6) 0.3447 (10) 0.6186 (3) 0.056 (2)
C11 0.7016 (5) 0.4700 (13) 0.6871 (2) 0.075 (2)
H11A 0.6966 0.3275 0.6970 0.089*
H11B 0.6354 0.5032 0.6681 0.089*
C12 0.7124 (7) 0.6099 (15) 0.7276 (3) 0.081 (2)
C13 0.8200 (5) 0.5999 (11) 0.7571 (2) 0.0549 (19)
C14 0.9030 (5) 0.6332 (12) 0.7254 (2) 0.0607 (19)
H14 0.8864 0.7692 0.7116 0.073*
C15 1.0041 (6) 0.6679 (15) 0.7598 (3) 0.088 (3)
H15A 1.0313 0.5373 0.7727 0.105*
H15B 1.0596 0.7357 0.7459 0.105*
C16 0.9656 (6) 0.8067 (14) 0.7951 (2) 0.076 (2)
H16 0.9878 0.9511 0.7922 0.091*
C17 0.8411 (5) 0.7863 (14) 0.7912 (2) 0.065 (2)
H17 0.8073 0.9126 0.7778 0.078*
C18 0.8278 (6) 0.3872 (12) 0.7799 (2) 0.077 (2)
H18A 0.8814 0.3915 0.8058 0.115*
H18B 0.8467 0.2845 0.7594 0.115*
H18C 0.7602 0.3523 0.7889 0.115*
C19 0.7859 (7) 0.1141 (13) 0.6329 (3) 0.076 (2)
H19A 0.7276 0.0855 0.6492 0.114*
H19B 0.8521 0.0863 0.6516 0.114*
H19C 0.7801 0.0275 0.6068 0.114*
C20 0.8194 (6) 0.7661 (15) 0.8389 (2) 0.076 (2)
H20 0.7965 0.6227 0.8428 0.091*
C21 0.7318 (6) 0.9049 (17) 0.8505 (3) 0.098 (3)
H21A 0.7527 1.0474 0.8483 0.146*
H21B 0.7190 0.8765 0.8805 0.146*
H21C 0.6678 0.8796 0.8301 0.146*
C22 0.9283 (7) 0.7917 (16) 0.8671 (3) 0.084 (3)
C23 0.9441 (6) 0.6702 (13) 0.9110 (3) 0.078 (2)
H23A 0.9425 0.5224 0.9048 0.093*
H23B 0.8867 0.7017 0.9282 0.093*
C24 1.0524 (8) 0.729 (2) 0.9385 (3) 0.118 (4)
H24A 1.0583 0.6638 0.9678 0.141*
H24B 1.1100 0.6768 0.9235 0.141*
C25 1.0628 (8) 0.956 (2) 0.9439 (4) 0.123 (4)
H25 1.0063 1.0032 0.9607 0.147*
C26 1.0440 (8) 1.0586 (18) 0.8978 (3) 0.109 (3)
H26A 1.0507 1.2080 0.9012 0.130*
H26B 1.0977 1.0116 0.8801 0.130*
C27 1.1729 (7) 1.030 (3) 0.9702 (3) 0.164 (5)
H27A 1.2271 1.0205 0.9510 0.247*
H27B 1.1917 0.9440 0.9960 0.247*
H27C 1.1668 1.1718 0.9795 0.247*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.146 (5) 0.071 (4) 0.068 (4) −0.012 (4) 0.005 (3) −0.003 (4)
O2 0.076 (4) 0.156 (7) 0.117 (4) 0.044 (4) 0.003 (3) −0.043 (5)
O3 0.081 (4) 0.082 (4) 0.074 (3) 0.026 (3) 0.009 (3) −0.004 (3)
O4 0.105 (5) 0.079 (5) 0.101 (4) 0.006 (4) 0.000 (4) −0.005 (4)
C1 0.064 (5) 0.082 (6) 0.087 (5) −0.003 (5) 0.029 (4) −0.009 (5)
C2 0.092 (6) 0.066 (6) 0.098 (6) −0.015 (5) 0.001 (5) −0.013 (6)
C3 0.098 (7) 0.051 (5) 0.087 (7) −0.001 (5) 0.011 (6) −0.002 (6)
C4 0.092 (6) 0.085 (6) 0.068 (5) −0.020 (6) 0.029 (4) −0.013 (6)
C5 0.066 (5) 0.054 (5) 0.072 (5) −0.007 (4) 0.014 (4) 0.003 (4)
C6 0.074 (6) 0.073 (6) 0.102 (6) −0.015 (4) 0.037 (5) −0.012 (6)
C7 0.054 (4) 0.097 (7) 0.077 (5) −0.005 (5) 0.010 (4) −0.003 (5)
C8 0.049 (4) 0.055 (5) 0.072 (5) 0.000 (4) 0.013 (4) −0.009 (4)
C9 0.062 (4) 0.043 (4) 0.059 (4) −0.008 (4) 0.014 (4) 0.015 (4)
C10 0.059 (5) 0.036 (4) 0.075 (5) 0.006 (3) 0.019 (4) 0.004 (4)
C11 0.065 (5) 0.066 (6) 0.091 (6) −0.001 (4) 0.007 (4) −0.009 (5)
C12 0.068 (6) 0.082 (6) 0.097 (6) 0.007 (5) 0.028 (5) −0.013 (6)
C13 0.053 (4) 0.046 (4) 0.068 (5) 0.004 (4) 0.018 (4) 0.013 (4)
C14 0.065 (5) 0.047 (4) 0.071 (5) 0.008 (4) 0.015 (4) 0.024 (4)
C15 0.063 (5) 0.113 (8) 0.089 (6) −0.002 (5) 0.018 (5) −0.024 (6)
C16 0.101 (7) 0.056 (5) 0.074 (5) 0.021 (5) 0.021 (5) 0.008 (4)
C17 0.071 (5) 0.063 (5) 0.064 (5) 0.005 (5) 0.018 (4) 0.025 (4)
C18 0.110 (6) 0.050 (4) 0.076 (5) 0.004 (5) 0.032 (5) 0.014 (4)
C19 0.107 (6) 0.047 (5) 0.075 (5) 0.001 (5) 0.015 (5) 0.002 (4)
C20 0.086 (6) 0.059 (5) 0.084 (6) 0.007 (5) 0.016 (5) 0.006 (5)
C21 0.104 (7) 0.108 (7) 0.084 (6) 0.019 (6) 0.028 (5) −0.010 (6)
C22 0.102 (7) 0.063 (6) 0.083 (6) 0.023 (6) 0.005 (6) −0.005 (6)
C23 0.086 (6) 0.067 (6) 0.081 (5) 0.004 (5) 0.014 (5) 0.013 (5)
C24 0.127 (9) 0.143 (13) 0.079 (7) 0.019 (8) −0.002 (6) 0.019 (7)
C25 0.105 (8) 0.142 (13) 0.114 (8) 0.007 (8) −0.007 (7) −0.026 (7)
C26 0.132 (9) 0.093 (9) 0.102 (6) 0.002 (7) 0.021 (7) −0.028 (6)
C27 0.129 (9) 0.221 (16) 0.133 (8) −0.024 (11) −0.015 (7) −0.036 (11)

Geometric parameters (Å, °)

O1—C3 1.220 (8) C13—C18 1.530 (10)
O2—C12 1.211 (9) C13—C17 1.579 (11)
O3—C22 1.412 (9) C14—C15 1.547 (9)
O3—C16 1.464 (8) C14—H14 0.9800
O4—C26 1.421 (9) C15—C16 1.523 (10)
O4—C22 1.428 (12) C15—H15A 0.9700
C1—C2 1.509 (10) C15—H15B 0.9700
C1—C10 1.574 (9) C16—C17 1.569 (9)
C1—H1A 0.9700 C16—H16 0.9800
C1—H1B 0.9700 C17—C20 1.509 (10)
C2—C3 1.533 (11) C17—H17 0.9800
C2—H2A 0.9700 C18—H18A 0.9600
C2—H2B 0.9700 C18—H18B 0.9600
C3—C4 1.478 (10) C18—H18C 0.9600
C4—C5 1.488 (10) C19—H19A 0.9600
C4—H4A 0.9700 C19—H19B 0.9600
C4—H4B 0.9700 C19—H19C 0.9600
C5—C6 1.552 (9) C20—C21 1.504 (10)
C5—C10 1.549 (9) C20—C22 1.524 (10)
C5—H5 0.9800 C20—H20 0.9800
C6—C7 1.543 (11) C21—H21A 0.9600
C6—H6A 0.9700 C21—H21B 0.9600
C6—H6B 0.9700 C21—H21C 0.9600
C7—C8 1.508 (9) C22—C23 1.529 (11)
C7—H7A 0.9700 C23—C24 1.546 (12)
C7—H7B 0.9700 C23—H23A 0.9700
C8—C14 1.500 (9) C23—H23B 0.9700
C8—C9 1.511 (8) C24—C25 1.478 (17)
C8—H8 0.9800 C24—H24A 0.9700
C9—C11 1.512 (9) C24—H24B 0.9700
C9—C10 1.521 (9) C25—C26 1.529 (14)
C9—H9 0.9800 C25—C27 1.579 (13)
C10—C19 1.546 (11) C25—H25 0.9800
C11—C12 1.510 (10) C26—H26A 0.9700
C11—H11A 0.9700 C26—H26B 0.9700
C11—H11B 0.9700 C27—H27A 0.9600
C12—C13 1.521 (10) C27—H27B 0.9600
C13—C14 1.533 (9) C27—H27C 0.9600
C22—O3—C16 105.3 (6) C15—C14—H14 105.3
C26—O4—C22 112.1 (7) C16—C15—C14 103.9 (6)
C2—C1—C10 115.0 (6) C16—C15—H15A 111.0
C2—C1—H1A 108.5 C14—C15—H15A 111.0
C10—C1—H1A 108.5 C16—C15—H15B 111.0
C2—C1—H1B 108.5 C14—C15—H15B 111.0
C10—C1—H1B 108.5 H15A—C15—H15B 109.0
H1A—C1—H1B 107.5 O3—C16—C15 109.5 (7)
C1—C2—C3 113.9 (7) O3—C16—C17 103.5 (6)
C1—C2—H2A 108.8 C15—C16—C17 108.3 (6)
C3—C2—H2A 108.8 O3—C16—H16 111.7
C1—C2—H2B 108.8 C15—C16—H16 111.7
C3—C2—H2B 108.8 C17—C16—H16 111.8
H2A—C2—H2B 107.7 C20—C17—C16 104.5 (5)
O1—C3—C4 124.2 (8) C20—C17—C13 121.2 (7)
O1—C3—C2 120.9 (8) C16—C17—C13 100.9 (6)
C4—C3—C2 114.9 (8) C20—C17—H17 109.8
C3—C4—C5 115.2 (7) C16—C17—H17 109.8
C3—C4—H4A 108.5 C13—C17—H17 109.8
C5—C4—H4A 108.5 C13—C18—H18A 109.5
C3—C4—H4B 108.5 C13—C18—H18B 109.5
C5—C4—H4B 108.5 H18A—C18—H18B 109.5
H4A—C4—H4B 107.5 C13—C18—H18C 109.5
C4—C5—C6 111.7 (6) H18A—C18—H18C 109.5
C4—C5—C10 113.4 (6) H18B—C18—H18C 109.5
C6—C5—C10 109.7 (6) C10—C19—H19A 109.5
C4—C5—H5 107.3 C10—C19—H19B 109.5
C6—C5—H5 107.3 H19A—C19—H19B 109.5
C10—C5—H5 107.3 C10—C19—H19C 109.5
C5—C6—C7 111.1 (6) H19A—C19—H19C 109.5
C5—C6—H6A 109.4 H19B—C19—H19C 109.5
C7—C6—H6A 109.4 C21—C20—C17 114.2 (7)
C5—C6—H6B 109.4 C21—C20—C22 116.4 (8)
C7—C6—H6B 109.4 C17—C20—C22 104.6 (6)
H6A—C6—H6B 108.0 C21—C20—H20 107.1
C8—C7—C6 111.8 (7) C17—C20—H20 107.1
C8—C7—H7A 109.3 C22—C20—H20 107.1
C6—C7—H7A 109.3 C20—C21—H21A 109.5
C8—C7—H7B 109.3 C20—C21—H21B 109.5
C6—C7—H7B 109.3 H21A—C21—H21B 109.5
H7A—C7—H7B 107.9 C20—C21—H21C 109.5
C14—C8—C7 112.4 (6) H21A—C21—H21C 109.5
C14—C8—C9 109.6 (6) H21B—C21—H21C 109.5
C7—C8—C9 112.5 (6) O3—C22—O4 109.7 (8)
C14—C8—H8 107.4 O3—C22—C20 105.6 (7)
C7—C8—H8 107.4 O4—C22—C20 105.8 (7)
C9—C8—H8 107.4 O3—C22—C23 109.3 (7)
C8—C9—C11 113.8 (5) O4—C22—C23 110.9 (8)
C8—C9—C10 114.2 (6) C20—C22—C23 115.3 (8)
C11—C9—C10 115.2 (6) C22—C23—C24 109.8 (7)
C8—C9—H9 103.9 C22—C23—H23A 109.7
C11—C9—H9 103.9 C24—C23—H23A 109.7
C10—C9—H9 103.9 C22—C23—H23B 109.7
C9—C10—C5 109.8 (5) C24—C23—H23B 109.7
C9—C10—C19 110.5 (6) H23A—C23—H23B 108.2
C5—C10—C19 112.9 (6) C25—C24—C23 111.1 (9)
C9—C10—C1 111.2 (5) C25—C24—H24A 109.4
C5—C10—C1 104.8 (6) C23—C24—H24A 109.4
C19—C10—C1 107.6 (6) C25—C24—H24B 109.4
C9—C11—C12 114.7 (6) C23—C24—H24B 109.4
C9—C11—H11A 108.6 H24A—C24—H24B 108.0
C12—C11—H11A 108.6 C24—C25—C26 109.1 (10)
C9—C11—H11B 108.6 C24—C25—C27 114.5 (12)
C12—C11—H11B 108.6 C26—C25—C27 109.9 (10)
H11A—C11—H11B 107.6 C24—C25—H25 107.7
O2—C12—C11 121.2 (8) C26—C25—H25 107.7
O2—C12—C13 123.7 (8) C27—C25—H25 107.7
C11—C12—C13 114.9 (7) O4—C26—C25 110.9 (9)
C12—C13—C14 105.4 (5) O4—C26—H26A 109.5
C12—C13—C18 107.3 (6) C25—C26—H26A 109.5
C14—C13—C18 113.6 (6) O4—C26—H26B 109.5
C12—C13—C17 113.9 (6) C25—C26—H26B 109.5
C14—C13—C17 103.4 (6) H26A—C26—H26B 108.0
C18—C13—C17 113.2 (5) C25—C27—H27A 109.5
C8—C14—C13 117.2 (6) C25—C27—H27B 109.5
C8—C14—C15 122.1 (6) H27A—C27—H27B 109.5
C13—C14—C15 100.1 (5) C25—C27—H27C 109.5
C8—C14—H14 105.3 H27A—C27—H27C 109.5
C13—C14—H14 105.3 H27B—C27—H27C 109.5
C10—C1—C2—C3 −47.3 (10) C18—C13—C14—C8 59.6 (8)
C1—C2—C3—O1 −143.0 (9) C17—C13—C14—C8 −177.3 (6)
C1—C2—C3—C4 38.6 (12) C12—C13—C14—C15 168.1 (6)
O1—C3—C4—C5 138.9 (9) C18—C13—C14—C15 −74.7 (7)
C2—C3—C4—C5 −42.7 (11) C17—C13—C14—C15 48.4 (7)
C3—C4—C5—C6 179.8 (7) C8—C14—C15—C16 −173.1 (7)
C3—C4—C5—C10 55.3 (10) C13—C14—C15—C16 −41.8 (8)
C4—C5—C6—C7 176.0 (7) C22—O3—C16—C15 −153.1 (7)
C10—C5—C6—C7 −57.5 (8) C22—O3—C16—C17 −37.9 (8)
C5—C6—C7—C8 54.8 (9) C14—C15—C16—O3 132.2 (7)
C6—C7—C8—C14 −175.6 (6) C14—C15—C16—C17 20.1 (8)
C6—C7—C8—C9 −51.3 (10) O3—C16—C17—C20 19.6 (8)
C14—C8—C9—C11 −46.8 (8) C15—C16—C17—C20 135.7 (8)
C7—C8—C9—C11 −172.5 (7) O3—C16—C17—C13 −106.9 (6)
C14—C8—C9—C10 178.2 (6) C15—C16—C17—C13 9.2 (7)
C7—C8—C9—C10 52.4 (9) C12—C13—C17—C20 96.2 (8)
C8—C9—C10—C5 −54.8 (7) C14—C13—C17—C20 −150.1 (6)
C11—C9—C10—C5 170.8 (6) C18—C13—C17—C20 −26.7 (9)
C8—C9—C10—C19 70.3 (8) C12—C13—C17—C16 −149.3 (6)
C11—C9—C10—C19 −64.1 (8) C14—C13—C17—C16 −35.5 (6)
C8—C9—C10—C1 −170.2 (6) C18—C13—C17—C16 87.8 (7)
C11—C9—C10—C1 55.4 (8) C16—C17—C20—C21 132.4 (7)
C4—C5—C10—C9 −177.9 (6) C13—C17—C20—C21 −114.9 (8)
C6—C5—C10—C9 56.5 (7) C16—C17—C20—C22 4.1 (9)
C4—C5—C10—C19 58.5 (9) C13—C17—C20—C22 116.8 (8)
C6—C5—C10—C19 −67.1 (8) C16—O3—C22—O4 −72.2 (8)
C4—C5—C10—C1 −58.4 (8) C16—O3—C22—C20 41.5 (9)
C6—C5—C10—C1 176.0 (6) C16—O3—C22—C23 166.1 (7)
C2—C1—C10—C9 173.9 (7) C26—O4—C22—O3 −61.1 (9)
C2—C1—C10—C5 55.4 (8) C26—O4—C22—C20 −174.6 (6)
C2—C1—C10—C19 −64.9 (9) C26—O4—C22—C23 59.7 (9)
C8—C9—C11—C12 45.3 (9) C21—C20—C22—O3 −154.6 (8)
C10—C9—C11—C12 179.9 (6) C17—C20—C22—O3 −27.6 (10)
C9—C11—C12—O2 135.2 (9) C21—C20—C22—O4 −38.3 (10)
C9—C11—C12—C13 −49.4 (9) C17—C20—C22—O4 88.7 (9)
O2—C12—C13—C14 −133.0 (9) C21—C20—C22—C23 84.7 (10)
C11—C12—C13—C14 51.8 (9) C17—C20—C22—C23 −148.4 (8)
O2—C12—C13—C18 105.7 (10) O3—C22—C23—C24 67.5 (10)
C11—C12—C13—C18 −69.5 (8) O4—C22—C23—C24 −53.5 (10)
O2—C12—C13—C17 −20.4 (11) C20—C22—C23—C24 −173.8 (8)
C11—C12—C13—C17 164.4 (6) C22—C23—C24—C25 52.5 (12)
C7—C8—C14—C13 −177.9 (6) C23—C24—C25—C26 −54.3 (12)
C9—C8—C14—C13 56.3 (8) C23—C24—C25—C27 −178.0 (7)
C7—C8—C14—C15 −54.1 (9) C22—O4—C26—C25 −62.2 (11)
C9—C8—C14—C15 −180.0 (7) C24—C25—C26—O4 59.1 (12)
C12—C13—C14—C8 −57.6 (8) C27—C25—C26—O4 −174.6 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2465).

References

  1. Chakravarti, C., Lemin, A. J., Martines, G. & Sondheimer, F. (1953). J. Am. Chem. Soc.75, 4885–4887.
  2. Djerassi, C., Chakravarti, R. N. & Mitra, M. N. (1962). Nature (London), 193, 1071–1072. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  6. Gabe, E. J. & White, P. S. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.
  7. Huang, J. W., Jiang, S. H., Tan, C. H. & Zhu, D. Y. (2002). Chin. J. Org. Chem.22, 917–921.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043687/xu2465sup1.cif

e-65-0o232-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043687/xu2465Isup2.hkl

e-65-0o232-Isup2.hkl (131.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES