Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Feb 28;65(Pt 3):o621. doi: 10.1107/S1600536809006527

1-[2-(4-Isobutyl­phen­yl)propano­yl]thiosemicarbazide

Hoong-Kun Fun a,*, Reza Kia a, Samuel Robinson Jebas a, K V Sujith b, B Kalluraya b
PMCID: PMC2968597  PMID: 21582273

Abstract

In the title compound, C14H21N3OS, inter­molecular N—H⋯O inter­actions generate ten-membered rings with R 2 2(10) ring motifs, whereas N—H⋯S inter­actions generate eight, 14- and 16-membered rings with R 2 2(8), R 4 4(14) and R 4 4(16) ring motifs, respectively. There are weak intra­molecular N—H⋯π inter­actions which might influence the conformation of the mol­ecule. The compound has a stereogenic center but the space group is centrosymmetic so the mol­ecule exists as a racemate.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For biomedical applications of non-steroidal anti-inflammatory drugs, see, for example; Kawail et al. (2005); Klasser & Epstein (2005); Kean & Buchanan (2005); Nielsen & Bundgaard (1988); Khan & Akhter (2005); Zhao et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-0o621-scheme1.jpg

Experimental

Crystal data

  • C14H21N3OS

  • M r = 279.40

  • Triclinic, Inline graphic

  • a = 5.5347 (1) Å

  • b = 10.6209 (3) Å

  • c = 13.1435 (3) Å

  • α = 97.935 (1)°

  • β = 98.418 (1)°

  • γ = 96.293 (1)°

  • V = 750.30 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.54 × 0.32 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.894, T max = 0.969

  • 18596 measured reflections

  • 6524 independent reflections

  • 5896 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.096

  • S = 1.05

  • 6524 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006527/dn2428sup1.cif

e-65-0o621-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006527/dn2428Isup2.hkl

e-65-0o621-Isup2.hkl (319.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.857 (15) 2.029 (15) 2.8745 (9) 169.0 (14)
N1—H1N1⋯S1ii 0.886 (12) 2.495 (13) 3.3324 (7) 157.8 (11)
N3—H1N3⋯S1iii 0.842 (15) 2.577 (15) 3.3945 (7) 164.1 (14)
C7—H7A⋯O1ii 1.00 2.44 3.3501 (9) 151
N3—H2N3⋯Cg1 0.850 (16) 2.870 (14) 3.5083 (7) 133.4 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C1–C6 benzene ring.

Acknowledgments

HKF, RK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK and SRJ thank Universiti Sains Malaysia for post-doctoral research fellowships. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are widely used in the treatment of pain and inflammation (Kawail et al., 2005; Klasser & Epstein, 2005).In fact, prolonged use of NSAIDs, for example ibuprofen, has been associated with gastrointestinal complications (Kean & Buchanan, 2005). Therefore, synthetic approaches based upon NSAIDs chemical modification have been undertaken with the aim of improving the NSAID safety profile. The utilization of prodrugs to temporarily mask the acidic group of NSAIDs has been proposed as an approach to reduce or suppress the GI toxicity due to the direct contact effect and also to increase their absorption values (Nielsen & Bundgaard, 1988). Ester prodrugs of ibuprofen have been synthesized with this aim (Khan & Akhter, 2005). Ester prodrugs of ibuprofen were synthesized and found to have anti-inflammatory, analgesic and ulcerogenic activities (Zhao et al., 2006). Due to these reasons, we have synthesized the thiosemicarbazide analogue of ibuprofen and report its crystal structure.

The title compound, I, Fig. 1, comprises a single molecule in the asymmetric unit. Intermolecular N—H···O interactions generate ten-membered rings producing R22(10) ring motifs, whereas N—H···S interactions generate eight, fourteen, sixteen rings producing R22(8), R44(14) and R44(16) ring motifs, respectively. (Fig.2) (Bernstein et al., 1995). There is a weak intramolecular N—H···π interaction (Table 1, Cg1 is the centroid of the C1–C6 benzene ring). The compound has a stereogenic center at C7 but the space group is centrosymmetic so the molecule exists as a racemate.

Experimental

A mixture of 2-[2-(4-isobutylphenyl)propanoyl]hydrazine (0.01 mole), potassium thiocyanate (1.9 g, 0.02 mole), conc. HCl (1 ml) and water (20 ml) was refluxed for 3 h. On cooling the solid obtained was collected by filtration, washed with water and dried. Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (Yield 62%; m.p. 447 K).

Refinement

N-bound hydrogen atoms were located from the difference Fourier map and refined freely; see Table 1. The rest of the hydrogen atoms were positioned geometrically and constrained to refine with the parent atoms with C—H = 0.93–1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small sphere of arbitrary radii. The enantiomer represented has R configuration at C7.

Fig. 2.

Fig. 2.

The crystal packing of (I) showing the graph set motifs. Intermolecular interactions are shown as dashed lines. H atoms not involved in hydrogen bondings have been removed for clarity.

Crystal data

C14H21N3OS Z = 2
Mr = 279.40 F(000) = 300
Triclinic, P1 Dx = 1.237 Mg m3
Hall symbol: -P 1 Melting point: 335 K
a = 5.5347 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6209 (3) Å Cell parameters from 9906 reflections
c = 13.1435 (3) Å θ = 2.3–38.2°
α = 97.935 (1)° µ = 0.21 mm1
β = 98.418 (1)° T = 100 K
γ = 96.293 (1)° Block, colourless
V = 750.30 (3) Å3 0.54 × 0.32 × 0.15 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6524 independent reflections
Radiation source: fine-focus sealed tube 5896 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.894, Tmax = 0.969 k = −16→17
18596 measured reflections l = −20→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1966P] where P = (Fo2 + 2Fc2)/3
6524 reflections (Δ/σ)max = 0.001
191 parameters Δρmax = 0.68 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.30182 (3) 0.806105 (17) 0.407445 (14) 0.01523 (5)
O1 0.65430 (10) 0.57112 (5) 0.62717 (5) 0.01802 (10)
N1 0.87208 (11) 0.64109 (6) 0.50767 (5) 0.01429 (10)
N2 0.66238 (12) 0.66716 (6) 0.44588 (5) 0.01530 (11)
N3 0.74599 (12) 0.87876 (6) 0.52340 (5) 0.01701 (11)
C1 0.95446 (14) 0.81565 (7) 0.78524 (6) 0.01651 (12)
H1A 0.8281 0.7578 0.8019 0.020*
C2 0.96885 (14) 0.94657 (7) 0.82013 (6) 0.01724 (12)
H2A 0.8519 0.9769 0.8604 0.021*
C3 1.15276 (14) 1.03429 (7) 0.79679 (6) 0.01707 (12)
C4 1.32484 (15) 0.98630 (8) 0.73933 (6) 0.01981 (14)
H4A 1.4534 1.0439 0.7239 0.024*
C5 1.31130 (14) 0.85529 (8) 0.70412 (6) 0.01828 (13)
H5A 1.4303 0.8249 0.6650 0.022*
C6 1.12491 (13) 0.76844 (7) 0.72571 (5) 0.01440 (11)
C7 1.09656 (13) 0.62723 (7) 0.67782 (6) 0.01577 (12)
H7A 1.2328 0.6134 0.6369 0.019*
C8 0.85365 (13) 0.60673 (6) 0.60322 (6) 0.01385 (11)
C9 0.58753 (12) 0.78460 (6) 0.46377 (5) 0.01334 (11)
C10 1.16404 (17) 1.17610 (7) 0.83421 (6) 0.02134 (14)
H10A 0.9976 1.2013 0.8173 0.026*
H10B 1.2750 1.2240 0.7960 0.026*
C11 1.25548 (16) 1.21505 (8) 0.95183 (6) 0.02091 (14)
H11A 1.1465 1.1631 0.9893 0.025*
C12 1.5176 (2) 1.18766 (13) 0.98222 (10) 0.0422 (3)
H12A 1.5659 1.2084 1.0580 0.063*
H12B 1.6290 1.2402 0.9485 0.063*
H12C 1.5271 1.0967 0.9598 0.063*
C13 1.2345 (2) 1.35641 (8) 0.98524 (8) 0.02918 (18)
H13A 1.2943 1.3802 1.0601 0.044*
H13B 1.0617 1.3706 0.9700 0.044*
H13C 1.3339 1.4091 0.9470 0.044*
C14 1.09915 (18) 0.53538 (8) 0.75758 (7) 0.02360 (15)
H14A 1.2581 0.5521 0.8044 0.035*
H14B 1.0747 0.4467 0.7214 0.035*
H14C 0.9664 0.5484 0.7982 0.035*
H1N2 0.556 (3) 0.6019 (14) 0.4190 (11) 0.027 (3)*
H1N1 1.013 (2) 0.6698 (13) 0.4891 (10) 0.024 (3)*
H2N3 0.888 (3) 0.8658 (13) 0.5509 (11) 0.029 (3)*
H1N3 0.703 (3) 0.9524 (14) 0.5348 (11) 0.027 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01232 (8) 0.01386 (8) 0.01930 (9) 0.00173 (5) 0.00039 (6) 0.00418 (6)
O1 0.0155 (2) 0.0151 (2) 0.0225 (3) −0.00111 (18) 0.00474 (19) 0.00054 (19)
N1 0.0111 (2) 0.0143 (2) 0.0172 (2) 0.00244 (18) 0.00100 (19) 0.00253 (19)
N2 0.0134 (2) 0.0117 (2) 0.0190 (3) 0.00211 (19) −0.0017 (2) 0.00032 (19)
N3 0.0137 (2) 0.0116 (2) 0.0239 (3) 0.00168 (19) −0.0009 (2) 0.0003 (2)
C1 0.0146 (3) 0.0140 (3) 0.0202 (3) 0.0002 (2) 0.0040 (2) 0.0003 (2)
C2 0.0164 (3) 0.0145 (3) 0.0197 (3) 0.0017 (2) 0.0028 (2) −0.0006 (2)
C3 0.0196 (3) 0.0145 (3) 0.0151 (3) −0.0006 (2) −0.0012 (2) 0.0020 (2)
C4 0.0206 (3) 0.0196 (3) 0.0175 (3) −0.0040 (3) 0.0034 (2) 0.0018 (2)
C5 0.0153 (3) 0.0213 (3) 0.0169 (3) −0.0004 (2) 0.0033 (2) −0.0002 (2)
C6 0.0127 (3) 0.0145 (3) 0.0149 (3) 0.0020 (2) 0.0002 (2) 0.0005 (2)
C7 0.0147 (3) 0.0148 (3) 0.0173 (3) 0.0043 (2) 0.0008 (2) 0.0007 (2)
C8 0.0141 (3) 0.0098 (2) 0.0168 (3) 0.0020 (2) 0.0019 (2) −0.0004 (2)
C9 0.0128 (3) 0.0121 (2) 0.0152 (3) 0.0012 (2) 0.0025 (2) 0.0026 (2)
C10 0.0288 (4) 0.0131 (3) 0.0194 (3) −0.0001 (3) −0.0021 (3) 0.0019 (2)
C11 0.0263 (4) 0.0156 (3) 0.0185 (3) −0.0009 (3) 0.0011 (3) 0.0004 (2)
C12 0.0356 (5) 0.0422 (6) 0.0389 (6) 0.0109 (5) −0.0156 (4) −0.0103 (5)
C13 0.0385 (5) 0.0165 (3) 0.0286 (4) −0.0021 (3) 0.0034 (4) −0.0032 (3)
C14 0.0315 (4) 0.0181 (3) 0.0212 (3) 0.0078 (3) 0.0000 (3) 0.0044 (3)

Geometric parameters (Å, °)

S1—C9 1.6982 (7) C5—H5A 0.9500
O1—C8 1.2259 (9) C6—C7 1.5261 (10)
N1—C8 1.3699 (10) C7—C8 1.5190 (10)
N1—N2 1.3927 (9) C7—C14 1.5270 (11)
N1—H1N1 0.884 (14) C7—H7A 1.0000
N2—C9 1.3578 (9) C10—C11 1.5381 (12)
N2—H1N2 0.855 (15) C10—H10A 0.9900
N3—C9 1.3318 (9) C10—H10B 0.9900
N3—H2N3 0.851 (14) C11—C12 1.5178 (14)
N3—H1N3 0.843 (14) C11—C13 1.5269 (12)
C1—C2 1.3925 (10) C11—H11A 1.0000
C1—C6 1.4019 (10) C12—H12A 0.9800
C1—H1A 0.9500 C12—H12B 0.9800
C2—C3 1.4002 (11) C12—H12C 0.9800
C2—H2A 0.9500 C13—H13A 0.9800
C3—C4 1.3957 (12) C13—H13B 0.9800
C3—C10 1.5100 (11) C13—H13C 0.9800
C4—C5 1.3947 (11) C14—H14A 0.9800
C4—H4A 0.9500 C14—H14B 0.9800
C5—C6 1.3946 (11) C14—H14C 0.9800
C8—N1—N2 119.30 (6) N1—C8—C7 114.12 (6)
C8—N1—H1N1 123.8 (9) N3—C9—N2 117.81 (6)
N2—N1—H1N1 114.5 (8) N3—C9—S1 123.05 (5)
C9—N2—N1 119.39 (6) N2—C9—S1 119.12 (5)
C9—N2—H1N2 119.6 (9) C3—C10—C11 113.56 (6)
N1—N2—H1N2 115.4 (9) C3—C10—H10A 108.9
C9—N3—H2N3 121.5 (10) C11—C10—H10A 108.9
C9—N3—H1N3 118.9 (10) C3—C10—H10B 108.9
H2N3—N3—H1N3 119.6 (13) C11—C10—H10B 108.9
C2—C1—C6 120.56 (7) H10A—C10—H10B 107.7
C2—C1—H1A 119.7 C12—C11—C13 110.83 (8)
C6—C1—H1A 119.7 C12—C11—C10 111.70 (8)
C1—C2—C3 121.12 (7) C13—C11—C10 110.21 (7)
C1—C2—H2A 119.4 C12—C11—H11A 108.0
C3—C2—H2A 119.4 C13—C11—H11A 108.0
C4—C3—C2 117.97 (7) C10—C11—H11A 108.0
C4—C3—C10 121.57 (7) C11—C12—H12A 109.5
C2—C3—C10 120.45 (7) C11—C12—H12B 109.5
C5—C4—C3 121.16 (7) H12A—C12—H12B 109.5
C5—C4—H4A 119.4 C11—C12—H12C 109.5
C3—C4—H4A 119.4 H12A—C12—H12C 109.5
C6—C5—C4 120.71 (7) H12B—C12—H12C 109.5
C6—C5—H5A 119.6 C11—C13—H13A 109.5
C4—C5—H5A 119.6 C11—C13—H13B 109.5
C5—C6—C1 118.45 (7) H13A—C13—H13B 109.5
C5—C6—C7 120.22 (6) C11—C13—H13C 109.5
C1—C6—C7 121.14 (6) H13A—C13—H13C 109.5
C8—C7—C6 104.02 (5) H13B—C13—H13C 109.5
C8—C7—C14 112.04 (7) C7—C14—H14A 109.5
C6—C7—C14 113.91 (6) C7—C14—H14B 109.5
C8—C7—H7A 108.9 H14A—C14—H14B 109.5
C6—C7—H7A 108.9 C7—C14—H14C 109.5
C14—C7—H7A 108.9 H14A—C14—H14C 109.5
O1—C8—N1 121.87 (7) H14B—C14—H14C 109.5
O1—C8—C7 123.83 (7)
C8—N1—N2—C9 81.80 (8) C1—C6—C7—C14 −59.88 (9)
C6—C1—C2—C3 0.06 (12) N2—N1—C8—O1 16.17 (10)
C1—C2—C3—C4 −1.36 (11) N2—N1—C8—C7 −159.10 (6)
C1—C2—C3—C10 179.31 (7) C6—C7—C8—O1 −91.51 (8)
C2—C3—C4—C5 1.40 (12) C14—C7—C8—O1 31.97 (10)
C10—C3—C4—C5 −179.28 (7) C6—C7—C8—N1 83.65 (7)
C3—C4—C5—C6 −0.13 (12) C14—C7—C8—N1 −152.87 (6)
C4—C5—C6—C1 −1.19 (11) N1—N2—C9—N3 14.79 (10)
C4—C5—C6—C7 173.91 (7) N1—N2—C9—S1 −166.70 (5)
C2—C1—C6—C5 1.22 (11) C4—C3—C10—C11 −106.27 (9)
C2—C1—C6—C7 −173.83 (7) C2—C3—C10—C11 73.03 (10)
C5—C6—C7—C8 −112.59 (7) C3—C10—C11—C12 62.58 (11)
C1—C6—C7—C8 62.37 (8) C3—C10—C11—C13 −173.75 (8)
C5—C6—C7—C14 125.16 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.857 (15) 2.029 (15) 2.8745 (9) 169.0 (14)
N1—H1N1···S1ii 0.886 (12) 2.495 (13) 3.3324 (7) 157.8 (11)
N3—H1N3···S1iii 0.842 (15) 2.577 (15) 3.3945 (7) 164.1 (14)
C7—H7A···O1ii 1.00 2.44 3.3501 (9) 151
N3—H2N3···Cg1 0.850 (16) 2.870 (14) 3.5083 (7) 133.4 (12)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2428).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  4. Kawail, S., Kojima, F. & Kusunoki, N. (2005). Allergol. Int.54, 209–215.
  5. Kean, W. F. & Buchanan, W. W. (2005). Inflammopharmacology, 13, 343–370. [DOI] [PubMed]
  6. Khan, M. S. Y. & Akhter, M. (2005). Eur. J. Med. Chem.40, 371–376. [DOI] [PubMed]
  7. Klasser, G. D. & Epstein, J. (2005). J. Can. Dent. Assoc.71, 575–580. [PubMed]
  8. Nielsen, N. M. & Bundgaard, H. (1988). J. Pharm. Sci.77, 285–298. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Zhao, X., Tao, X., Wei, D. & Song, Q. (2006). Eur. J. Med. Chem.41, 1352–1358. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809006527/dn2428sup1.cif

e-65-0o621-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809006527/dn2428Isup2.hkl

e-65-0o621-Isup2.hkl (319.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES