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Abstract
Latent Class Analysis (LCA) is a statistical method used to identify subtypes of related cases using
a set of categorical and/or continuous observed variables. Traditional LCA assumes that observations
are independent. However, multilevel data structures are common in social and behavioral research
and alternative strategies are needed. In this paper, a new methodology, multilevel latent class
analysis (MLCA), is described and an applied example is presented. Latent classes of cigarette
smoking among 10,772 European American females in 9th grade who live in one of 206 rural
communities across the U.S. are considered. A parametric and non-parametric approach for
estimating a MLCA are presented and both individual and contextual predictors of the smoking
typologies are assessed. Both latent class and indicator-specific random effects models are explored.
The best model was comprised of three Level 1 latent smoking classes (heavy smokers, moderate
smokers, non-smokers), two random effects to account for variation in the probability of Level 1
latent class membership across communities, and a random factor for the indicator-specific Level 2
variances. Several covariates at the individual and contextual level were useful in predicting latent
classes of cigarette smoking as well as the individual indicators of the latent class model. This paper
will assist researchers in estimating similar models with their own data.

Latent Class Analysis (LCA) is a statistical method used to identify subtypes of related cases
using a set of categorical and/or continuous observed variables. These subtypes are referred to
as latent classes. The classes are latent in that the subtypes are not directly observed; rather
they are inferred from the multiple observed indicators. This method has been used to answer
many interesting research questions in the behavioral sciences. For example, recent
applications of LCA have assessed alcohol dependence subtypes (Moss, Chen, & Yi, 2007),
peer victimization subtypes (Nylund, Bellmore, Nishina, & Graham, 2007), and gambling
subtypes (Cunningham-Williams & Hong, 2007).

Traditional LCA assumes that observations are independent of one another. However, in many
data structures this assumption is not fulfilled. For example, observations are not independent
when the data structure includes students nested in schools, children nested in families, or
employees nested in companies. These nested data structures require multilevel techniques. In
response to these needs, Vermunt (2003, 2008) and Asparouhov and Muthén (2008) presented
a framework for assessing latent class models with nested data.

Consider a Level 1 latent class solution for cigarette smoking typologies that describes three
types of smokers: heavy smokers, moderate smokers, and non-smokers. If these individuals
were randomly selected from the population, then a traditional, fixed effects latent class
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analysis would be adequate. However, imagine that these individuals were drawn from 100
different communities across the country. Now, the independence assumption is violated and
multilevel latent class analysis is needed.

Multilevel latent class analysis accounts for the nested structure of the data by allowing latent
class intercepts to vary across Level 2 units and thereby examining if and how Level 2 units
influence the Level 1 latent classes. These random intercepts allow the probability of
membership in a particular Level 1 latent class to vary across Level 2 units (e.g., communities).
For example, the probability that an individual will belong to the heavy smoking class is likely
to vary significantly across communities. That is, in some communities there is a large
probability that an individual will belong to the heavy smoker class and in other communities
there is a small probability that an individual will belong to the heavy smoker class.

As described by Vermunt (2008) and Muthén and Asparouhov (2009), this multilevel latent
class model is akin to a mixed-effects regression model for categorical outcomes (Hedeker,
2003, 2008; Wong & Mason, 1985). However, in the case of multilevel latent class analysis,
the dependent variable is latent rather than observed. This latent specification has the added
advantage of modeling the measurement error in the observed indicators of the latent class
model (Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Vermunt, 2008).

A new multilevel latent class model is also considered in this paper. This model allows variation
across Level 2 units for the intercepts (thresholds) of each latent class indicator. In this way,
it is possible to examine how Level 2 units influence the Level 1 indicators that define latent
class membership.

In addition to correctly modeling the nested structure of multilevel data, a multilevel latent
class analysis allows researchers to assess many interesting research questions. First, in this
and any single level latent class analysis, individual (Level 1) covariates may be included in
the model. These covariates predict the probability that an individual will belong to a certain
Level 1 latent class (e.g., a certain smoking typology). However, multilevel latent class analysis
extends the simple assessment of an individual level covariate by permitting the simultaneous
assessment of contextual (Level 2) predictors. This feature allows for the possibility that
individuals with the same Level 1 covariate values may differ in their probability to belong to
a certain latent class (e.g., smoking typology) due to contextual or environmental differences
in their community. For example, holding constant important individual level predictors of
smoking type, an individual living in a community with a high density of poverty may be more
likely to be classified in the heavy smoking latent class than an individual living in a community
with a low density of poverty. Consideration and assessment of contextual level predictors in
the framework of a latent class analysis has implications for many salient research questions
in the social and behavioral sciences.

In this paper, latent classes of cigarette smoking among 10,772 European American adolescent
females in 9th grade who live in one of 206 different rural communities across the contiguous
U.S. is considered. This data structure represents a nested or multilevel design in which
individuals represent Level 1 of the hierarchy and communities represent Level 2. We
demonstrate two techniques for assessing a multilevel latent class analysis, a parametric and a
non-parametric approach, and we also consider both individual and contextual level predictors
of the smoking typologies. Student level predictors include age, attachment to school, school
performance, educational aspirations, parental school expectations, parental involvement in
school, friends' fondness for school, and association with friends who have dropped out of
school. Community level predictors include proportion of minors in the community who live
in poverty, total population of the community, and a binary variable to indicate whether or not
each community is located in one of the tobacco growing states.
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Random effects in a latent class model
A traditional, multilevel analysis for a binary outcome may be estimated using a logistic
regression model. In an unconditional model the probability of the outcome (e.g., being a
smoker vs. a non-smoker) is constant within each Level 2 unit; that is, in each Level 2 unit
there is some probability of being a smoker. A random coefficient model considers the Level
2 units to be drawn from a population of Level 2 units, and the probability of the outcome (i.e.,
being a smoker) across groups is considered to be a random variable (Snijders & Bosker,
2002).

Thus, for an observed binary outcome Cij, where i denotes the individual and j denotes the
Level 2 unit, a logit link function is applied in a two-level logistic regression model. We define
Pij as the probability that Cij = 1, and the log odds of Pij, logit(Pij), as the natural log of Pij /
(1- Pij). The two-level logistic random intercept regression model can then be expressed as:

(1)

(2)

This implies that Pij can be expressed as the logistic function:

(3)

Equations (1) and (2) show that the logit, or log odds, is formulated as a random intercept
model, where β0j is the random intercept. At Level 2, the log odds of the outcome for a particular
Level 2 unit j is defined as the population average of the log odds (γ0 + γ1 wj) plus the random
deviation from this average for the group (U0j). These random deviations are assumed to be
normally distributed. The magnitude of the U0 variance indicates the strength of the influence
of the Level 2 units. That is, a larger variance indicates greater influence of the Level 2 units.
As shown in equations 1 and 2, this model easily incorporates predictors at Level 1 (i.e., xij)
and Level 2 (i.e., wj). For example, one may use variables such as age, gender, or race as Level
1 predictors of the log-odds of smoking and variables such as unemployment rate or poverty
rate of communities as Level 2 predictors of the Level 2 random intercept.

This same framework may be used to consider random effects within a latent class analysis.
Here, an observed Cij is replaced with a latent Cij. First consider the case of two latent classes
(e.g., a smoker latent class and a non-smoker latent class), where individuals (Level 1) are
nested in communities (Level 2). In this case, let Cij represent the latent classes variable. Here,
we assess the log-odds of belonging to the smoker class rather than the non-smoker class and
we allow the log-odds to vary across communities. That is, we specify one random intercept
to capture this variability in the log-odds. For example, in some communities the log-odds of
being a smoker are quite high, in other communities the log-odds of being a smoker are quite
low. We assume that the variance in log-odds is normally distributed across Level 2 units.

If the Level 1 latent class model (i.e., smoking typologies) is best defined by more than two
latent classes, a two-level multinomial logistic regression is used. Here, T-1 random intercepts
are specified, where T equals the number of Level 1 latent classes. For example, consider three,
Level 1 latent classes: heavy smokers, moderate smokers, and non-smokers. If we select non-
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smokers as the reference group, we then need to specify two random intercepts. One represents
the variability in the log-odds of membership in the heavy smoker class across communities
and one represents the variability in the log-odds of membership in the moderate smoker class
across communities. Essentially this allows the probability that an individual will belong to a
particular Level 1 latent class to vary across Level 2 units. This method of specifying a
multilevel latent class analysis represents the parametric approach to multilevel latent class
analysis proposed by Vermunt (2003, 2008) and Asparouhov and Muthén (2008).

As is the case in any latent class model, the latent class variable is defined by multiple observed
indicators. This latent specification has the advantage of modeling the measurement error in
the observed indicators of the latent class model (Bandeen-Roche, Miglioretti, Zeger, &
Rathouz, 1997; Vermunt, 2008) and the indicators together contribute to better capture the true
smoking status of the individual. For simplicity and in line with Vermunt (2003), random
intercepts are typically not included for the latent class indicators, but it is assumed that cluster
effects are sufficiently well represented by the latent class random effects (this assumption will
be relaxed in the next section). Considering the case where the latent class indicators are binary
indicators (Uijk), the model may be written as follows for K indicators:

(4)

where Uijk represents the response of individual i in Level 2 unit j on indicator k and sk is the
specific response for the kth indicator. The latent class variable denoting latent class
membership is defined by Cij, a specific latent class is referred to as t, and the total number of
latent classes by T. The probability of a specific response pattern, P(Uij=s), is the weighted
average of the probabilities conditional on class membership. Using equation (3), the weight,
P(Cij=t),is the probability that person i in Level 2 unit j is a member of latent class t,

(5)

Figure 1 presents an example of a parametric multilevel latent class model where individuals
are nested in communities. In this example there are two within-community (Level 1) latent
classes (C). In the within-community model the single filled circle represents the random mean
for the within-community latent classes (there are T-1 random means, where T equals the
number of Level 1 latent classes). This random mean is referred to as C#1 in the between
communities model. It is a continuous latent variable that varies across communities. In the
parametric approach, the mean(s) from the Level 1 latent class solution is allowed to vary
across communities. In the case of three or more latent classes, the T-1 random means are
correlated with one another (see Figure 2 for a model with 3 latent classes).

As discussed by Vermunt (2003) and Van Horn and colleagues (2008), this model can be
computationally heavy, particularly as Level 1 latent classes increase. Following work by Bock
(1972) and Hedeker (1999), Vermunt (2003) and Asparouhov and Muthén (2008) recommends
the use of a common factor to model the random means and associated covariances. This model
operates under the assumption that the random means are highly correlated, and these random
means may be best represented by a single factor where different random means have different
factor loadings. Specifying zero residual variances, this factor model reduces the
dimensionality of the random means from T-1 to 1. This simplification avoids heavy
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computations due to numerical integration in the maximum-likelihood estimation. Whether or
not this common factor model for the Level 2 random means provides a better fit than the fully
random model described above is an empirical question. If a reasonable fit is obtained, this
specification can drastically reduce computation time. This model is shown in Figure 3 for
three classes (T=3).

Vermunt (2003, 2008) and Asparouhov and Muthén (2008) also proposed a non-parametric
approach to multilevel latent class analysis. In this approach a second latent class model is
specified at Level 2. The T -1 random means from the Level 1 latent class solution are used as
indicators of a second latent class model at Level 2. The different Level 2 latent classes have
different distributions of the random means; that is, the log-odds of membership in a particular
Level 1 latent class. In this approach, the normal distribution that is assumed of the random
means in the parametric approach is replaced with the assumption of a multinomial distribution
(Vermunt, 2008). Essentially, this means that a normal distribution is replaced by a discrete
distribution in the form of a histogram, where non-normality is allowed. As a result, the non-
parametric approach avoids the assumption of normality and is less computationally
demanding (Muthén & Asparouhov, 2008).

The resultant Level 2 latent classes describe differences in the probability of membership in
each Level 1 latent class. The result is a finite number of Level 2 latent classes that capture the
Level 2 variability in the distribution of Level 1 latent class membership probabilities. As such,
Level 2 units that are similar with regard to the distribution of individual level typologies are
grouped together and defined as separate from Level 2 units with a different distribution of
individual level typologies. For example, using the 3-class, Level 1 smoking typology example
(i.e., heavy smokers, moderate smokers, and non-smokers), the Level 2 latent class solution
may be defined by two latent classes: one that represents communities where individuals have
a high probability of being a non-smoker and one that represents communities where
individuals have a high probability of being a heavy or moderate smoker.

In the nonparametric approach, the equation for the Level 1 latent class solution is defined as
follows:

(6)

where CBj represents group j's score on the latent class variable that defines the discrete mixture
distribution and m represents a specific mixture.

Figure 4 presents an example of the non-parametric approach to multilevel latent class analysis.
In the non-parametric approach, the specification of the random means is different than in the
parametric approach. As described by Bijmolt, Paas and Vermunt (2004), these random means
vary across the Level 2, between communities latent classes (labeled CB in the figure). This
variation of Level 1 parameters across Level 2 units is the key feature of any multilevel model,
and in a multilevel latent class analysis it is this variation that defines the between-community
latent classes. Specifically, the Level 2 (i.e., community level) latent classes are defined by the
random means from the Level 1 latent class solution.

Indicator-specific random effects
Although not discussed in the current literature, additional random effects based on the
individual indicators that define the Level 1 latent class model may be specified within the
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framework of Asparouhov and Muthén (2008). Here, the conditional item probabilities of (4)
are extended to have random intercepts (thresholds in Mplus):

(7)

with j varying over Level 2 units, k denoting the indicators, and t denoting the latent class. To
reduce dimensionality between groups (i.e., Level 2) a common factor is defined by the
indicator intercepts τjkt. This factor varies over the Level 2 units labeled j and captures
indicator-specific cluster influence using different factor loadings for different random
intercepts. Specifying zero residual variances, this factor model reduces the dimensionality of
the random intercepts from 6 to 1. This simplification avoids heavy computations due to
numerical integration in the maximum-likelihood estimation. This specification may provide
a better fit to the data and also allows for the assessment of how Level 2 units may influence
the individual indicators that define the Level 1 latent class model. This technique may be used
in both the parametric and non-parametric approaches described above. Figures 5 and 6 present
this model for the parametric approach (without and then with the Level 2 factor on the random
intercepts respectively). Figure 7 presents this approach for the nonparametric approach.

Addition of covariates
Once a multilevel latent class structure is specified, covariates may be introduced at both level
l and Level 2. For the parametric approach, Level 1 covariates predict membership in a certain
Level 1 latent class. These analyses are carried out using multinomial logistic regression. In
addition, Level 2 covariates may be specified to predict the T-1 random means. These analyses
are carried out using linear regression. Level 2 covariates predict a community's probability
that an individual will belong to a certain Level 1 latent class.

For the non-parametric approach, Level 1 latent classes can be predicted by Level 1 and Level
2 covariates (in the same fashion as the parametric approach) and Level 2 latent classes can be
predicted by Level 2 covariates. In this case, a Level 2 covariate (poverty rate of the community)
predicts the probability that a community will belong to a Level 2 latent class defined by a high
probability of heavy smoking. In the non-parametric approach, covariate effects at both levels
are tested using multinomial logistic regression.

Inclusion of a common factor on the Level 1 latent class indicators also permits assessment of
Level 2 covariates on the individual indicators making up the Level 1 latent class model. For
example, a Level 2 covariate may affect membership in a certain Level 1 latent class, but also
an individual indicator of the latent class model.

Methods
Sample

Participants in this study are 10,772 European-American, female, 9th grade students from 206
communities in the contiguous United States who participated in a national study of substance
use in rural communities between 1996 and 2000. We restrict the sample to European-
American 9th grade girls in order to simplify the example; however, assessment of this same
model for girls of other ethnic backgrounds and boys is an important future step. The sample
was constructed to, as closely as possible, yield a stratified, representative, sample of rural
schools in the contiguous U.S. Details about the study design may be found in Stanley, Comello,
Edwards and Marquart (2008).
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Within each community, surveys were administered at a single public high school and the
public feeder junior-high/middle school(s). In the relatively small percentage of cases where
there was more than one high school in the community, the high school determined to be the
most representative socio-demographically of the community and its feeder schools were
chosen.

Procedure
Students were given the Community Drug and Alcohol Survey (CDAS)1. The CDAS is a 99-
item survey that asks a variety of questions related to substance use; school adjustment;
relationships with family and peers; and other individual risk factors for substance use. The
CDAS is a variation of the American Drug and Alcohol Survey (Oetting, Edwards, & Beauvais,
1985) which has been in use since the mid-1980s. Its measures have been through rigorous
reliability and validity analysis (Oetting & Beauvais, 1990-1991), and it is one of the
instruments listed in SAMHSA's Measures and Instruments Resource guide (SAMHSA,
2007). Surveys were given with passive parental consent, and procedures ensured complete
confidentiality. Across schools, the percent of students surveyed ranged from 75-100% of the
total student body.

Measures
Six categorical indicators were used to inform latent class membership. Lifetime incidence of
cigarette smoking (1=yes, 0=no), current smoking status (0=non-smoker, 1=smokes “once in
a while,” and 2=smokes everyday), self-identification as a smoker (0=non-smoker, 1=light
smoker, and 2=moderate to heavy smoker), friend's smoking status (0= most friends don't
smoke, 1=most friends smoke), perception that parents would try to stop them from smoking
(1=yes, 0=no), and perception that regular cigarette smoking is harmful to one's health (1=yes,
0=no).

At Level 1, the student level, several predictors of the Level 1 latent class membership were
considered: age (all students were in 9th grade, but age did significantly vary) and several
school-related protective factors in the individual, family, and peer domain. In the individual
domain, we considered measures of school bonding, performance at school, and academic
aspirations. The school bonding scale included four items, each measured on a 4-point scale,
where a higher score indicated better bonding. Items included measures of fondness for school,
perception that school was fun, fondness for teachers, and perception that teachers liked the
student (coefficient alpha=.84). The school performance scale included two items, each
measured on a 4-point scale ranging from “poor” to “very good”: What kind of grades do you
get?, What kind of student are you? Coefficient alpha=.86. The aspirations scale used two items
to assess students' perceptions that they would graduate from high school and go to college.
Each item was measured on a five-point scale ranging from “No chance that I will,” to “Yes,
I'm sure that I will.” Coefficient alpha=.73. In the family domain, we considered a measure of
the student's perception of their parent's concern about their academic achievement/behavior
at school. The scale included four items: How much would your family care if you…skipped
school, got a bad grade, did not do your homework, quit school. All items were measured on
a four point scale ranging from “not at all” to “a lot.” Coefficient alpha=.73. We also considered
parental involvement in school, measured with two items: Does your family go to school
events?, Does your family go to school meetings (PTA, PTO, back to school nights, etc.)? Both
items were measured on a 4-point scale ranging from “no” to “a lot.” Coefficient alpha=.64.

1The CDAS is the copyrighted property of Rocky Mountain Behavioral Science Institute, Inc. (“RMBSI”), a corporation located in Fort
Collins, Colorado. This research project was granted permission to use and modify the survey through a special agreement between
RMBSI and the Tri-Ethnic Center for Prevention Research. Others wishing to use this survey or any other copyrighted instruments of
RMBSI should contact RMBSI at 1-800-447-6354 or www.rmbsi.com.
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Finally, in the peer domain, we considered a measure of friend's fondness for school and
association with friends who have dropped out of school. Friends fondness for school consisted
of a three-item scale (friend's like school, think school is fun, and like their teachers). All three
items were measured on a 4-point scale ranging from “not at all” to “a lot.” Coefficient alpha=.
87. Association with friends who dropped out of school was a dichotomous item (1=yes, 0=no).

At Level 2, the community level, several predictors were considered, including proportion of
individuals in the community under the age of 17 who were living in poverty at the 2000 census,
the natural log of the total population in the community at the 2000 census, and a binary variable
to indicate if the community resided in a tobacco-growing state (1=yes, 0=no).

All models were estimated in Mplus Version 5.2 (Muthén & Muthén, 1998-2008) using a
maximum likelihood estimator with robust standard errors.

Results
A traditional LCA of the six smoking indicators was first examined. These initial analyses
ignored the clustering of students in communities. Table 1 presents the class solutions for one
to six latent classes (see Model 1). The BIC drastically declines (i.e., improves) from 1 to 3
classes and then begins to level off. Entropy is also best with the 3-class model. Moreover, the
4-class solution separates one of the classes from the 3-class solution into two smaller groups,
but the posterior probabilities indicates that there is substantial misclassification between these
two smaller classes. For example, the posterior probabilities for the 3-class solution are .99, .
93, .98 and the posterior probabilities for the 4-class solution are .79, .93, .98, and .79, with
the first and fourth classes representing the separated classes from the 3-class model. The low
posterior probabilities for these two classes indicate that the model has difficulty distinguishing
between people in the first and fourth class. Most importantly, the substantive interpretation
of the 3-class solution (as described in the next section) is theoretically meaningful, useful, and
parsimonious. As such, we chose the 3-class solution as the best model. The results are
presented in Table 2.

In this 3-class solution, the largest class represents non-smokers and comprises 61.3% of the
sample. While some of these students had smoked a cigarette in their lifetime, none of them
were current smokers or thought of themselves as a smoker. Moreover, they tended to associate
with non-smoking peers, believe that their parents would stop them from smoking, and perceive
that smoking is harmful. The smallest class, described as the heavy smokers, represents 14.6%
of the sample. Girls in this class tended to be regular smokers and viewed themselves as a
heavier smoker. They also tended to associate mostly with other peers who smoked cigarettes
and were less likely than other girls to perceive that their parents would stop them from smoking
and that smoking is harmful. The remaining students were classified as moderate or occasional
cigarette smokers. Comprising 24.1% of the sample, these students were most likely to report
occasional cigarette smoking and viewed themselves as light smokers. Just over half of them
reported that most of their friends smoke. Nearly all believed that their parents would try to
stop them from smoking and about three-quarters believed that smoking is harmful to one's
health.

Building on this 3-class, Level 1 solution, we next specified a model that utilized the parametric
approach to account for the nested structure of the data. The results of the model are presented
in Table 1, Model 2. The BIC improves with the addition of the random effects and the entropy
remains the same as for the fixed effects model. The estimated mean of the random effect (or
random mean) for the heavy smoker class indicates that, for communities at the average random
mean for both heavy smoking and moderate smoking, the average probability that a student
would be classified as a heavy smoker is .13. The variance of the random mean describes the
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variation in the probability that a student will belong to the heavy smoking class across
communities (i.e., in some communities the probability is quite high, in others it is quite low).
This variance is statistically significant, V(U0j)=.61, se=.10, and indicates that communities
did indeed vary significantly in their probability that a female would be a heavy smoker.
Specifically, holding the probability of membership in the moderate smoker class constant, the
probability that a female is a heavy smoker in a community that is 1 standard deviation below
the mean of the random mean is .06 and 1 standard deviation above the mean of the random
mean is .25. Larsen and Merlo (2005) offer an alternative measure to quantify the between
community variation, the Median Odds Ratio (MOR). The MOR is an estimate of the difference
in the probability of the outcome for two randomly chosen people from two different randomly
chosen Level 2 units. The MOR between a student in a community with the higher propensity
to be a heavy smoker and a student with a lower propensity to be a heavy smoker is 2.10. This
is a moderate odds ratio and also indicates substantial community-level variability in the
probability of heavy smoking.

The estimated mean of the random effect (or random mean) for the moderate smoker class
indicates that, for communities at the average random mean for both heavy smoking and
moderate smoking, the average probability that a student would be classified as a moderate
smoker is .26. The variance of this random mean describes the variation in the probability that
a student would be classified as a moderate smoker across communities. This variance is also
statistically significant, V(U0j)=.23, se=.05. Holding the probability of membership in the
heavy smoker class constant, the probability that a female is a moderate smoker in a community
that is 1 standard deviation below the mean of the random mean is .17 and 1 standard deviation
above the mean of the random mean is .38. The MOR is 1.57. This is a small odds ratio, and
indicates that there is some variability across communities in the probability of being a
moderate smoker, but considerable less than for heavy smoking.

We also estimated the neighboring two and four class parametric random effects models. With
the addition of the random effects, the three class model still appears to be the best model. The
BIC shows a large decline from two classes to three, and a much smaller decline from three
classes to four. Moreover, entropy is maximized with three classes and the fourth class
produced in the 4-class solution is not well distinguished from one of the other classes. It should
be noted that more research is needed to understand the performance of BIC in multilevel latent
class models.

We extended this model by including a common factor on the Level 2 random means for the
3-class and 4-class solutions (Model 3). This dramatically reduced computation time and
resulted in a reasonably small increase in BIC. The substantive interpretation of the Level 1
latent class solutions remained the same, including the qualitative typologies defined by each
class and the proportion of individuals in each class.

In the next set of models we utilized the non-parametric approach. In this case, a Level 2 latent
class model was added based on the random means from the Level 1 latent class solution. As
presented in Table 1 (Model 4a), the BIC significantly improves over the fixed effects 3-class
model with the addition of two, Level 2 latent class; however, the BIC is not better than the
BIC for the parametric model. Adding a third class only slightly improves the BIC, but it still
does not show improvement over the parametric approach. A fourth Level 2 class was also
assessed, but this model resulted in a very small number of individuals in the fourth class and
the best log-likelihood failed to replicate. The results of the Level 2 latent class solution for
the CB=2 and CB=3 solutions are presented in Figures 8 and 9.

With two Level 2 latent classes (Figure 8 – Model 4a in Table 1), one Level 2 latent class is
comprised of communities with a relatively large number of non-smokers (i.e., 68% of the
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females are non-smokers). This class represents nearly 73% of the students. The second Level
2 latent class is comprised of communities with more heavy and moderate smokers. This class
represents about 27% of students.

With three Level 2 latent classes (Figure 9 – Model 4b in Table 1), a low use community,
moderate use community, and heavy use community emerges. Most students lived in one of
the moderate use communities (65%), in these communities, about 64% of the females were
non-smokers. Figure 10 demonstrates the nonparametric characterization of the random logit
means. Here, the distribution of the random means is not assumed or represented to be normal,
as is the case in the parametric ML LCA model. Rather, the histogram captures the discrete
distribution of the random means. For example, in Figure 10, the random mean distribution
for the Level 1 heavy smoker class is represented by three bars showing a skewed distribution
across the Level 2 latent classes.

We also estimated the neighboring Level 1 two and four class nonparametric random effects
models. The model with three Level 1 classes appears to be superior, showing a substantial
decline over the model with two Level 1 classes, maintaining a high entropy value, and
providing the most substantively interesting solution.

As a final step, we examined the inclusion of a common Level 2 factor for the individual
indicators making up the Level 1 latent class model. For both the parametric (Models 5 and 6)
and non-parametric approach (Model 7a and 7b), these models represented a marked
improvement in log-likelihood and BIC. For example, when comparing Model 3 (the
parametric model with Level 2 factor for random means) to Model 6 (the parametric model
with Level 2 factor for random means and a factor for the Level 1 latent class indicators) for
the 3-class solution, BIC improves from 58093 to 57827, with a difference of seven parameters.
Similar improvements are observed for the non-parametric approach (Model set 4 compared
to Model set 7). These improvements indicate that communities have a substantial influence
on the Level 1 indicators of individual smoking typologies.

Synthesizing the information from all three multilevel models presented in Table 1, we find
that the parametric approach with the inclusion of a common factor on the latent class indicators
provides the best BIC for these data. Moreover, adding a second common factor on the Level
2 random means greatly decreases computation time and complexity, with minimal increase
in BIC. As such, we selected this 3-class parametric random effects model with a factor on the
latent class indicators and a factor on the Level 2 random means (Model 6) for further
examination. We extended this model by including predictors at Level 1 (i.e., individual
characteristics) and Level 2 (community characteristics). This was accomplished by regressing
latent class membership on the Level 1 predictors via a multinomial logistic regression, and
regressing both the random means and the latent class indicators on the Level 2 predictors via
linear regression. Because of the common factor for the Level 2 random means and the common
factor for the Level 1 latent class indicators, the Level 2 covariate effects must be carefully
specified and interpreted. The sum of the indirect and direct effect of a particular covariate
onto a random intercept C# is calculated as follows using the example of the covariate effect
when comparing Class 2 to Class 3. The Class 2 factor loading λ2 is multiplied by the coefficient
γ for the regression of the common factor on the covariate, and the direct effect γ2 of the
covariate on the random intercept is added – that is, λ2*γ+γ2. For C#1 λ = 1 and since C#1 is
identical to the common factor, the regression coefficient for the common factor regressed on
the covariate is the total effect. Table 3 presents the results of these conditional models.

At Level 1, latent class membership was regressed on the student level predictors in a
multinomial logistic regression. In this model, the non-smoker latent class served as the
reference group. The first set of columns in Table 3 presents the results that compare the
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moderate smokers to the non-smokers. The odds that a girl would be a moderate smoker
(compared to a non-smoker) were significantly higher as her school bonding decreased, school
performance decreased, parent's expectations for academic achievement decreased, parent's
involvement in school decreased, involvement with friend's who were well bonded to school
decreased (although this is a marginally significant effect), and if she associated with friends
who had dropped out of school As is the case in any regression model, the effect of each
covariate represents its unique effect after adjusting for all other variables in the model. School
bonding, school performance, parental expectations for academic achievement, parental
involvement in school, and friend's school bonding were all standardized to a mean of 0 and a
standard deviation of one. Therefore we can interpret the regression coefficients as follows:
for each one standard deviation increase in school bonding, the odds of being a moderate
smoker as compared to a non-smoker decreased by about 13%, with similar interpretations for
all other continuous school-related covariates. Since involvement with friends who dropped
out of school is binary, the odds ratio indicates that the odds of being a moderate smoker as
compared to a non-smoker were about 2.4 times higher if a girl associated with friends who
had dropped out of school.

The second set of columns in Table 3 presents the results that compare the heavy smokers to
the non-smokers. The odds that a girl would be a heavy smoker (compared to a non-smoker)
were significantly higher if she were older, as her school bonding decreased, school
performance decreased, academic aspirations decreased, parent's expectations for academic
achievement decreased, parent's involvement in school decreased, involvement with friend's
who were well bonded to school decreased, and if she associated with friends who had dropped
out of school. While all covariates are robust predictors of heavy smoking, involvement with
friends who had dropped out of school is particularly strong. The odds of being a heavy smoker
were 6.3 times higher if a girl associated with high school dropouts.

At Level 2, the random means from the Level 1 LCA were regressed on three community level
predictors. The non-smoker class was used as the reference group in this model as well. When
comparing moderate smokers to non-smokers, we find that proportion of youth living in
poverty is the only significant predictor. This indicates that, holding all other predictors
constant, as the proportion of young people living in poverty in the community increased, more
girls indicated moderate smoking as compared to no smoking. When comparing heavy smokers
to non-smokers we find that living in a tobacco growing state is the only significant predictor
(p=.05). Communities in a tobacco growing state had more girls who were heavy smokers than
non-smokers. Specifically, the odds of being a heavy smoker is 39% higher if the community
is located in a tobacco growing state.

Finally, several Level 2 covariate effects on the Level 1 latent class indicators were observed.
These results are reported in Table 4. Tobacco growing state had an effect on friend's smoking,
in that the probability of endorsing the friend's smoke indicator was higher if the respondent
lived in a tobacco growing state. Level of poverty in the community affected several of the
latent class indicators. Poverty was significantly associated with all indicators except parental
sanctions against smoking.

Discussion
In this paper we presented an applied example of a multilevel latent class analysis. The example
assessed smoking typologies among rural-dwelling, European-American adolescent girls. At
Level 1, three latent classes emerged: heavy smokers, moderate smokers, and non-smokers.

We accounted for the nesting of students in communities using two models to incorporate
random effects for the latent class variable – a parametric approach and a non-parametric
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approach. In our example the parametric approach provided the best fit to the data. This model
allowed the probability that a girl would belong to the heavy smoker class or the moderate
smoker class to vary across communities. This properly accounted for the fact that in some
communities the probability that a girl was a heavy smoker or a moderate smoker was quite
high, while in other communities these same probabilities were quite low. We also found that
improved fit was obtained by adding a common factor to the Level 1 latent class indicators,
and allowing this common factor to vary across communities. This allowed for estimation of
cluster level influences. Finally, by adding a second common factor on the Level 2 random
means, we were able to achieve a model that was vastly easier to estimate from a computation
perspective. This model resulted in only a slightly higher BIC and the substantive interpretation
remained the same.

We extended the parametric random effects unconditional model to examine the effect of
several Level 1 and Level 2 predictors. At Level 1, the results indicate that smoking typologies
may be predicted by age, level of school bonding, school performance, academic aspirations,
parental expectations for academic achievement, parental involvement in school, friends'
school bonding, and association with friends who dropped out of school. At Level 2, the results
indicate that communities with more minors living in poverty had more adolescent girls who
were moderate smokers and communities located in a tobacco growing state had more
adolescent girls who were heavy smokers.

Over the past several decades many substantively interesting questions in the social and
behavioral sciences have been addressed using latent class analysis. This paper describes the
technique by which latent class models may be utilized when data are hierarchical, a commonly
encountered data structure. Multilevel latent class analysis is useful for properly modeling the
nested structure of the data, but also allows researchers to answer interesting substantive
questions about contextual, upper level predictors.

Given the emphasis in social and behavioral research to adopt an ecological systems approach
to understanding human behavior (Bronfenbrenner, 1986), this relatively new method to assess
latent class typologies in contextual studies should allow for the assessment of many important
studies that concern contextual level predictors of individual typologies of behavior. This paper
makes a significant contribution to the literature by presenting the multilevel latent class model
in a manner that is accessible to applied researchers, providing an applied example, and
presenting the syntax to estimate each model.
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Mplus Syntax for Specified Models

3-class fixed effects model (Model 1 in Table 1)
MISSING IS.;

USEVARIABLES = EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM;

CLASSES=C(3);
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CATEGORICAL ARE EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM;

ANALYSIS: TYPE = MIXTURE;

STARTS = 60 30;

PROCESS=8(STARTS);

3-class random effects model – parametric approach (Model 2 in Table 1)
MISSING IS.;

USEVARIABLES = EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM;

CLASSES=C(3);

CATEGORICAL ARE EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM;

CLUSTER=LEAID;

WITHIN=EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM;

ANALYSIS: TYPE = MIXTURE TWOLEVEL;

STARTS = 20 10;

PROCESS=8(STARTS);

MODEL:

%WITHIN%

%OVERALL%

%BETWEEN%

%OVERALL%

C#1; C#2; C#1 WITH C#2;

3-classes at Level 1, 2-classes at Level 2 random effects model – non-
parametric approach (Model 4a in Table 1)

MISSING IS.;

USEVARIABLES = EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM;

CLASSES=CB(2) CW(3);

CATEGORICAL ARE EVSMK SMK30TRI HEAVY FRSMK TOBHARM PARSTOP;

CLUSTER=LEAID;

BETWEEN=CB;

WITHIN=EVSMK SMK30TRI HEAVY FRSMK TOBHARM PARSTOP;

ANALYSIS: TYPE = MIXTURE TWOLEVEL;

STARTS = 20 10;

PROCESS=8(STARTS);

MODEL:

%WITHIN%
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%OVERALL%

%BETWEEN%

%OVERALL%

CW ON CB;

MODEL CW:

%WITHIN%

%CW#1%

[EVSMK$1 SMK30TRI$1 SMK30TRI$2 HEAVY$1 HEAVY$2 FRSMK$1
TOBHARM$1 PARSTOP$1];

%CW#2%

[EVSMK$1 SMK30TRI$1 SMK30TRI$2 HEAVY$1 HEAVY$2 FRSMK$1
TOBHARM$1 PARSTOP$1];

%CW#3%

[EVSMK$1 SMK30TRI$1 SMK30TRI$2 HEAVY$1 HEAVY$2 FRSMK$1
TOBHARM$1 PARSTOP$1];

3-class random effects model, with factor on Level 1 latent class indicators
and factor on Level 2 random intercepts – parametric approach with
covariates

MISSING IS.;

USEVARIABLES = EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM
AGE SCLBOND PERFORM ASPIR PARSCLEX PARSCLIV PEERSCL FRDROP
POPLOG TOBGROW POVLEV;

CLASSES=C(3);

CATEGORICAL ARE EVSMK SMK30TRI HEAVY FRSMK PARSTOP TOBHARM;

CLUSTER=LEAID;

WITHIN=AGE SCLBOND PERFORM ASPIR PARSCLEX PARSCLIV PEERSCL
FRDROP;

BETWEEN=POPLOG TOBGROW POVLEV;

ANALYSIS: TYPE = MIXTURE TWOLEVEL;

STARTS = 20 10;

PROCESS=8(STARTS);

MODEL:

%WITHIN%

%OVERALL%

C#1-C#2 on AGE SCLBOND PERFORM ASPIR PARSCLEX PARSCLIV PEERSCL
FRDROP;

%BETWEEN%
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%OVERALL%

FU BY EVSMK@1;

FU BY SMK30TRI (FSMK30);

FU BY HEAVY (FHEAVY);

FU BY FRSMK (FFRSMK);

FU BY PARSTOP (FPARSTOP);

FU BY TOBHARM (FTOBHRM);

[FU@0];

FC BY C#1 (FC_C1);

FC BY C#2 (FC_C2);

FU WITH FC;

C#2 ON POPLOG (C2_POP);

C#2 ON TOBGROW (C2_GRW);

C#2 ON POVLEV (C2_POV);

FC ON POPLOG (FC_POP);

FC ON TOBGROW (FC_GRW);

FC ON POVLEV (FC_POV);

FU ON POPLOG (FPOPLOG);

FU ON TOBGROW (FTOBGROW);

FU ON POVLEV (FPOVLEV);

%C#1%

[EVSMK$1 SMK30TRI$1 SMK30TRI$2 HEAVY$1 HEAVY$2 FRSMK$1
TOBHARM$1 PARSTOP$1];

%C#2%

[EVSMK$1 SMK30TRI$1 SMK30TRI$2 HEAVY$1 HEAVY$2 FRSMK$1
TOBHARM$1 PARSTOP$1];

%C#3%

[EVSMK$1*1.7 SMK30TRI$1*14 SMK30TRI$2*15 HEAVY$1*7.0 HEAVY$2*15
FRSMK$1*2.3 TOBHARM$1*-3.5 PARSTOP$1*-2.0];

MODEL CONSTRAINT:

NEW(POPEV POP30 POPHV POPFR POPPAR POPHARM

GRWEV GRW30 GRWHV GRWFR GRWPAR GRWHARM

POVEV POV30 POVHV POVFR POVPAR POVHARM

C2POPLOG C2TOBGRW C2POVLEV);

POPEV=FPOPLOG; POP30=FPOPLOG*FSMK30; POPHV=FPOPLOG*FHEAVY;

POPFR=FPOPLOG*FFRSMK; POPPAR=FPOPLOG*FPARSTOP;
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POPHARM=FPOPLOG*FTOBHRM;

GRWEV=FTOBGROW; GRW30=FTOBGROW*FSMK30;
GRWHV=FTOBGROW*FHEAVY;

GRWFR=FTOBGROW*FFRSMK; GRWPAR=FTOBGROW*FPARSTOP;

GRWHARM=FTOBGROW*FTOBHRM;

POVEV=FPOVLEV; POV30=FPOVLEV*FSMK30; POVHV=FPOVLEV*FHEAVY;

POVFR=FPOVLEV*FFRSMK; POVPAR=FPOVLEV*FPARSTOP;

POVHARM=FPOVLEV*FTOBHRM;

C2POPLOG=(FC_POP*FC_C2)+C2_POP;

C2TOBGRW=(FC_GRW*FC_C2)+C2_GRW;

C2POVLEV=(FC_POV*FC_C2)+C2_POV;
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Figure 1.
Multilevel Latent Class Model with Two Level 1 Latent Classes—Parametric Approach
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Figure 2.
Multilevel Latent Class Model with Three Level 1 Latent Classes—Parametric Approach

Henry and Muthén Page 19

Struct Equ Modeling. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Multilevel Latent Class Model with Three Level 1 Latent Classes—Parametric Approach with
Level 2 Factor on Random Latent Class Intercepts
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Figure 4.
Multilevel Latent Class Model with Three Level 1 Latent Classes—Non-Parametric Approach
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Figure 5.
Multilevel Latent Class Model with Three Level 1 Latent Classes—Parametric Approach with
Level 2 Factor on Random Latent Class Indicators
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Figure 6.
Multilevel Latent Class Model with Three Level 1 Latent Classes—Parametric Approach with
Level 2 Factor on Random Latent Class Intercepts and Level 2 Factor on Random Latent Class
Indicators
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Figure 7.
Multilevel Latent Class Model with Three Level 1 Latent Classes—Non-Parametric Approach
with Level 2 Factor on Random Latent Class Indicators
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Figure 8.
Non-Parametric Multilevel Latent Class Solution, C=3, CB=2
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Figure 9.
Non-Parametric Multilevel Latent Class Solution, C=3, CB=3

Henry and Muthén Page 26

Struct Equ Modeling. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
The Discretized, Non-Normal Distribution of the Non-Parametric Approach. The bars
represent the percent of students in the heavy user class in each between communities latent
class from the C=3, CB=3 solution.
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TABLE 2
Latent Class Solution for Three-Class Model (No Level 2 Model)

Indicator

Class 1
14.6%

Heavy Smoker

Class 2
24.1%

Moderate Smoker

Class 3
61.3%

Nonsmoker

Ever smoked a cigarette

 No 0.00 0.00 0.78

 Yes 1.00 1.00 0.22

Current smoking status

 Does not smoke 0.00 0.04 1.00

 Smokes once in a while 0.11 0.94 0.00

 Smokes every day 0.89 0.02 0.00

Self-identification as a smoker

 Nonsmoker 0.03 0.16 1.00

 Light smoker 0.06 0.79 0.00

 Moderate to heavy smoker 0.92 0.05 0.00

Most friends smoke

 No 0.10 0.44 0.83

 Yes 0.90 0.56 0.17

Parents would stop subject from smoking

 No 0.30 0.08 0.04

 Yes 0.70 0.93 0.97

Perceives smoking harms health

 No 0.40 0.23 0.14

 Yes 0.60 0.77 0.86
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