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Abstract
We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a
semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point
fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which
photon motion is assumed to be some form of continuous diffusion process, the present analysis is
based on a continuous-time random walk (CTRW) on a simple cubic lattice, the object being to
estimate the position and lifetime of the fluorophore. Such information can provide information
related to local variations in pH and temperature with potential medical significance. Aspects of the
theory were tested using time-resolved measurements of the fluorescence from small inclusions
inside tissue-like phantoms. The experimental results were found to be in good agreement with
theoretical predictions provided that the fluorophore was not located too close to the planar boundary,
a common problem in many diffusive systems.
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1. Introduction
Fluorescence techniques are increasingly being used to describe biological processes at
molecular and cellular levels. Newly developed fluorophore-conjugated probes can greatly
improve the specificity of optical imaging, potentially making it a tool of choice for many
biomedical applications, in particular for those applied to cancer diagnostics and related animal
models [1,2]. Different data collection modalities have been suggested in the literature to
realize fluorescent imaging starting from the least expensive continuous-wave (CW) schemes
to frequency- and time-domain techniques capable of providing significant amounts of
biomedically useful information.
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A good recent review of fluorescence imaging is given in an article by Ntziachristos together
with an extensive list of references, [3]. Until now, biomedical applications of fluorescence
techniques have mainly been restricted to imaging thin samples or surface imaging because of
the deleterious effects of random scattering of photons in tissues. Such scattering can
significantly increase the observed fluorescence lifetime relative to the intrinsic lifetime of a
single fluorophore. This problem can be partially compensated for by a judicious application
of theoretical analysis based on some variant of transport theory. Several approaches to it have
been discussed in recent papers by Kumar et al, [4,5]. An analytical approach to fluorescence
problems based on random walk theory by Hattery et al [6] has been used to analyze the case
in which the fluorescence lifetimes are quite short. In the present paper we analyze the converse
case which is more consistent with experimental data gathered in our laboratory, as described
below. The model is simplified in that the trajectory of only a single photon, rather than those
of an ensemble of photons, is followed.

There are many approaches to modeling the motion of photons in a turbid medium. Certainly
the most accurate of these requires the application of a rigorous formulation of transport theory.
In practice this requires a considerable investment in numerical analysis as well as a knowledge
of physical parameters not easily estimated experimentally. This is not really practical because
transport theory can furnish results valid only for specific sets of parameters. Due to inherent
difficulties in the practical application of transport theory as a compromise it is generally
replaced by some simpler variant of diffusion theory. An early version that goes one step
beyond the diffusion approximation is that of the lattice random walk in discrete time, [7]. This
was later generalized to a model based on the continuous-time random walk (CTRW)[8].

A discussion of some advantages of the random walk approach is to be found in a review in
[9]. A formulation based on lattice random walk methodology is applied here to problems
raised by fluorescent imaging and several details of the theory are described in the next section.
Alternative approaches have been proposed recently for measuring fluorophore lifetimes,
[10,11]. In [10] the authors used an empirical linear relationship between the fluorophore depth
and time of the maximum fluorescence intensity together with the relationship between the
observed time decay slope and the actual fluorescence to estimate the fluorophore depth and
lifetime, However, the range of applicability of these basic relationships has not been fully
investigated.

This defect will be eliminated in our present formulation. In [11] application of scaling relations
for a given target depth is proposed to extract the intrinsic lifetime from the observed time
decay slope of a deeply embedded fluorophore (the corresponding depth is to be estimated in
advance, using for example, the method of [12], based on the analysis of 2D continuous-wave
fluorescence intensity distributions. In the present paper we analyze a more general case,
deriving an analytical expression for the flux of the time-resolved fluorescence photons from
a target embedded in a semi-infinite turbid media and bounded by an absorbing plane. By fitting
the experimentally obtained curve of the time-resolved flux to this model we are able, in
principle, to reconstruct the position and the lifetime of a fluorophore, which, in our experiment,
was modeled by a fluorescent pellet.

2. Theory
2.1. Specifics of the model

Two optical constants will be used to characterize physical properties of the medium: the

transport-corrected scattering coefficient, , and the absorption coefficient, μa. In the simplest
version of the random walk model, the turbid medium is modeled as a semi-infinite simple
cubic lattice in which the spacing between adjacent sites is taken to be a single transport-
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corrected scattering length,  as derived in [13,14]. The coordinates of a single site
will be denoted by r = (x,y,z), each component of which is taken to be an integer. The ranges
of these component are −∞ < x, y < ∞ and 0 ≤ z < ∞ so that z = 0 defines the plane separating
the medium from the exterior, and the initial position of the photon is taken to be r0 = (0, 0,1).

Let pn(r|r′) be the probability that a random walker, i.e. a photon, originally at r′, is at r at step
n. One defines a CTRW in Laplace transform space by multiplying the propagator in discrete
time by the n'th power of the Laplace transform of the appropriate pausing time density, [15,
16]. The plane z = 0 is assumed to be an absorbing boundary so that pn(r|r′), or the equivalent
transform, is required to vanish on that plane. We will later be interested in the probability that
the photon, or random walker, reaches the exit site Rexit = (X,Y,0) at a dimensionless time τ*

which may be written in factored form as , c being the assumed constant speed of light in
the medium. Another important descriptor of the trajectory in random walk terminology will

be denoted by , which is the probability that the photon arrives at r for the j'th time

at step n having initially been at r′. In this notation  is the probability to move from
r′ to r for the first time in n steps.

In the simplest version of the model treated here, i.e., the single fluorophore model the
fluorophore site is s = (s1, s2, s3). The photon begins moving through the medium at τ = 0, the
course of its motion being described in terms of a CTRW, to be described in more detail shortly.
During its trajectory the photon may or may not be excited before eventually being absorbed
on the plane z = 0. By an excitation event we will mean a change of state at a time τ′ < τ at
which the photon comes into contact with the fluorophore and, with efficiency ε, produces a
change in wavelength. It will be assumed that the occurrence of a single excitation precludes
any further excitation events. Whether such an excitation has occurred can be determined from
reflectance measurements made on the planar interface since the wavelength is changed by the
excitation. A second effect of an excitation event is to introduce an extra time delay into the
overall photon migration.

The random walk in our model will be simplified in that steps will be allowed to nearest
neighbors only. The surface of the plane is taken to be absorbing, which means that when a
photon, or its surrogate random walk, reaches the plane itregisters as a source of intensity and
is immediately removed from the system, the time and exit site noted at the event. These provide
information related to the state of the underlying tissue.

To describe the process more precisely we define two pausing-time densities, ψ1(τ) and
ψT(τ). The definition of a pausing-time density for a CTRW is a probability density for the
amount of time taken between two successive steps of the random walk. The time taken to step
between two adjacent sites, neither of which contains a fluorophore is described by an
exponential pausing-time density, ψ1(τ)= e−τ. When the photon comes into contact with the
fluorophore it is either transformed into an excited state by the fluorophore, in which case the
pausing-time density is either taken to be ψT(τ) = (1/T)e−τ/T, the excitation efficiency being
equal to ε, or it is not, in which case the pausing-time density remains equal to ψ1(τ). No more
than a single excitation is allowed to occur during a single trajectory. After an excitation event
the pausing-time density returns to the original ψ1(τ) under the assumption that the scattering
coefficient remains unchanged. The measureable data from a single photon consists of the time
and position of its arrival at the interface.

The pausing time densities are therefore
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(1)

The first of these governs the times between successive steps in which a) either the photon
moves to one of six adjacent sites, none of which contains the fluorophore, or b) the photon
has interacted with the fluorophore on an earlier step and therefore cannot interact with it again.
In either situation the probability density for the time between successive steps of the random
walk is equal to ψ1(τ) with a mean time equal to 1. Only at the time of an excitation event does
the pausing time density switch to being ψT(τ) for a single step. Since the occurrence of an
excitation slows the process of photon migration the physically interesting range of T is T > 1.
We parenthetically remark that it is also possible to deal with more general choices of pausing-
time densities than the ones in Eq.(1) but our analysis will be restricted to the simplest case
specified above.

2.2. Surface flux
2.2.1. Discrete time—There have been a number of earlier theoretical analyses of
fluorescence-based lifetime imaging techniques at all levels of mathematical sophistication,
e.g., investigations by Patterson and Pogue, [17], and Hebden and Arridge, [18]. We follow
the analysis given in [19] which has most of the results needed for the preliminary derivation
in discrete time except that the delay time at the fluorophore in the earlier works restricted the
delay caused by an excitation event to be an integer number of time steps rather than being
arbitrary as would be required for general estimation purposes. This defect is overcome by the
use of the CTRW analysis based on the two pausing-time densities exemplified by Eq.(1). We
refer the reader to [19] for details of the analysis in the discrete time domain which is the natural
starting point for the analysis.

By way of notation the generating function corresponding to a discrete sequence {hn}, n =
0,1,2,… will be denoted by . The result found in [19] for the generating function
corresponding to the trajectory taking a photon from r0 to s at least once in which an activation
event occurs and then to Rexit was found to be

(2)

In particular, when ε[p̄(ξ;s|s) − 1] ≪ 1, this simplifies to

(3)

The indicated inequality is rarely violated for parameters typical in biological tissues. We
therefore use the simplified representation in Eq.(3) rather than the full Eq.(2) in later
calculations.

2.3. Transition to time dependence
Our ultimate goal is to find the time-dependent behavior of the flux of photons which have
passed through s with at least one activation event and is thereafter absorbed at Rexit at time
τ*. The analysis is based on the time-dependent inverse of the generating function in Eq.(3), a
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function to be denoted by g (τ*; Rexit|s|r0). Observe that in this picture the trajectory taking the
photon from r 0 to Rexit can be decomposed into four parts; the path from r0 to s at which the
excitation occurs, the sojourn at s, a journey made from s to (X, Y, 1) and the final step taking
the photon from (X, Y, 1) to Rexit = (X, Y, 0). Since an activation event is assumed to occur,
the derivation necessarily depends on both of the pausing-time densities appearing in Eq.(1).

In the present analysis the generating functions of the last subsection play an important
intermediate role in translating discrete results to ones in continuous time. A standard technique
for doing this in CTRW methodology is to replace the generating function parameter by the
Laplace transform of the pausing time density. This is modified slightly in the present analysis
because there are now two pausing-time densities in Eq.(1). By way of notation we denote the

Laplace transform of an arbitrary function of τ, g (τ), by , so that ψ ̂1(η) =
1/(1 + η) and ψ ̂T (η) = 1/(1 + ηT).

Out of the n steps taken in the discrete picture an excitaton occurs in a single step but not in
the remaining n – 1 ones. Therefore the Laplace transform of the probability density for the
total time spent during a single trajectory consisting of n steps using the pausing time density
ψ1(τ) and a single one using ψT(τ) is

(4)

The formal expression for the Laplace transform of the propagator which takes the photon from
r0 to Rexit, including a visitto thefluorophore producing an excitation, is

(5)

where the gn (Rexit|s|r0) are the coefficients generated by expanding Eq.(3) in powers of ξ.
Equation (5) can therefore be regarded as a generating function defined in terms of the
parameter e−μa/(1 + η). The efficiency coefficient, ε, plays a secondary role in the calculations
since only the space- and time- dependence of the detected intensity provides potentially useful
data while ε itself is not readily measureable. It is physically obvious that one or the other of
the two parameters, μa or T, will predominate in determining the asymptotic behavior of the
time-dependent g (τ; Rexit|s|r0). Dominance of the absorption or fluorescence lifetime in the
asymptotic behavior of g (τ; Rexit|s|r0) is determined by the product μaT, i.e., if μaT ≤ 1 then
the asymptotic slope of the time dependence of the fluorescence intensity is determined by
absorption (decays as exp(−μaτ)), while in the opposite case the duration of emission
(fluorescence lifetime) overwhelms the effect of internal absorption and the asymptotic slope
decays as exp(−τ/T) as a function of time.

Two generating functions will be needed in the determination of g (τ; Rexit|s|r0). These will be
expressed in terms of Laplace transforms of a function H(τ; u|v) which will appear quite
frequently in the following analysis:

(6)

which can be written in factored form as H(τ; u|v) = Q(τ; u|v)e−μaτ. The vectors u and v are
(u1, u2, u3) and (ν1, ν2, ν3) respectively and the Im(τ/3) are modified Bessel functions of the
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first kind, [20]. A derivation of this formula is provided in the section A of the Supplementary
Material accompanying this paper. A significant property of Q(τ; u|v) is its approximate
behavior as τ → ∞ where it is found that for fixed |u − v|2 it behaves as

(7)

Two generating functions will be needed to derive an approximation to the function ĝ (η;
Rexit|s|r0) follows from Eq.(3) (see section A in the Supplementary Material). These are

(8)

To simplify the calculations we will assume that the time is sufficiently long that the coefficient
(1 + η) can be replaced by unity. It is then possible to express the transform as an infinite series:

(9)

There are two approaches to representing the function g (τ ;Rexit|s|r0); the first in which one
finds the Laplace representations in Eq.(3) with thecomponents specified in Eq.(8) and the
second requires one to find the equivalent convolution form in the time domain that follows
from the transforms. In this work we employ the second approach and return to Eq.(3) to find
an explicit representation of g(τ; Rexit|s|r) in terms of a double integral because that equation,
as written, is a product of transforms. Therefore the Laplace inverse is equivalent to a
convolution in thetime domain. The product in Eq.(3) is equivalent, at long times, in the time
domain to

(10)

A numerical evaluation of the double convolution in this last equation is computationally
demanding due to the long tails of the terms in the integrand so that using that representation
directly for fitting experimental data presents extreme difficulties. However, the expression
can be reduced to a single convolution with a somewhat more complicated integrand. We first
note that Eq. 10 can be written as (see Appendix A)

(11)

where I(τ′) incorporates the integration over τ″, i.e.,

(12)
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An analytic expression can be derived for I(τ) in terms of the variables

(13)

(see Appendix A) given by

(14)

so that Eq.(11) represents g(τ; Rexit|s|r0) as a single convolution integral. The indicated
representation reduces the required amount of computation over that needed when starting
from the double convolution form. It enables parameter estimates to be obtained on the order
of several seconds (more than a 100-fold speed-up over the double convolution form for typical
parameters). An expression for g(τ; Rexit|s|r0) in closed form can be derived when μa = 0.

Finally, the theoretical predictions in Eqs.(11) and (14) do not include the effects of
instrumental noise on the experiment. By this we mean the error in the arrival time of a photon
at the absorbing boundary relative to its theoretically predicted value. This effect will be
quantified in terms of a function, φ(τ), defined as the probability density of the error in the
arrival time of a photons due to system noise. Using Eq.(11) as a basis of a forward model we
incorporate the finite width of instrumental response function (IRF), φ(τ) into the forward
model by an additional convolution. In other words, the expected experimental curve G(τ) is
defined to be the convolution of g(τ; Rexit|s|r0) and φ(τ),

(15)

where * denotes a convolution. The reconstruction algorithm as implemented was based on
curve fitting to the model described in Eq.(15), which we use to analyze experimental data and
directly compare theoretical estimates with experimental data over a wide time range.

3. Results
Before presenting the results of model simulations and the results from a gel-phantom
experiment, it is useful to mention some estimates of the experimental parameters derived
earlier from measurements made in our laboratory. As already mentioned the translation of the

real time, t, to dimensionless time, τ, is achieved by means of the formula . In particular,
fluorescence lifetime in physical units, T ̃, is related to the corresponding dimensionless
parameter T by

(16)

It is well known that in many biological tissues  is on the order of 1 mm−1, and that the
absorption coefficient, μa is likely to be in the range from 0.002 to 0.05 mm−1. Nominal
fluorescence lifetime T for many commercial near-infrared fluorescent dyes (e.g.,
AlexaFluor750 from Invitrogen™ or IRD from LiCor™), is in the range 600ps ≤T ̃≤ 1000 ps.
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Physical coordinates r ̃in the infinite turbid medium are usually related to the dimensionless
coordinates r on the random walk lattice model through the transport-corrected scattering

length [13,14], , as a conversion factor. More generally, the relationship between r̃
and r can be written as where

(17)

de is an offset factor which can be non-zero depending on the type of the boundary conditions
used. It should be noted that the solutions of the photon migration equations for the semi-
infinite medium, e.g. Eqs. 10 and 11, are obtained using the method of images [9], in which
the imaginary sources are added which then together with the real sources satisfy the necessary
boundary conditions. Two of the most popular types of the boundary conditions are so-called
“zero boundary”, requiring zero flux at the z = 0 plane, and “extrapolated boundary” which
requires that the zero flux exists at some plane different from z = 0 plane which is shifted
outward from the scattering medium by some distance dz (hence d(e) = (0,0,dz), in equation
17). For a totally absorbing boundary without refraction index mismatch it is shown [21-23]
that the most accurate description of photon diffusion in a semi-infinite medium is obtained,

if one assumes . In many tissues (and phantoms, used to simulate them) the
refraction index is approximately n ≈ 1.4 (corresponding speed of light c ≈ 0.21 mm/ps).
Corresponding refraction index mismatch between the turbid medium and the air results in

increased value of  (see Table 2 of the paper [22], presenting values of for the wide
range of index mismatches). In the random walk framework such “extended boundary”
approach is equivalent to an assumption of larger depth of the fluorophore, if “zero boundary”-
based equations (that we used in the text and the Appendix A) are applied. Thus, the physical
depth of the fluorophore should be replaced by

(18)

Since our model equations (Eqs. 10,11) are written in dimensionless units, we also write the
expression for the equivalent fluorophore depth (Eq. 18) in the dimensionless random walk
lattice units using the conversion rule in Eq. 17,

(19)

In many biomedical applications the fluorophore depth cannot be directly measured, requiring
the development of specific analytical tools to estimate this parameter from 2-D imaging data
(see, e.g., [10,12]). An alternative approach is to apply curve fitting of experimental time-
resolved data to the theoretical model of fluorescence intensity distribution. To avoid
overestimating of the depth, proper boundary conditions and refractive index mismatch should
be taken into account, using Eq. 19. For medium refraction index of n ≈ 1.4 true dimensionless
fluorophore depth can be obtained from the fitted value, using the relation , or in

physical units . The second major parameter, T, can be easily measured for
isolated fluorophores. However, to extract potential variations in the fluorescence lifetime due
to fluorophore environment (pH, temperature etc), which is considered a promising tool for
medical diagnostics [24], it is important to take into account photon migration effects [4,5].
The influence of the major optical/geometrical parameters on the shape of the proposed forward

Chernomordik et al. Page 8

Opt Commun. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



model is illustrated in Fig. 1, where several curves g(τ; Rexit|s|r0), corresponding to different
values of the fluorophore depth (Fig. 1a) and lifetime (Fig. 1b) are shown. It is evident that the
main effect of changing the depth of the fluorophore, sz, is to shift the peak of g(τ; Rexit|s|r0).
As sz increases the time τmax at which the peak occurs also increases. The main effect of the
parameter T in the range of interest, is to change the slope of the tails in the resulting curves,
i.e., the rate of the exponential decay. It is therefore possible that the two parameters might be
obtained indirectly, without fitting the full model to the data. Note that the convolution with φ
(τ) will change the position of the peak for small sz, without affecting the slope of T. To analyze
our data we assumed that φ(τ) is a Gaussian whose width is specified using the standard
deviation parameter, σIRF. This parameter can be measured or estimated as one of the model
parameters in our model-based reconstruction.

To verify our model we used time-resolved measurements from small fluorescent inclusions
(fluorophores) inside the tissue-like phantoms. Agarose-based gels for these phantoms were
prepared by dissolving 0.8 g agarose (Ultra pure Agarose, GIBCO@Invitrogen, CA, USA) in
36.6 ml phosphate- buffer saline (PBS) (Biosource,Rockville, MD, USA) while boiling and
stirring the solution for 5 minutes. To model scattering properties of the biological tissues, 3.4
ml of Intralipid (Intralipid 20%,Baxter Healthcare Corporation, IL, USA) was gradually added
to the solution while cooling and shaking the sample appropriately. The agarose solution is
spread uniformly in petri dishes to prepare phantoms with different thicknesses [25]. Small
fluorophores were embedded at varying depths into these tissue-like phantoms. The
measurement of the fluorophore lifetime was performed using measurements from the same
fluorophores placed at the surface of the gel. The experimental set-up was described in [25],
where the excitation/emission wavelengths used were 750 and 780 nm, respectively. The

optical properties of the background were  ([11]) and μa = 0.0035 mm−1 (as
determined from an asymptotic slope of time-resolved intensity of backscattered excitation
light, [26]). The measured instrumental response function, φ(τ), to a first approximation can
be considered Gaussian with σIRF = 145 ps, although it is possible also to analyze a model in
which Eq. 15 is convolved directly with a more accurate empirical function φ(τ). We measured
G(τ) on a gel phantom with a fluorophore embedded at different values of sz. The expected
values of other parameters were T = 135 ± 14 ns (corresponding to T = 0.7 ns), and μa = 0.004
± 0.0004 mm−1. The random walk model in Eq.(11) itself does not give a good fit to the data
(circles) for short times of flight, but combined with the proper instrumental response function
it gives an excellent fit (Fig. 2). The estimates of the parameters obtained T ̂ = 129, ŝz = 10.2
are in very good agreement with the expected values (135 and 10.3 in dimensionless units).
Figure 3 shows the result of fitting G(τ; Rexit|s|r0) to the experimental data. The random walk
model yields very good agreement with the experimental data, but deviations from the model
predictions start to appear rapidly as sz decreases (sz = 7.5 mm, Fig. 3c).

Results of curve fitting of the theoretical model to experimental data, obtained for different
fluorophore depths are shown in Figs. 4a, b, where estimated values of the inclusion depth and
fluorescence lifetime are plotted versus measured depth and intrinsic lifetime, respectively.
Discrepancies between the reconstructed lifetimes and the nominal value of 0.7 ns, reported
by the dye manufacturer (Invitrogen), are within 10%. The accuracy of estimates of depths
proved to be better than 12% for s̃z ≥ 9.5 mm. At shallower depths the reconstruction errors
increase and at depths s̃z = 6 and 7.5 mm they reach 29% and 21%, respectively. Two factors
contribute to these larger deviations. One is that we have used a Gaussian IRF, which is only
an approximation to the true IRF, and for narrower intensity distributions, G(τ), corresponding
to smaller fluorophore depth, these deviations can play a major role in the accuracy of
reconstruction. As already mentioned, this limitation can be alleviated by using a more accurate
empirical function φ(τ). The second factor is the limitation of the random walk model (similar
to that for a diffusion approximation) which fails for superficially embedded fluorophores, i.e.,
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at depths less than several scattering lengths, corresponding in our case to a few millimeters
(s̃z < 5 mm).

We have performed similar experiments with a different type of fluorescent pellet (IRD38, Li-
Cor™), embedded at several depths into the agarose-based phantom, described above. This
dye operates in the near infrared spectral range with excitation and emission wavelengths being
778 nm and 806 nm, respectively. The results of reconstruction for IRD38 proved to be similar
to the case of AlexaFluor750: the accuracy of the fluorophore depth estimate is better than 13%
for s̃z ≥ 7.5 mm, while the estimated fluorescence lifetime is within 4% from the average value
of 0.8 ns. For comparison, a value of T ̃ ≈ 0.79 ns has been reported in the literature [27]. Results
of our reconstruction for IRD38 fluorophore are presented in Figs. 4a and 4b along with the
data for AlexaFluor750.

4. Discussion
We have shown that using the CTRW model on a three-dimensional simple cubic lattice
describes experimentally observed curves quite well when the depth of the fluorophore is
greater than 9 mm in our laboratory. We also demonstrated experimentally that the two most
important parameters, the depth of the fluorophore, sz and the fluorophore lifetime, T, can be
estimated with reasonable accuracy, i.e., on the order of 10%, while similar accuracy can be
achieved for sz, provided that sz is sufficiently deep, i.e. at deeper depths of the fluoresence
pellet, but is sensitive to the value of sz. This reconstruction technique is yet to be tested on a
biological tissue sample but it seems reasonable to expect that this would not change the
outcome.

Limitations on the optical parameters of the media for the suggested model are similar to that
of the diffusion approximation, i.e., scattering in the medium is much higher than absorption,

 and pathlengths of the photons, whose time-of-flight intensity distribution is observed,

are much greater than a scattering length . These conditions are usually fulfilled for near
infrared optical imaging of biological tissues, for example, optical mammography [28].

The implementation of the model that we use is not fully analytical but relies on numerical
evaluation of the integral in Eq.(11). With the reduction of the relevant integrals from a double-
convolution form to a single-convolution form, using Eq.(14) the computational demand can
be significantly reduced and a single estimate on a given time-resolved curve can be obtained
in a matter of several seconds using the Python programming language and the associated
scientific libraries for Python (NumPy, SciPy).

Our analysis has been considerably simplified by restricting the form of the random walk to
be nearest-neighbor and isotropic, the form of the pausing-time densities to be negative
exponentials, by considering the effect of a single fluorophore only, and by assuming that the
turbid medium is semi-infinite. These restrictions, however, are not strictly necessary for
obtaining the major results presented in this paper. The major conclusions of our analysis for
time-gated measurements remain valid provided that distances are macroscopic on the scale
of transport-corrected scattering coefficients, that the pausing-time densities have finite first
moments, and that the transition probabilities are isotropic. For example, the assumption of
optically isotropic optical parameters can be dispensed with and the problem analyzed using
techniques similar to those in a study by Dudko et al, [29]. An extension of the analysis to
allow for more than a single fluorophore can be developed following formalism originally
given in [30] and applied to an optical problem in [31]. The present theory can also be
generalized to deal with both transillumination measurements and anisotropic optical
parameters using mathematical techniques developed recently in [32].
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A. Reducing the double convolution to a single convolution
We first rewrite the double convolution in Eq.10 as

(20)

and after substituting τ′ = u – τ″, 0 ≤ u ≤ T we find

(21)

This double-convolution integral can be written as

(22)

where the function I(τ′) includes the integration over τ″. An analytic expression for I(τ′) will
now be derived, thus reducing the double- to a single convolution. We first define functions
Ui(τ,β),

(23)

and their Laplace transform can be written as

(24)

(25)

where Kn(z) is the modified Bessel function of the second kind.

Of particular interest here are the cases l = 5 and l = 7, and their Laplace transforms can be
written
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(26)

(27)

The expression for Q(τ; Rf|Ri) can now be written in terms of Ul (see Eqs. 7 and 23) as

(28)

Using the abbreviations β1 = 3|Rexit – s|2/2 and β2 = 3|s – r0|2/2 the convolution in the expression
for I(τ) is then expressed simply as a product of the two Laplace transforms, U5(η, β1) and
U5(η, β2) (times a constant) which yields

(29)

where  The expression in Eq. 29 can now be written as

(30)

where

(31)

Inverting the expression in Eq. 30 to time domain we have

(32)

which is the analytic expression for I(τ) that we sought.
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Figure 1.
Model predictions for different values of (a) sz = 2, 4, 8, 16, 32, and (b) T = 50, 100, 150, 200,
250 and 300 in dimensionless units.
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Figure 2.
The random walk model G(τ) (solid black line) agrees very well with experimentally observed
data (circles). The model parameters obtained from the fit agree well with the expected values,
Tfit = 129 vs expected T = 135, s̃z = 14 mm vs 14.5 mm, and σIRF = 151 ps vs 145 ps. Parameter
μa was fixed at μa=0.0035.
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Figure 3.
The CTRW model fitted to the observed value of G(τ), with a fluorophore lifetime of T̃=0.7
ns, μa = 0.004 mm −1 and for s̃z=7.5, 9.5, and 10.5 mm We used the experimentally observed
φ(τ) with σIRF = 145 ps.
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Figure 4.
Comparison of the reconstructed (estimated) values vs. experimental setup. Estimates for the
(a) fluorophore lifetime, T, and (b) the depth of the fluorophore, sz vs the experimental value
of sz. In (b) the estimated depth in mm is obtained from the dimensionless value of sz using
Eq. 19.
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