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Abstract
Recent studies demonstrate that most cyanobacteria produce the neurotoxin beta-N-methylamino-L-
alanine (BMAA) and that it can biomagnify in at least one terrestrial food chain. BMAA has been
implicated as a significant environmental risk in the development of neurodegenerative diseases such
as Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS). We
examined several blooms of cyanobacteria in South Florida, and the BMAA content of resident
animals, including species used as human food. A wide range of BMAA concentrations were found,
ranging from below assay detection limits to approximately 7000 μg/g, a concentration associated
with a potential long-term human health hazard.
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1. INTRODUCTION
There is a general consensus that Harmful Algal Blooms (HABs) are increasing worldwide
(Smayda, 1990, Hallegraeff, 1993, Anderson et al., 2002, Glibert et al., 2005). This is primarily
the result of an increasing human population generating increasing nutrient runoff from
fertilizer, animal waste, sewage, and soil erosion (Nixon, 1995; Richardson and Jorgensen,
1996; Moffat, 1998; Heisler et al., 2008; Anderson et al., 2002, 2008). The increased
mobilization of nutrients has led to the eutrophication, first of small water bodies such as ponds,
lakes and rivers (Vollenweider, 1992a); then of estuaries such as Chesapeake Bay (Cooper and
Brush, 1991; Harding and Perry, 1997); and more recently of large seas such as the Black Sea
(Bodeanu, 1992; Mee, 1992; Cociasu et al., 1996), Baltic Sea (Larsson et al., 1985; Nehring,
1992), and Adriatic Sea (Vollenweider et al., 1992b; Justic et al., 1995); and of continental
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shelf areas such as the Mississippi River delta (Turner and Rabalais, 1991, 1994; Justic et al.,
1995).

Blooms of cyanobacteria appear to also be increasing worldwide in response to increased
nutrient inputs (Chorus and Bartram, 1999; Paerl, 2008). Cyanobacteria have the ability to
produce a wide array of secondary metabolites (Moore, 1996; Welker and von Dohren,
2006; Sivonen and Borner, 2008), many of which are noxious or toxic to animals and/or humans
(Carmichael and Falconer, 1993; Chorus and Bartram, 1999; Carmichael, 2001; Carmichael
et al., 2001; Ibelings et al., 2008; Falconer, 2008; Pilotto, 2008; Stewart et al., 2008). Many of
these toxins are dermatoxins, hepatotoxins, or neurotoxins, but only a few species of
cyanobacteria are known to produce each of these toxins. Recently Cox et al. (2005) have
produced laboratory results that suggest that virtually all cyanobacteria species produce the
neurotoxin beta-N-methylamino-L-alanine (BMAA). The data demonstrate a 500-fold
variation in the amount of BMAA produced among the cyanobacteria species examined, but
how much of this variation is genetic and how much is environmental-physiological is not
known at the present time. Metcalf et al. (2008) and Esterling and Downing (2008) have also
presented data suggesting that most cyanobacteria produce BMAA in the environment.

In vitro studies have shown that BMAA is toxic to neurons at concentrations as low as 10-30
nM (Weiss and Choi, 1988; Weiss et al., 1989; Rao et al, 2006; Lobner et al., 2007). BMAA
is structurally similar to glutamate and binds to glutamate receptors (Richter and Mena,
1989; Copani et al., 1990; Smith and Meldrum, 1990; Allen et al, 1995; Mash, 2008). Abnormal
stimulation of these receptors may play a role in neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (Takahashi et
al., 1997). BMAA has also been shown to be neurotoxic in a variety of animal models Spencer
et al, 1987; Karamyan and Speth, 2008).

BMAA, as an amino acid, is water soluble, not lipid soluble, and this has a low octanol-water
partition coefficient (Yunger and Cramer, 1981). It therefore would not be expected to
biomagnify up the food chain (Mackay, 1982; Connolly and Pedersen, 1988; Arnot and Gobar,
2006; Kelly et al., 2007). However, unlike the more moderate bioaccumulation observed with
most water soluble cyanobacteria toxins (Xie et al., 2005; Ibelings and Chorus, 2007; Ibelings
and Havens, 2008; Funari and Testai, 2008), Cox et al. (2003), Banack and Cox (2003), Murch
et al. (2004), and Banack et al. (2006) have demonstrated a 10,000-fold biomagnification of
free BMAA and 50-fold biomagnification of total BMAA in a food chain in Guam from
symbiotic cyanobacteria to cycads to fruit bats (Pteropids, also known as “flying foxes”). Cox
and Sacks (2002) hypothesized that the increased consumption of these fruit bats by one ethnic
group of people in Guam, the Chamorros, in the 1940s led to a 100-fold increase in the
development of Amyotrophic Lateral Sclerosis (ALS)-Parkinsonism dementia complex in the
Chamorros living in Guam. The observation of high concentrations of BMAA in the autopsied
brains of Chamorros who died of these neurodegenerative diseases and the absence of BMAA
in the age-matched non-neurological control brains of Canadians who died of other causes
suggested a possible link between BMAA and neurodegenerative diseases (Murch et al.,
2004). Recently Pablo et al. (2009) have demonstrated high concentrations of BMAA in
Americans who died of Alzheimer’s disease or ALS, but little or no BMAA in the brains of
age-matched non-neurological controls, or in cases of Huntington’s disease, a genetic disorder.
These data suggest that the unusual Guam situation is not unique, and that BMAA may
biomagnify in other food chains, enter the human diet, and potentially trigger
neurodegenerative disease.

Together, these recent studies suggest that BMAA from cyanobacteria could be involved in
neurodegenerative diseases. As BMAA is not lipophilic, it would not be expected to
biomagnify, yet the indirect evidence suggests that it can biomagnify in at least certain
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circumstances. To determine if BMAA is present and can biomagnify in aquatic food chains,
BMAA concentrations were analyzed in animals collected from water bodies in South Florida
(Fig. 1) known to have blooms of cyanobacteria.

2. METHODS
2.1 Sampling methods and sites

Water samples were collected on a roughly monthly basis at numerous stations in Florida Bay
(Fig. 2), Biscayne Bay (Fig. 3), and the Caloosahatchee River (Fig. 4). Sample tissue to be
analyzed for BMAA content were collected from various frozen animals that had been collected
for a variety of other research projects in these water bodies.

2.2 Cyanobacteria abundance
Cyanobacteria abundance in water samples was estimated by measuring concentrations of
phycocyanin. Water samples were filtered through GF/F glass fiber filters and the filters were
frozen at −20°C until extracted. These filters were extracted overnight with a phosphate buffer
(0.05M H2KPO4,0.05M HK2PO4; pH 6.5; with 0.01%(v/v) mercaptoethanol added) at 5°C
and analyzed for phycocyanin with a SPEX Fluorolog-3 spectrofluorometer, using 580 nm
excitation and 640 nm emission. The spectrofluorometer was calibrated using pure
phycocyanin.

2.3 Water flow and nutrients
Water flow and nutrient data were obtained from the hydrometeorological and water quality
databases of the South Florida Water Management District and the Lee County Environmental
Laboratory.

2.4 Extraction and measurement of BMAA
Quantitation of BMAA was performed on frozen, unfixed tissues by a modification of
previously validated methods (Cox et al., 2003; Banack and Cox, 2003). All tissue samples
were analyzed and assayed in duplicate. Briefly, frozen-pulverized liquid nitrogen submerged
(Model# 36903-10, Cole-Parmer, Quebec, Canada) tissues (1:10 w/v) were hydrolyzed
overnight in 6 M HCl (1:10 w/v) at 110°C. Particulate matter was removed in 500 μl aliquots
by ultrafiltration (Ultrafree-MC, Millipore) at 15,800 × g. Two hundred microliters of the
extract was vacuum centrifuged in a speed-vac (Thermo-Savant SC250DDA Speed Vac Plus
with a Savant refrigerator trap RVT 4104). The lyophilized residue was resuspended in 200
μl 0.1 M trichloroacetic acid (TCA) then washed with 100 μl of chloroform for extraction of
any residual lipids. The aqueous layer was then transferred to a fresh tube and the chloroform
layer was discarded. Samples (5 μl) and standards were derivatized with 6-aminoquinolyl-N-
hydrosuccinimidyl carbamate (AQC) using the AccQ-Fluor reagent (Waters Corp, Millford,
MA; WAT052880). BMAA was separated from the protein amino acids by reverse-phase
elution (Waters Nova-Pak C18 column, 3.9 × 300 mm using 140 mM sodium acetate, 5.6 mM
triethylamine, pH 5.7 (mobile phase A), and 58% acetonitrile in water (mobile phase B) at 1
ml per min at 37°C. The elution gradient (30 min) was as follows: time 0 = 75% A; 2 min =
75% A curve 6; 17 min = 63% A curve 7; 18.5 min = 100% B curve 6; 23.5 min = 100% B
curve 6; 25 min = 75% A curve 6; 30 min = 75% A. Samples were run in duplicate followed
by an AQC blank (containing borate buffer and AQC tag) to ensure that there was no carryover
between samples. BMAA was quantified by detection of the AQC fluorescent tag (Waters 2475
Multi λ-Fluorescence Detector) with excitation at 250 nm and emission at 395 nm.
Experimental samples were compared to standard spiked similar matrix negative for
endogenous BMAA, containing commercial (Sigma B-107; >95% purity) or authentic
standards of BMAA (99% purity). The percentage of recovery of BMAA was >94%.
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Identification of a BMAA peak detected by reverse phase HPLC was verified by LC/MS/MS
using product ion mode in a triple quadrupole system. The frozen (unfixed) sample was
hydrolyzed for 18 hours in 6N HCL at 110°C (Fountoulakis et al., 1998) and then dried to
remove HCl in a Thermo-Savant SC250DDA Speed Vac Plus (Waltham, MA). The sample
was reconstituted in dilute HCl (20 mM) and derivatized with AQC, which increased the
molecular weight of the BMAA analyte from 118 to 458. Individual compounds were eluted
from the column with a gradient elution of 140 mM sodium acetate buffer, 5.6 mM
triethylamine, pH 5.7 (mobile phase A) and 52% acetonitrile (mobile phase B) with a flow rate
of 1.0 ml/min. Separation was achieved by liquid chromatography (Thermo model Surveyor
LC, San Jose, CA) using a Thermo Hypersil GOLD 100 × 2.1 mm, 3 μm particle column at
0.28 ml/min using the eluents of 0.1% formic acid (v/v) in water (eluent A) and 0.1% formic
acid in acetonitrile (eluent B) with the following gradient: time 0 = 100% A, 2 min = 100% A,
16 min = 80% A, 20 min = 2% A, 22 min = 2% A, 24 min = 81% B, 26 min = 81% A, 27 min
= 100% A, 31 min = 100% A. Nitrogen gas was supplied to the H-ESI probe (heated
electrospray ionization) with a nebulizing pressure of 25 psi and a vaporizing temperature of
300°C. The mass spectrometer was operated in the positive electrospray ionization (ESI) mode
under the following conditions: nebulizing pressure of 25 psi, vaporizing temperature of 300°
C, capillary temperature set at 280°C, capillary offset of 35, tube lens offset of 94, source
collision energy of 5v. The protonated molecular ion of double derivatized BMAA (m/z 459)
was used as the precursor ion for SRM (single reaction monitoring) analysis. Three transitions
were monitored: 459 to 119 (collision energy of 19v), 459 to 171(collision energy of 32v), 459
to 289 (collision energy of 16v). The ratios of these three product ions were compared to the
ratios of the product ions created by injection of AQC-derivatized pure BMAA standard
(synthesized and then triple crystallized by Peter Nunn, University of Portsmouth, U.K.) into
the triple quadrupole LC/MS/MS under the same conditions.

2.5 Measurement of Glutamate
The effects of BMAA are purported to affect glutamate-associated mechanisms (Rao et al.,
2006; Lobner et al, 2007). To validate the methods used for amino acid hydrolysis/extraction,
we quantified the area ratio of glutamate (rt = 2.47 min) compared to an internal standard (istd)
norleucine (rt = 18.91 min.) using standard curves of the specific matrix taken from various
species. Briefly, increasing amounts (0-250 ng/injection)of glutamate along with one
concentration (50ng/injection) of istd were spiked into 0.1 mg tissue/injection and analyzed
by HPLC as per methods similarly described for BMAA.

3. RESULTS
3.1 BMAA Extraction-Quantitation Method Validation

Using HPLC we were able to detect significant concentrations of BMAA in various marine
samples taken from various locations of the South Florida marine ecosystems (see Fig. 5 for
a representative chromatogram). Initial assays using BMAA-free matrix spiked with increasing
amounts of L-BMAA were conducted to determine if there were any differences in the lower
limits of detection (LOD) and lower limits of quantitation (LOQ) for the extraction/
instrumental method on the various matrices assayed. Results from these assays demonstrated
an increasing threshold for detection in matrix dependent on origin (buffer<mollusc<teleost
fish<<crustacean), and a recovery range of 94-98% (Fig. 6). The average linear dynamic range
(1-250 ng) for BMAA spiked standard curves in matrix (Grey snapper, Lutjanus griseus,
muscle) gave an R2 value of 0.998 (P < 0.0001). The presence of BMAA from marine samples
found to have positive HPLC results were confirmed using triple quadrupole LC/MS/MS (Fig.
7). The application of triple quadrupole LC/MS/MS has four checks to verify the identity of
the BMAA peak: (i) a specific single parent mass [molecular weight (MW): 459] is selected
in the first quadrupole with all other masses excluded from the second quadrupole; (ii) the
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column retention time of the peak is unique; (iii) collision-induced dissociation of product ions
in the second quadrupole must be all detected in the third quadrupole; (iv) the product ion ratios
must match repetitive runs of the standard injected at a similar concentration within 5%
variation. All four of these LC/MS/MS checks were verified with ratios of the product ions
(MW: 289, 171, 119) of BMAA matching the daughter ion ratios of the derivatized standard
(Fig. 7).

3.2 Measurement of Glutamate
HPLC analysis of glutamate was conducted on select marine samples (mollusc (1 sample),
crustacean (2 samples), and teleost fish (2 samples)) as an internal control and reference value
for comparison to BMAA concentrations. To determine the significance of the BMAA
concentrations, averages of glutamate and BMAA concentrations were converted to mole units
and the calculated ratios gave a range of 18-45 for the measured glutamate to BMAA
concentrations (Table 1). Glutamate measured in these samples were in good agreement with
previous estimates (Dunn et al., 1949), providing validation for the amino acid extraction
methods described here.

3.3 Florida Bay
A large bloom of cyanobacteria developed in north central Florida Bay in the 1980s, which
has persisted ever since (Brand, 2002). Although there are no quantitative data before 1989,
many fishers and other boaters who were frequently in Florida Bay were quoted by DeMaria
(1996) as observing algal blooms and water “discoloration” beginning in 1981 and increasing
thereafter. They stated “In 1981, the water got dirtier, the blooms grew, and the seagrass started
dying.” and “From 1981 to 1986, the decline [of the bay] was gradual. In 1987, the bay started
to collapse quickly.”

The bloom is located primarily in northcentral Florida Bay and is primarily cyanobacteria (Fig.
8). It occurs in an area where high phosphorus in the west (Fig. 9) mixes with high nitrogen in
the east (Fig. 10). It has been hypothesized that the phosphorus in western Florida Bay is from
natural phosphorite deposits tens of meters below being transported by geothermal circulation
to the surface (Top et al., 2001;Brand, 2002). Phosphorus is low in eastern Florida Bay because
there are no phosphorite deposits in that area and the calcium carbonate that is the primary
mineral of the Florida peninsula chemically scavenges phosphate from seawater (DeKanel and
Morse, 1978;Kitano et al., 1978). This occurs in both groundwater flowing through limestone
as well as shallow surface water in which calcareous sediments are resuspended. The nitrogen
in eastern Florida Bay, on the other hand, is from the decomposition of nitrogen-rich organic
peat in the northern Everglades as a result of the drainage of the Everglades and conversion
into agricultural fields (now called the Everglades Agricultural Area), primarily sugar cane
(Brand, 2002). Figure 11 shows the high nitrogen and phosphorus in this water in the north
and the gradual decline to the south. Plants scavenge phosphorus from the water as it flows to
the south through the Everglades, but they cannot scavenge all of the nitrogen because of the
initial high N:P ratio (Brand, 2002). Diversion of this nitrogen-rich water in the 1980s into
eastern Florida Bay (Fig. 12) led to the blooms of cyanobacteria developing in northcentral
Florida Bay where nitrogen from the east meets phosphorus from the west (Brand, 2002).
Because of the highly seasonal nature of the rainfall and runoff in South Florida, cyanobacteria
abundance is low during the dry season and high during the wet season (Fig. 13). Florida Bay
is a major nursery area for shrimp, and critical to the Florida shrimping industry. Samples of
pink shrimp in Florida Bay have high concentrations of BMAA (Table 2). Grey snapper
collected south of the bloom have either no or only moderate concentrations of BMAA (Table
1).
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3.4 South Biscayne Bay-Eastern Florida Bay
South Biscayne Bay-Eastern Florida Bay normally has extremely low concentrations of
phosphorus (Fig. 14A) because of calcium carbonate scavenging (Brand, 2002), and low
abundance of cyanobacteria (Fig. 14C). In the summer of 2005, large areas of mangroves in
this area were destroyed in a road widening project (Fig. 3), and the organic material was buried
in the surrounding sediments of South Biscayne Bay-Eastern Florida Bay. The subsequent
anaerobic conditions and acidification of the calcium carbonate sediments released large
amounts of phosphorus (Figs. 14B, 15). As phosphorus was the limiting nutrient in this area,
the additional phosphorus led to large blooms of cyanobacteria (Figs. 14D, 15) that persisted
for approximately two years. Samples of fish and crustaceans collected just north of this area
in the spring and summer of 2007 (Fig. 3) as the bloom was on the decline show some species
with no BMAA and others with very high concentrations (Table 3).

3.5 Caloosahatchee River
Some of the nutrient rich water from the Everglades Agricultural Area is pumped into Lake
Okeechobee and then to the west down the Caloosahatchee River (Fig. 1, Brand, 2002).
Because of the phosphorite deposits, waters along the western side of the Florida peninsula
tend to be rich in phosphorus and thus nitrogen limited (Brand, 2002). High concentrations of
nitrogen flow out of Lake Okeechobee and down the Caloosahatchee River (Fig. 16) and large
blooms of cyanobacteria develop (Fig. 17). Moderate amounts of BMAA were found in
molluscs and high concentrations were found in fish in the river (Table 4).

4. DISCUSSION
Because the animal samples were collected for other research projects unrelated to our research
on cyanobacteria blooms and the BMAA hypothesis, the spatial and temporal patterns of animal
samples are not optimal for examining the hypothesized link between cyanobacteria blooms
and BMAA accumulation in animals. Nevertheless, these initial results indicate that high
concentrations of BMAA can accumulate in some aquatic animals in areas of cyanobacteria
blooms. Not enough samples have been analyzed to discern any clear patterns, but some
possibilities do appear.

In south Biscayne Bay, there was large variation in the BMAA concentrations between
individuals of a species in pink shrimp, blue crabs, mojarra, band tail puffers, least puffers, and
bluestriped grunts (Table 3). The replicability of our methods suggest that these differences
are real and not the result of methodological problems. The cause of this variation is unknown
but several possibilities exist. As these animals were collected from an area north of the bloom,
depending on their migration patterns, some animals may have spent considerable time in the
bloom (or the organisms in their diet did so) while others may have spent little or no time in
the bloom. While our research focussed on planktonic cyanobacteria, benthic cyanobacteria
and cyanobacteria epiphytic on seagrass and macroalgal blades are also present. In these
shallow waters, microalgal abundance per square meter is typically around 20 times higher on
the sediment surface than in the water column above (Brand and Suzuki, 1999). Microhabitat
differences in the relative abundance of these different groups of cyanobacteria and their
BMAA content might account for the differences observed. Genetic differences between
individuals in their ability to accumulate BMAA are also a possibility (discussed below), just
as there are genetic differences among humans in their susceptibility to develop
neurodegenerative diseases. Whatever the cause of this variation, it must be kept in mind when
examining data on only a few individuals of a species.

Many crustaceans appear to have high concentrations of BMAA. Pink shrimp in Florida Bay
(Table 2) have high concentrations of BMAA, comparable to those found in the fruit bats of
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Guam (3556 μg/g; Cox et al., 2003). Pink shrimp and blue crabs in south Biscayne Bay have
a wide range of concentrations (Table 3). All three species of fish from the Caloosahatchee
River (Table 4) have high concentrations of BMAA similar to that of the fruit bats of Guam.
The filter feeding molluscs in the Caloosahatchee River and estuary have only moderate
amounts of BMAA (Table 4). Grey snapper in Florida Bay south of its cyanobacteria bloom
have moderate amounts of BMAA (Table 2), while grey snapper in Biscayne Bay north of its
cyanobacteria bloom have none (Table 3).

In south Biscayne Bay, a wide range of BMAA concentrations was observed among the 17
species examined. A perusal of the data does not reveal a classical biomagnification pattern,
as top carnivores such as barracuda and grey snapper show no BMAA, while species near the
bottom of the food chain, such as pink shrimp, pufferfish, and sea bream have relatively high
concentrations. A pattern that does appear, however, is a tendency for higher concentrations
of BMAA in species that feed on the benthos, and lower concentrations in species that feed on
the plankton. An exception to this pattern is pinfish, which primarily feed on benthic vegetation,
but had no BMAA. No BMAA was found in anchovies, silversides, needlefish, and barracuda
that feed in the water column, while high concentrations were found in pink shrimp, blue crabs,
pufferfish, and cowfish that feed on the bottom. This could be an indication that benthic
cyanobacteria produce more BMAA than planktonic species, but we have no direct information
on this. A perusal of the data of Cox et al. (2005) does suggest that such a pattern may exist.

At the present time, we do not know why cyanobacteria produce BMAA and thus, what
environmental patterns may exist. Similarly, we do not know the mechanism of
bioaccumulation of this amino acid. Because BMAA is water soluble, the standard mechanism
for biomagnification of lipophilic compounds is not plausible. One possibility is differential
uptake and excretion. Because BMAA is structurally similar to glutamate in the presence of
bicarbonate as a carbamate (Weiss et al., 1988), neutral acid uptake enzymes in the
gastrointestinal tract and elsewhere may take up BMAA from dietary sources, but enzymes
involved in the turnover, degradation, and excretion of amino acids may not be able to recognize
BMAA and eliminate it. A differential in uptake vs. excretion enzymes may be one possible
mechanism for the large differences observed between individuals and species in this study.

Ultimately there are many sources of variation that could account for the results shown here.
The laboratory data of Cox et al. (2005) have shown a 500-fold variation in the amount of
BMAA produced by cyanobacteria. Much of this is likely the result of genetic differences
between species, but some is likely due to physiological differences in response to
environmental differences. As a result, one would expect microhabitat variation among benthic
and epiphytic cyanobacteria, and differences between planktonic and benthic communities. As
BMAA propagates up the food chain, differential uptake and excretion will cause varying
amounts of biomagnification. The age of animals could be important, with older animals
accumulating more BMAA. The time course of BMAA exposure over the lifetime of an animal
could be important, depending on the ability of an animal to slowly or quickly excrete BMAA
after short term exposure. While it is clear that most cyanobacteria produce BMAA, we cannot,
at this time, be sure that there are no other sources of BMAA such as heterotrophic bacteria.

Based upon this study and other data, it appears that the situation in Guam is not unique, and
that high concentrations of BMAA do occur in parts of aquatic food webs. To enhance the
chances of finding BMAA in aquatic animals, this study focussed on areas of unnatural blooms
of cyanobacteria caused by nutrient enrichment by human activities. Cyanobacteria are of
course a significant part of natural aquatic habitats unaffected by human activities.
Cyanobacteria are approximately 50% of the phytoplankton community of the open ocean
covering over half of the earth (Li et al., 1983; Itturiaga and Mitchell, 1986). It is plausible that
humans have been exposed to some level of BMAA throughout their evolutionary history. The
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increase in cyanobacteria blooms as a result of human activities is probably increasing this
exposure, but by how much is not yet known. Our research is now expanding from this initial
exploratory analysis to determine the distribution of BMAA in aquatic food webs and seafood
in both natural ecosystems and eutrophic ecosystems.

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and
Amyotrophic Lateral Sclerosis (ALS) are also increasing (Kokmen, et al., 1993; Gauthier,
1997; Chio, 2005). Increased longevity alone may not account for all of this increase.
Heritability of these diseases is low, accounting for less that 10% of cases. While certain genetic
factors are known to influence susceptibility to these diseases, some unknown environmental
factors probably play a major role. BMAA may be a significant environmental factor.
Cyanobacteria and the presence of BMAA in portions of aquatic food webs used as human
food could be a significant human health hazard.

5. CONCLUSIONS
These data on BMAA concentrations in animals in South Florida waters indicate that the
situation in Guam is not unique. These data further suggest that BMAA could be found in high
concentrations in aquatic animals in many areas of the world where cyanobacteria blooms
occur. This possibility includes not only natural water bodies, but also nutrient rich habitats
such as aquaculture ponds and flooded rice fields that have high concentrations of
cyanobacteria (Paerl and Tucker, 1995; Massout, 1999; Kankaanpaa et al., 2005; Zimba,
2008). Agricultural soils can also have high concentrations of cyanobacteria (Ramsey and Ball,
1983; Shimmel and Darley, 1985; Whitton, 2000).

As an increasing human population on the earth increases the flux of sewage, agricultural
fertilizer, animal wastes, and eroded soil into various aquatic habitats, it is predicted that blooms
of cyanobacteria will increase. It is predicted that human exposure to cyanobacteria and BMAA
will increase, leading to a possible increased incidence of neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS).
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Figure 1.
Map of major water bodies in South Florida. Lines of parallel bars indicate general watershed
boundaries of the Everglades.

Brand et al. Page 13

Harmful Algae. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Location of sampling stations in Florida Bay. Dots are water samples. Stars are water samples
used in Figure 13. Letters are where animals were collected.
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Figure 3.
Location of sampling stations in eastern Florida Bay-south Biscayne Bay. Dots are water
samples. Stars are water samples used in Figure 15. Letters are where animals were collected.
Parallel bars show area where mangrove trees were destroyed.
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Figure 4.
Location of sampling stations along the Caloosahatchee River. Circles are water sampling
stations. Bars are dams on the river.
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Figure 5.
HPLC identification of beta-N-methylamino-L-alanine (L-BMAA) extracted from blue crab
(Callinectes sapidus). A) Representative chromatogram of 6-aminoquinolyl-N-
hydroxysuccinimidyl carbamate (AQC) tagged amino acids in protein bound extract of muscle
from a blue crab (blue trace) taken from Biscayne Bay. Peaks indicated by numbers are the
amino acids closest to BMAA: L-tyrosine (1), L-valine (2), and L-methionine(3). The sample
chromatographic peak of ACQ-BMAA (4) was confirmed by comparison (black trace, inset)
to a co-run identical sample spiked with a known quantity of L-BMAA (100 ng). B) Matrix
spiked with L-BMAA and 2,4 DAB synthetic standards. Although DAB is a structural isomer
of BMAA, these results demonstrate two distinct chromatographic peaks separated by a later
retention time for AQC-tagged DAB.
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Figure 6.
Calibration of the HPLC assay of beta-N-methylamino-L-alanine (BMAA) A. Hydrolyzed
protein matrix from a control (BMAA-negative) specimen of Grey snapper (Lutjanus
griseus) was spiked with increasing amounts of L-BMAA and compared to spiked norleucine
(istd). Neutralized samples derivatized with AQC were analyzed by HPLC without further
treatment. Each point represents an average of three runs assayed in duplicate. The response
was linear up to 250 ng/mg, r2 = 0.998). B. Validation parameters and results summary from
case study of specimens in different phyla. The limit of detection (LOD) and quantitation
(LOQ) were validated in HCl extracts of specific matrix protein and compared to buffer blanks
to ensure specificity and sensitivity of the quantitation limits. Recovery was determined in
control matrix extracts spiked with BMAA prior to acid hydrolysis and compared to the same
extract with BMAA added immediately before derivatization with AQC as described in the
methods. %CV, Percent Coefficient of variation; %Δ, Percent deviation of the mean from target
value.
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Figure 7.
LC/MS/MS identification and verification of L-BMAA in blue crab from Biscayne Bay. A)
Triple quadrupole LC/MS/MS verification of BMAA in a representative marine sample (blue
crab). Ion chromatograms of product ion from collision induced dissociations of m/z 459. The
chromatography of the three major ions produced are: (1) protonated AQC derivative fragment
(m/z 171) is the quantitation ion, (2) the protonated-BMAA AQC fragment (m/z 289) is the fist
qualifier ion with a ratio of 38% and (3) the protonated-BMAA fragment (m/z 119) is the second
qualifier ion with a ratio of 27%. B) Full product ion scan of an injection of AQC derivatized
BMAA (217 fmole) in LC/MS/MS. Spectrum shows the dissociation of m/z 459 at 20 V.
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Figure 8.
Average abundance of cyanobacteria in Florida Bay in 2000-2008 measured monthly as
phycocyanin concentration.
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Figure 9.
Average distribution of total phosphorus in Florida Bay in 2000-2008. Monthly data from the
South Florida Water Management District.
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Figure 10.
Average distribution of inorganic nitrogen (nitrate, nitrite, and ammonia) in Florida Bay in
2000-2008. Monthly data from the South Florida Water Management District.
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Figure 11.
Transect of average nitrogen and phosphorus concentrations in 2008 from the Everglades
Agricultural Area (EAA) through the Everglades into Florida Bay. Note that the scales for
nitrogen and phosphorus are adjusted to the Redfield ratio of 16:1. These data show that
phosphorus is the limiting nutrient in the Everglades. Monthly data from the South Florida
Water Management District.
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Figure 12.
Long term changes in water flow from the Everglades Agricultural Area to Florida Bay, as
measured at S151 (A) and Taylor Slough (B) (locations shown in Fig. 1). Data from the South
Florida Water Management District.
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Figure 13.
Average seasonal flow of water into Florida Bay and concentrations of cyanobacteria
(measured as phycocyanin) over the 2000 to 2008 time period. Flow data from the South Florida
Water Management District.
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Figure 14.
Concentrations of total phosphorus and cyanobacteria (measured as phycocyanin) in eastern
Florida Bay-south Biscayne Bay. A. Total phosphorus before mangrove destruction. B. Total
phosphorus after mangrove destruction. C. Cyanobacteria before mangrove destruction. D.
Cyanobacteria after mangrove destruction. Total phosphorus concentrations from South
Florida Water Management District.
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Figure 15.
Time course of total phosphorus and cyanobacteria (measured as phycocyanin) at locations
(stars) shown in Fig. 3 in the area of mangrove destruction. Total phosphorus data from South
Florida Water Management District.
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Figure 16.
Average concentrations of total nitrogen along the Caloosahatchee River from Lake
Okeechobee to Sanibel Island May-December, 2008. Monthly data from South Florida Water
Management District.

Brand et al. Page 29

Harmful Algae. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 17.
Average concentrations of cyanobacteria (measured as phycocyanin) along the Caloosahatchee
River from Lake Okeechobee to Sanibel Island May-December, 2008.
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