Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o671. doi: 10.1107/S1600536809007041

4-Azido-2-chloro-6-methyl­quinoline

S Natarajan a, K Rajesh b, V Vijayakumar b, J Suresh c, P L Nilantha Lakshman d,*
PMCID: PMC2968800  PMID: 21582415

Abstract

In the title compound, C10H7ClN4, the quinoline ring system is planar [maximum deviation 0.0035 (10) Å]. The crystal structure is stabilized by van der Waals and π–π stacking inter­actions [centroid–centroid distance 3.6456 (17) Å].

Related literature

For quinoline derivatives as anti-tuberculosis agents, see: Jain et al. (2005).graphic file with name e-65-0o671-scheme1.jpg

Experimental

Crystal data

  • C10H7ClN4

  • M r = 218.65

  • Triclinic, Inline graphic

  • a = 6.9517 (4) Å

  • b = 7.6078 (6) Å

  • c = 10.0191 (9) Å

  • α = 75.694 (7)°

  • β = 82.147 (8)°

  • γ = 76.532 (7)°

  • V = 497.57 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.19 × 0.17 × 0.14 mm

Data collection

  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.935, T max = 0.952

  • 2209 measured reflections

  • 1743 independent reflections

  • 1206 reflections with I > 2σ(I)

  • R int = 0.019

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.180

  • S = 1.08

  • 1743 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 .

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007041/at2729sup1.cif

e-65-0o671-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007041/at2729Isup2.hkl

e-65-0o671-Isup2.hkl (84KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SN thanks the DST for the FIST programme.

supplementary crystallographic information

Comment

Quinoline derivatives are a class of important materials as anti-tuberculosis agents (Jain et al., 2005). In the title molecule (Fig. 1), all non-H atoms of the molecule, except atoms Cl1, C10, N2, N3 and N4 are coplanar within 0.0035 (10) Å. Due to 4-azida substitution within the pyridine ring: C2═ C3 bond is longer and the C3—C4 bond is shorter than standard values for C═C (1.334 Å) and Csp2—Csp2 (1.455 Å) bond lengths respectively. The dihedral angle between the C3/N2-N4 and C2/C1/N1/C5 rings is 6.16 (11)°.

There is a weak π···π interaction observed between the centres of N1/C1—C5 rings related through the symmetry operator –x, 1-y, 1-z, with centroids separation of 3.6456 (17) Å.

Experimental

A mixture of 2,4-dichloroquinoline (2.12 g, 10 mmol) and sodium azide (0.650 g, 10 mmol) in DMF (20 ml) was refluxed for 2 h. The progress of the reaction was monitored by TLC. After conforming that the reaction got completed, the reaction mixture was cooled and poured on to the crushed ice with stirring. The solid settled was filtered to dryness and purified over a column of silica gel (60–120 mesh; 50 g) eluting with Petroleum Ether–ethyl acetate (4.5:1.5) to give 4-azido-2-chloro- 6-methylquinoline. The product was re-crystallized from 100% chloroform [mp: 429–430 K, yield: 20%].

Refinement

The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.96 Å and with Uiso = 1.2Ueq(C) for CH and Uiso = 1.5Ueq(C) for CH3 groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C10H7ClN4 Z = 2
Mr = 218.65 F(000) = 224
Triclinic, P1 Dx = 1.459 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9517 (4) Å Cell parameters from 25 reflections
b = 7.6078 (6) Å θ = 2–25°
c = 10.0191 (9) Å µ = 0.35 mm1
α = 75.694 (7)° T = 293 K
β = 82.147 (8)° Block, colourless
γ = 76.532 (7)° 0.19 × 0.17 × 0.14 mm
V = 497.57 (7) Å3

Data collection

Nonius MACH-3 diffractometer 1206 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.019
graphite θmax = 25.0°, θmin = 2.1°
ω–2θ scans h = −1→8
Absorption correction: ψ scan (North et al., 1968) k = −8→9
Tmin = 0.935, Tmax = 0.952 l = −11→11
2209 measured reflections 2 standard reflections every 60 min
1743 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1143P)2 + 0.0878P] where P = (Fo2 + 2Fc2)/3
1743 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1775 (5) 0.7084 (4) 0.2969 (3) 0.0365 (8)
C2 0.2459 (4) 0.5180 (3) 0.3035 (3) 0.0334 (7)
H2 0.2656 0.4702 0.2246 0.040*
C3 0.2820 (4) 0.4060 (3) 0.4303 (3) 0.0294 (7)
C4 0.2518 (4) 0.4825 (4) 0.5495 (3) 0.0291 (7)
C5 0.1836 (4) 0.6769 (4) 0.5274 (3) 0.0328 (7)
C6 0.1508 (5) 0.7579 (4) 0.6436 (3) 0.0432 (8)
H6 0.1047 0.8853 0.6320 0.052*
C7 0.1857 (5) 0.6525 (4) 0.7709 (3) 0.0448 (9)
H7 0.1636 0.7094 0.8454 0.054*
C8 0.2548 (5) 0.4583 (5) 0.7950 (3) 0.0407 (8)
C9 0.2849 (4) 0.3774 (4) 0.6839 (3) 0.0354 (7)
H9 0.3283 0.2495 0.6978 0.043*
C10 0.2945 (6) 0.3461 (6) 0.9386 (3) 0.0581 (10)
H10A 0.1764 0.3662 0.9996 0.087*
H10B 0.3994 0.3836 0.9706 0.087*
H10C 0.3331 0.2169 0.9371 0.087*
Cl1 0.13068 (16) 0.85050 (11) 0.13412 (9) 0.0604 (4)
N1 0.1475 (4) 0.7888 (3) 0.4003 (3) 0.0395 (7)
N2 0.3501 (4) 0.2108 (3) 0.4540 (3) 0.0396 (7)
N3 0.3912 (4) 0.1499 (3) 0.3461 (3) 0.0418 (7)
N4 0.4337 (5) 0.0798 (4) 0.2571 (3) 0.0614 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0458 (19) 0.0243 (14) 0.0406 (16) −0.0080 (13) −0.0078 (14) −0.0063 (12)
C2 0.0435 (19) 0.0236 (15) 0.0374 (16) −0.0062 (13) −0.0066 (14) −0.0138 (12)
C3 0.0317 (16) 0.0202 (13) 0.0404 (16) −0.0029 (12) −0.0044 (13) −0.0160 (12)
C4 0.0304 (16) 0.0214 (14) 0.0388 (16) −0.0021 (11) −0.0035 (12) −0.0158 (12)
C5 0.0359 (18) 0.0227 (14) 0.0432 (16) −0.0032 (12) −0.0034 (13) −0.0165 (12)
C6 0.055 (2) 0.0272 (16) 0.053 (2) −0.0039 (14) −0.0025 (16) −0.0249 (14)
C7 0.056 (2) 0.0417 (18) 0.0452 (19) −0.0095 (16) 0.0017 (16) −0.0291 (15)
C8 0.044 (2) 0.0449 (18) 0.0385 (17) −0.0112 (15) −0.0041 (14) −0.0171 (14)
C9 0.0400 (19) 0.0255 (14) 0.0426 (17) −0.0018 (13) −0.0064 (14) −0.0139 (13)
C10 0.075 (3) 0.062 (2) 0.041 (2) −0.013 (2) −0.0078 (18) −0.0161 (17)
Cl1 0.0950 (9) 0.0351 (5) 0.0482 (6) −0.0092 (5) −0.0201 (5) −0.0002 (4)
N1 0.0535 (18) 0.0188 (12) 0.0460 (15) −0.0010 (11) −0.0058 (12) −0.0121 (11)
N2 0.0572 (18) 0.0208 (12) 0.0413 (14) 0.0034 (12) −0.0084 (12) −0.0164 (11)
N3 0.0582 (19) 0.0204 (12) 0.0487 (16) −0.0013 (12) −0.0104 (13) −0.0146 (12)
N4 0.105 (3) 0.0314 (14) 0.0503 (17) 0.0002 (16) −0.0140 (17) −0.0239 (13)

Geometric parameters (Å, °)

C1—N1 1.298 (4) C6—H6 0.9300
C1—C2 1.403 (4) C7—C8 1.413 (4)
C1—Cl1 1.745 (3) C7—H7 0.9300
C2—C3 1.362 (4) C8—C9 1.371 (4)
C2—H2 0.9300 C8—C10 1.505 (5)
C3—N2 1.419 (3) C9—H9 0.9300
C3—C4 1.424 (3) C10—H10A 0.9600
C4—C9 1.404 (4) C10—H10B 0.9600
C4—C5 1.415 (4) C10—H10C 0.9600
C5—N1 1.364 (4) N2—N3 1.251 (3)
C5—C6 1.416 (4) N3—N4 1.121 (3)
C6—C7 1.348 (4)
N1—C1—C2 126.1 (3) C6—C7—C8 122.2 (3)
N1—C1—Cl1 117.0 (2) C6—C7—H7 118.9
C2—C1—Cl1 116.9 (2) C8—C7—H7 118.9
C3—C2—C1 117.2 (2) C9—C8—C7 117.8 (3)
C3—C2—H2 121.4 C9—C8—C10 121.7 (3)
C1—C2—H2 121.4 C7—C8—C10 120.5 (3)
C2—C3—N2 124.0 (2) C8—C9—C4 121.8 (3)
C2—C3—C4 120.3 (2) C8—C9—H9 119.1
N2—C3—C4 115.7 (2) C4—C9—H9 119.1
C9—C4—C5 119.6 (2) C8—C10—H10A 109.5
C9—C4—C3 124.1 (2) C8—C10—H10B 109.5
C5—C4—C3 116.3 (3) H10A—C10—H10B 109.5
N1—C5—C4 123.2 (2) C8—C10—H10C 109.5
N1—C5—C6 118.8 (2) H10A—C10—H10C 109.5
C4—C5—C6 117.9 (3) H10B—C10—H10C 109.5
C7—C6—C5 120.7 (3) C1—N1—C5 116.7 (2)
C7—C6—H6 119.6 N3—N2—C3 114.1 (2)
C5—C6—H6 119.6 N4—N3—N2 173.6 (3)
N1—C1—C2—C3 0.9 (5) C5—C6—C7—C8 −0.4 (5)
Cl1—C1—C2—C3 −179.7 (2) C6—C7—C8—C9 −0.5 (5)
C1—C2—C3—N2 179.5 (3) C6—C7—C8—C10 179.2 (3)
C1—C2—C3—C4 −0.4 (4) C7—C8—C9—C4 1.0 (5)
C2—C3—C4—C9 179.8 (3) C10—C8—C9—C4 −178.6 (3)
N2—C3—C4—C9 −0.1 (4) C5—C4—C9—C8 −0.7 (4)
C2—C3—C4—C5 0.0 (4) C3—C4—C9—C8 179.5 (3)
N2—C3—C4—C5 −179.9 (3) C2—C1—N1—C5 −0.9 (5)
C9—C4—C5—N1 −179.9 (3) Cl1—C1—N1—C5 179.7 (2)
C3—C4—C5—N1 0.0 (4) C4—C5—N1—C1 0.4 (5)
C9—C4—C5—C6 −0.1 (4) C6—C5—N1—C1 −179.3 (3)
C3—C4—C5—C6 179.7 (3) C2—C3—N2—N3 5.8 (4)
N1—C5—C6—C7 −179.6 (3) C4—C3—N2—N3 −174.3 (3)
C4—C5—C6—C7 0.7 (5) C3—N2—N3—N4 176 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2729).

References

  1. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  3. Jain, R., Singh, P. P., Jain, M., Sachdeva, S., Misra, V., Kaul, C. L., Kaur, S., Vaitilingam, B., Nayyar, A. & Bhaskar, P. P. (2005). Indian Patent Appl. IN 2002DE00628.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809007041/at2729sup1.cif

e-65-0o671-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007041/at2729Isup2.hkl

e-65-0o671-Isup2.hkl (84KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES