Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 19;65(Pt 4):o798. doi: 10.1107/S1600536809009106

2-(4-Methoxy­phen­yl)-4,5-dihydro-1H-imidazole

Reza Kia a, Hoong-Kun Fun a,*, Hadi Kargar b
PMCID: PMC2968807  PMID: 21582522

Abstract

In the title mol­ecule, C10H12N2O, the dihedral angle between the benzene and imidazole rings is 14.86 (16)°. The approximately planar arrangement of the mol­ecule results in a distance of 2.54 Å between an ortho-H atom of the benzene ring and the double-bonded N atom of the imidazole ring. In the crystal structure, symmetry-related mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds into one-dimensional chains extending along the a axis.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and syntheses, see: Stibrany et al. (2004); Kia et al. (2008, 2009a ,b ). For applications, see, for example: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al. (1995); Corey & Grogan (1999). For details on the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o798-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O

  • M r = 176.22

  • Orthorhombic, Inline graphic

  • a = 10.0574 (5) Å

  • b = 13.2532 (7) Å

  • c = 6.8321 (3) Å

  • V = 910.67 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.23 × 0.09 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.981, T max = 0.995

  • 8578 measured reflections

  • 1133 independent reflections

  • 873 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.096

  • S = 1.08

  • 1133 reflections

  • 123 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009106/lh2787sup1.cif

e-65-0o798-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009106/lh2787Isup2.hkl

e-65-0o798-Isup2.hkl (56.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.93 (3) 1.95 (3) 2.869 (3) 168 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

HKF and RK thank the Malaysian government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities such as antihypertensive (Blancafort 1978), antihyperglycemic (Chan 1993), antidepressive (Vizi 1986), antihypercholesterolemic (Li et al., 1996) and anti-inflammatory (Ueno et al., 1995) properties. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). With regards to these important applications of imidazolines, herein we report the crystal structure of the title compound, (I).

In the title compound (I, Fig. 1), bond lengths (Allen et al. 1987) and angles are with the normal ranges and are comparable with the related structures (Stibrany et al. 2004; Kia et al., 2008, 2009a,b). The molecule is approximately planar with a maximum deviation from the mean plane of the molecule for atom N1 being 0.279 (2) Å. The six- and five-membered rings are twisted from each other, forming the dihedral angle of 14.86 (16)°. Atom H5A of the benzene ring is in close proximity to atom N2 atom of the imidazoline ring with a distance of 2.54 Å [N2···H5A]. In the crystal structure, neighbouring molecules are linked together by intermolecular N—H···N hydrogen bonds into 1-D extended chains along the a axis (Table 1, Fig. 2).

Experimental

The synthetic method was based on the previous work (Stibrany et al. 2004), except that 10 mmol of 4-methoxy-cyanobenzene and 40 mmol of ethylenediamine was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.

Refinement

The N-bound hydrogen atom was located from the difference Fourier map are refined freely, see Table. 1. The rest of the hydrogen atoms were positioned geometrically with a riding approximation model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 & 1.5 Ueq(C). A rotating group model was applied for the methyl group. In the absence of significant anomalous dispersion effects, 943 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound, viewed along the b-axis showing a 1-D extended chain along the a-axis formed by intermolecular N—H···N hydrogen bonds (dashed lines).

Crystal data

C10H12N2O F(000) = 376
Mr = 176.22 Dx = 1.285 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 2309 reflections
a = 10.0574 (5) Å θ = 2.5–30.0°
b = 13.2532 (7) Å µ = 0.09 mm1
c = 6.8321 (3) Å T = 100 K
V = 910.67 (8) Å3 Block, colourless
Z = 4 0.23 × 0.09 × 0.06 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 1133 independent reflections
Radiation source: fine-focus sealed tube 873 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −13→12
Tmin = 0.981, Tmax = 0.995 k = −12→17
8578 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.2936P] where P = (Fo2 + 2Fc2)/3
1133 reflections (Δ/σ)max < 0.001
123 parameters Δρmax = 0.22 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6844 (2) 0.00507 (17) −0.4396 (3) 0.0302 (6)
N1 0.6252 (2) 0.28654 (19) 0.3242 (4) 0.0270 (6)
N2 0.8459 (2) 0.25758 (18) 0.3284 (4) 0.0219 (5)
C1 0.8179 (3) 0.3256 (3) 0.4948 (4) 0.0234 (7)
H1A 0.8555 0.3935 0.4702 0.028*
H1B 0.8571 0.2985 0.6169 0.028*
C2 0.6653 (3) 0.3309 (3) 0.5111 (4) 0.0233 (7)
H2A 0.6321 0.2909 0.6233 0.028*
H2B 0.6339 0.4014 0.5236 0.028*
C3 0.7329 (3) 0.2397 (2) 0.2447 (4) 0.0176 (6)
C4 0.7204 (3) 0.1776 (2) 0.0662 (4) 0.0178 (6)
C5 0.5988 (3) 0.1384 (2) 0.0039 (4) 0.0184 (6)
H5A 0.5208 0.1512 0.0784 0.022*
C6 0.5902 (3) 0.0813 (2) −0.1641 (4) 0.0227 (7)
H6A 0.5067 0.0551 −0.2044 0.027*
C7 0.7032 (3) 0.0620 (2) −0.2748 (4) 0.0218 (7)
C8 0.8257 (3) 0.0985 (2) −0.2139 (4) 0.0236 (7)
H8A 0.9036 0.0844 −0.2876 0.028*
C9 0.8332 (3) 0.1557 (3) −0.0444 (4) 0.0232 (7)
H9A 0.9172 0.1805 −0.0026 0.028*
C10 0.7990 (3) −0.0211 (3) −0.5514 (4) 0.0319 (8)
H10A 0.7722 −0.0624 −0.6637 0.048*
H10B 0.8609 −0.0594 −0.4694 0.048*
H10C 0.8425 0.0405 −0.5981 0.048*
H1N1 0.537 (3) 0.266 (2) 0.310 (6) 0.043 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0298 (12) 0.0350 (14) 0.0258 (10) −0.0013 (10) 0.0007 (10) −0.0112 (10)
N1 0.0167 (13) 0.0387 (17) 0.0257 (12) 0.0020 (12) −0.0016 (12) −0.0098 (14)
N2 0.0188 (12) 0.0275 (14) 0.0194 (10) −0.0002 (11) −0.0020 (11) −0.0019 (12)
C1 0.0236 (15) 0.0274 (18) 0.0192 (13) −0.0035 (14) −0.0023 (14) 0.0011 (12)
C2 0.0231 (14) 0.0282 (18) 0.0187 (13) −0.0005 (14) −0.0016 (13) −0.0036 (12)
C3 0.0192 (15) 0.0186 (16) 0.0150 (11) −0.0016 (13) −0.0017 (12) 0.0053 (12)
C4 0.0183 (15) 0.0192 (16) 0.0157 (12) −0.0006 (13) −0.0003 (12) 0.0044 (13)
C5 0.0160 (14) 0.0203 (17) 0.0189 (12) 0.0011 (12) −0.0008 (11) 0.0024 (12)
C6 0.0182 (15) 0.0253 (17) 0.0247 (13) −0.0028 (13) −0.0042 (13) 0.0030 (14)
C7 0.0254 (17) 0.0239 (18) 0.0159 (13) −0.0003 (14) −0.0004 (12) −0.0016 (13)
C8 0.0220 (16) 0.0284 (18) 0.0204 (13) 0.0007 (13) 0.0060 (13) −0.0007 (14)
C9 0.0177 (16) 0.0304 (19) 0.0215 (14) −0.0056 (14) −0.0023 (12) 0.0023 (13)
C10 0.039 (2) 0.034 (2) 0.0227 (16) 0.0027 (16) 0.0053 (14) −0.0100 (15)

Geometric parameters (Å, °)

O1—C7 1.368 (3) C4—C9 1.393 (4)
O1—C10 1.425 (4) C4—C5 1.396 (4)
N1—C3 1.361 (4) C5—C6 1.377 (4)
N1—C2 1.463 (4) C5—H5A 0.9500
N1—H1N1 0.94 (3) C6—C7 1.389 (4)
N2—C3 1.294 (3) C6—H6A 0.9500
N2—C1 1.478 (4) C7—C8 1.387 (4)
C1—C2 1.541 (4) C8—C9 1.386 (4)
C1—H1A 0.9900 C8—H8A 0.9500
C1—H1B 0.9900 C9—H9A 0.9500
C2—H2A 0.9900 C10—H10A 0.9800
C2—H2B 0.9900 C10—H10B 0.9800
C3—C4 1.476 (4) C10—H10C 0.9800
C7—O1—C10 117.6 (2) C5—C4—C3 122.2 (3)
C3—N1—C2 108.2 (2) C6—C5—C4 120.9 (3)
C3—N1—H1N1 126 (2) C6—C5—H5A 119.6
C2—N1—H1N1 118 (3) C4—C5—H5A 119.6
C3—N2—C1 106.6 (2) C5—C6—C7 120.3 (3)
N2—C1—C2 105.8 (2) C5—C6—H6A 119.9
N2—C1—H1A 110.6 C7—C6—H6A 119.9
C2—C1—H1A 110.6 O1—C7—C8 124.2 (3)
N2—C1—H1B 110.6 O1—C7—C6 115.9 (3)
C2—C1—H1B 110.6 C8—C7—C6 119.9 (2)
H1A—C1—H1B 108.7 C9—C8—C7 119.3 (3)
N1—C2—C1 101.1 (2) C9—C8—H8A 120.3
N1—C2—H2A 111.5 C7—C8—H8A 120.3
C1—C2—H2A 111.5 C8—C9—C4 121.5 (3)
N1—C2—H2B 111.5 C8—C9—H9A 119.2
C1—C2—H2B 111.5 C4—C9—H9A 119.2
H2A—C2—H2B 109.4 O1—C10—H10A 109.5
N2—C3—N1 116.0 (2) O1—C10—H10B 109.5
N2—C3—C4 122.8 (3) H10A—C10—H10B 109.5
N1—C3—C4 121.1 (2) O1—C10—H10C 109.5
C9—C4—C5 118.1 (3) H10A—C10—H10C 109.5
C9—C4—C3 119.7 (3) H10B—C10—H10C 109.5
C3—N2—C1—C2 8.4 (3) C3—C4—C5—C6 179.5 (3)
C3—N1—C2—C1 14.4 (3) C4—C5—C6—C7 −0.1 (4)
N2—C1—C2—N1 −13.7 (3) C10—O1—C7—C8 2.3 (4)
C1—N2—C3—N1 1.0 (3) C10—O1—C7—C6 −176.7 (3)
C1—N2—C3—C4 177.3 (3) C5—C6—C7—O1 −179.7 (2)
C2—N1—C3—N2 −10.7 (3) C5—C6—C7—C8 1.3 (4)
C2—N1—C3—C4 172.9 (3) O1—C7—C8—C9 179.9 (3)
N2—C3—C4—C9 −15.1 (4) C6—C7—C8—C9 −1.2 (4)
N1—C3—C4—C9 161.0 (3) C7—C8—C9—C4 −0.2 (4)
N2—C3—C4—C5 164.1 (3) C5—C4—C9—C8 1.4 (4)
N1—C3—C4—C5 −19.8 (4) C3—C4—C9—C8 −179.4 (3)
C9—C4—C5—C6 −1.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···N2i 0.93 (3) 1.95 (3) 2.869 (3) 168 (3)

Symmetry codes: (i) x−1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2787).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Blancafort, P. (1978). Drugs Fut.3, 592.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chan, S. (1993). Clin. Sci.85, 671–677. [DOI] [PubMed]
  6. Corey, E. J. & Grogan, M. J. (1999). Org. Lett.1, 157–160. [DOI] [PubMed]
  7. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  8. Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406. [DOI] [PMC free article] [PubMed]
  9. Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o338–o339. [DOI] [PMC free article] [PubMed]
  10. Kia, R., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o724. [DOI] [PMC free article] [PubMed]
  11. Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.
  15. Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol.17, 597–603. [DOI] [PubMed]
  16. Vizi, E. S. (1986). Med. Res. Rev.6, 431–449. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809009106/lh2787sup1.cif

e-65-0o798-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809009106/lh2787Isup2.hkl

e-65-0o798-Isup2.hkl (56.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES