Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 11;65(Pt 4):m382. doi: 10.1107/S1600536809007892

Diaqua­bis[5-(2-pyrid­yl)tetra­zolato-κ2 N 1,N 5]iron(II)

Min Hu a, Song-Tao Ma a, Liang-Qi Guo a, Shao-Ming Fang a,*
PMCID: PMC2968821  PMID: 21582333

Abstract

The title complex, [Fe(C6H4N5)2(H2O)2], was synthesized by the reaction of ferrous sulfate with 5-(2-pyrid­yl)-2H-tetra­zole (HL). The FeII atom, located on a crystallographic center of inversion, is coordinated by four N-atom donors from two planar trans-related deprotonated L ligands and two O atoms from two axial water mol­ecules in a distorted octa­hedral geometry. The FeII mononuclear units are further connected by inter­molecular O—H⋯N and C—H⋯O hydrogen-bonding inter­actions, forming a three-dimensional framework.

Related literature

For hydrogen bonds, see: Desiraju & Steiner (1999); Kitagawa & Uemura (2005); For general background, see: Rizk et al. (2005); Robin & Fromm (2006); For structurally related complexes with tetra­zole ligands, see: Mo et al. (2004); Song et al. (2008); Tao et al. (2008); Wang et al. (2003); Wen (2008); Wu et al. (2007).graphic file with name e-65-0m382-scheme1.jpg

Experimental

Crystal data

  • [Fe(C6H4N5)2(H2O)2]

  • M r = 384.17

  • Monoclinic, Inline graphic

  • a = 8.114 (2) Å

  • b = 12.924 (3) Å

  • c = 7.360 (2) Å

  • β = 96.021 (3)°

  • V = 767.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.29 × 0.14 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.757, T max = 0.897

  • 4287 measured reflections

  • 1356 independent reflections

  • 1204 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.057

  • S = 1.10

  • 1356 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007892/im2104sup1.cif

e-65-0m382-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007892/im2104Isup2.hkl

e-65-0m382-Isup2.hkl (67KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯N5i 0.85 1.91 2.764 (2) 177
O1—H12⋯N4ii 0.85 2.00 2.823 (2) 162
C2—H2⋯O1iii 0.93 2.56 3.362 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Start-up Fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (grant No. 2006BSJJ001 to SMF). We also thank Dr Chun-Sen Liu for his helpful discussions and valuable suggestions.

supplementary crystallographic information

Comment

Currently, there is considerable interest in self-assembly and construction of supramolecular complexes featuring fascinating architectures realized by noncovalent interactions such as coordination bonds, hydrogen bonds and other weak intermolecular interactions (Rizk et al., 2005; Robin & Fromm, 2006). Hydrogen bonds, combining directionality, strength and selectivity, have been noted as the most versatile organizing force to assemble supramolecular structures (Kitagawa & Uemura, 2005). Due to their ability of providing multi-coordination sites as well as hydrogen bonding acceptors, tetrazole and its derivatives are receiving much attention in coordination and supramolecular chemistry (Mo et al., 2004; Song et al., 2008; Tao et al., 2008; Wang et al., 2003; Wen, 2008; Wu et al., 2007). Herein we report the crystal structure of an iron(II) complex of 2-pyridyl-tetrazole HL, [Fe(L)2(H2O)2].

In the title complex, the FeII atom is located on a crystallographic center of inversion. It is six-coordinated by two O atoms from water molecules and four N-atom donors from two deprotonated N,N'-chelating L ligands binding via the pyridyl nitrogen and the tetrazole nitrogen in 1-position, in a transoid pseudo-octahedral geometry (Fig. 1).

Each FeII mononuclear unit exhibits both proton donors (water molecules) and acceptors (uncoordinated N atoms on the tetrazole rings) and can therefore act as a good building unit for hydrogen bonded networks. As shown in Fig. 2 the O—H···N hydrogen bonds (Table 1) between tetrazole rings and coordinated water molecules link neighboring mononuclear [Fe(L)2(H2O)2] units resulting in an infinite hydrogen bonded layer running parallel to the crystallographic (100) plane. Furthermore, the crystal structure of (I) also contains intermolecular C—H···O (Table 1) hydrogen-bonding interactions (Desiraju & Steiner, 1999), between the L ligands and the coordinated water molecules that interlink the twodimensional layers to form a three dimensional supramolecular framework.

Experimental

A solution of HL (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca 0.05 ml for adjusting the pH value of the reaction system to basic conditions) was carefully layered on top of an aqueous solution (15 ml) of FeSO4 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis appeared at the tube wall after ca one month at room temperature (yield ~30% based on HL). Elemental analysis calculated for (C12H12FeN10O2): H 3.15, C 37.52, N 36.46%; found: H 3.08, C 37.37, N 36.68%.

Refinement

H atoms of the water molecules were located from the difference Fourier map and were allowed to ride on the O atom, with Uiso(H) = 1.2 Ueq(O). The remaining H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic), and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (–x, –y + 1,–z + 2).

Fig. 2.

Fig. 2.

Two dimensional network, parallel to the (100) plane, formed by the intermolecular O—H···N (fine dashed lines) interactions. For clarity, only H atoms involved in the interactions are shown.

Crystal data

[Fe(C6H4N5)2(H2O)2] F(000) = 392
Mr = 384.17 Dx = 1.662 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2211 reflections
a = 8.114 (2) Å θ = 3.0–28.3°
b = 12.924 (3) Å µ = 1.01 mm1
c = 7.360 (2) Å T = 293 K
β = 96.021 (3)° Block, yellow
V = 767.5 (3) Å3 0.29 × 0.14 × 0.11 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 1356 independent reflections
Radiation source: fine-focus sealed tube 1204 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→8
Tmin = 0.757, Tmax = 0.897 k = −15→15
4287 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.3154P] where P = (Fo2 + 2Fc2)/3
1356 reflections (Δ/σ)max < 0.001
115 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.0000 0.5000 1.0000 0.02908 (12)
C1 0.3360 (2) 0.51552 (16) 0.8123 (3) 0.0456 (5)
H1 0.3306 0.4437 0.8065 0.055*
C2 0.4708 (3) 0.56508 (19) 0.7511 (3) 0.0565 (6)
H2 0.5543 0.5270 0.7050 0.068*
C3 0.4800 (3) 0.67167 (19) 0.7593 (3) 0.0539 (6)
H3 0.5708 0.7063 0.7213 0.065*
C4 0.3524 (2) 0.72590 (16) 0.8246 (3) 0.0440 (5)
H4 0.3550 0.7978 0.8296 0.053*
C5 0.2204 (2) 0.67171 (13) 0.8826 (2) 0.0318 (4)
C6 0.0757 (2) 0.72097 (12) 0.9502 (2) 0.0304 (4)
N1 0.21327 (18) 0.56715 (11) 0.87949 (19) 0.0332 (3)
N2 −0.04622 (17) 0.66384 (10) 1.00861 (18) 0.0308 (3)
N3 −0.15883 (19) 0.73201 (11) 1.0590 (2) 0.0367 (4)
N4 −0.1046 (2) 0.82582 (11) 1.0311 (2) 0.0396 (4)
N5 0.0442 (2) 0.82160 (11) 0.9625 (2) 0.0375 (4)
O1 0.13384 (15) 0.50897 (8) 1.26584 (16) 0.0340 (3)
H11 0.1091 0.5606 1.3292 0.041*
H12 0.1461 0.4509 1.3199 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0345 (2) 0.01947 (19) 0.0352 (2) 0.00073 (14) 0.01281 (15) 0.00110 (14)
C1 0.0410 (11) 0.0464 (12) 0.0517 (12) 0.0074 (9) 0.0153 (9) 0.0027 (9)
C2 0.0407 (13) 0.0745 (16) 0.0573 (13) 0.0099 (11) 0.0195 (10) 0.0056 (12)
C3 0.0357 (11) 0.0773 (17) 0.0497 (12) −0.0136 (11) 0.0102 (9) 0.0086 (11)
C4 0.0444 (12) 0.0457 (11) 0.0423 (10) −0.0154 (9) 0.0069 (9) 0.0037 (9)
C5 0.0352 (9) 0.0332 (10) 0.0268 (8) −0.0052 (7) 0.0020 (7) 0.0027 (7)
C6 0.0409 (10) 0.0249 (9) 0.0253 (8) −0.0037 (7) 0.0028 (7) 0.0007 (7)
N1 0.0343 (8) 0.0313 (8) 0.0355 (8) 0.0010 (6) 0.0099 (6) 0.0028 (6)
N2 0.0378 (8) 0.0215 (7) 0.0346 (8) 0.0018 (6) 0.0103 (6) −0.0002 (6)
N3 0.0449 (9) 0.0274 (8) 0.0390 (8) 0.0062 (7) 0.0091 (7) −0.0022 (6)
N4 0.0564 (10) 0.0255 (8) 0.0371 (8) 0.0046 (7) 0.0064 (7) −0.0017 (6)
N5 0.0543 (10) 0.0223 (7) 0.0358 (8) −0.0032 (7) 0.0040 (7) 0.0015 (6)
O1 0.0434 (7) 0.0226 (6) 0.0373 (7) 0.0035 (5) 0.0105 (5) 0.0006 (5)

Geometric parameters (Å, °)

Fe1—O1i 2.1389 (13) C3—H3 0.9300
Fe1—O1 2.1389 (13) C4—C5 1.384 (2)
Fe1—N2 2.1526 (14) C4—H4 0.9300
Fe1—N2i 2.1526 (14) C5—N1 1.353 (2)
Fe1—N1i 2.2037 (14) C5—C6 1.468 (2)
Fe1—N1 2.2037 (14) C6—N5 1.330 (2)
C1—N1 1.336 (2) C6—N2 1.341 (2)
C1—C2 1.383 (3) N2—N3 1.3489 (19)
C1—H1 0.9300 N3—N4 1.313 (2)
C2—C3 1.380 (3) N4—N5 1.358 (2)
C2—H2 0.9300 O1—H11 0.8501
C3—C4 1.378 (3) O1—H12 0.8500
O1i—Fe1—O1 180.0 C2—C3—H3 120.5
O1i—Fe1—N2 90.40 (5) C3—C4—C5 118.96 (19)
O1—Fe1—N2 89.60 (5) C3—C4—H4 120.5
O1i—Fe1—N2i 89.60 (5) C5—C4—H4 120.5
O1—Fe1—N2i 90.40 (5) N1—C5—C4 122.25 (17)
N2—Fe1—N2i 180.0 N1—C5—C6 113.85 (14)
O1i—Fe1—N1i 90.12 (5) C4—C5—C6 123.89 (16)
O1—Fe1—N1i 89.88 (5) N5—C6—N2 111.28 (15)
N2—Fe1—N1i 103.24 (5) N5—C6—C5 127.83 (15)
N2i—Fe1—N1i 76.76 (5) N2—C6—C5 120.89 (14)
O1i—Fe1—N1 89.89 (5) C1—N1—C5 118.22 (16)
O1—Fe1—N1 90.11 (5) C1—N1—Fe1 126.83 (13)
N2—Fe1—N1 76.76 (5) C5—N1—Fe1 114.89 (11)
N2i—Fe1—N1 103.24 (5) C6—N2—N3 105.81 (13)
N1i—Fe1—N1 180.000 (1) C6—N2—Fe1 113.29 (11)
N1—C1—C2 122.33 (19) N3—N2—Fe1 140.87 (11)
N1—C1—H1 118.8 N4—N3—N2 108.19 (14)
C2—C1—H1 118.8 N3—N4—N5 110.28 (13)
C3—C2—C1 119.3 (2) C6—N5—N4 104.44 (14)
C3—C2—H2 120.4 Fe1—O1—H11 114.7
C1—C2—H2 120.4 Fe1—O1—H12 113.8
C4—C3—C2 118.92 (19) H11—O1—H12 117.3
C4—C3—H3 120.5
N1—C1—C2—C3 0.0 (3) N2—Fe1—N1—C5 5.08 (12)
C1—C2—C3—C4 −1.4 (3) N2i—Fe1—N1—C5 −174.92 (12)
C2—C3—C4—C5 1.0 (3) N5—C6—N2—N3 0.17 (19)
C3—C4—C5—N1 0.8 (3) C5—C6—N2—N3 −179.46 (14)
C3—C4—C5—C6 −178.37 (17) N5—C6—N2—Fe1 −178.30 (11)
N1—C5—C6—N5 −177.20 (16) C5—C6—N2—Fe1 2.07 (19)
C4—C5—C6—N5 2.1 (3) O1i—Fe1—N2—C6 −93.43 (12)
N1—C5—C6—N2 2.4 (2) O1—Fe1—N2—C6 86.57 (12)
C4—C5—C6—N2 −178.36 (16) N1i—Fe1—N2—C6 176.36 (11)
C2—C1—N1—C5 1.8 (3) N1—Fe1—N2—C6 −3.64 (11)
C2—C1—N1—Fe1 −175.34 (15) O1i—Fe1—N2—N3 88.90 (18)
C4—C5—N1—C1 −2.2 (3) O1—Fe1—N2—N3 −91.10 (18)
C6—C5—N1—C1 177.07 (16) N1i—Fe1—N2—N3 −1.31 (18)
C4—C5—N1—Fe1 175.23 (13) N1—Fe1—N2—N3 178.69 (18)
C6—C5—N1—Fe1 −5.48 (18) C6—N2—N3—N4 −0.01 (18)
O1i—Fe1—N1—C1 −87.30 (16) Fe1—N2—N3—N4 177.76 (13)
O1—Fe1—N1—C1 92.70 (16) N2—N3—N4—N5 −0.15 (19)
N2—Fe1—N1—C1 −177.74 (17) N2—C6—N5—N4 −0.26 (19)
N2i—Fe1—N1—C1 2.26 (17) C5—C6—N5—N4 179.35 (16)
O1i—Fe1—N1—C5 95.51 (12) N3—N4—N5—C6 0.25 (19)
O1—Fe1—N1—C5 −84.49 (12)

Symmetry codes: (i) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H11···N5ii 0.85 1.91 2.764 (2) 177
O1—H12···N4iii 0.85 2.00 2.823 (2) 162
C2—H2···O1iv 0.93 2.56 3.362 (3) 145

Symmetry codes: (ii) x, −y+3/2, z+1/2; (iii) −x, y−1/2, −z+5/2; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2104).

References

  1. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press.
  3. Kitagawa, S. & Uemura, K. (2005). Chem. Soc. Rev.34, 109–119. [DOI] [PubMed]
  4. Mo, X.-J., Gao, E.-Q., He, Z., Li, W.-J. & Yan, C.-H. (2004). Inorg. Chem. Commun.7, 353–355.
  5. Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359–362.
  6. Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev.250, 2127–2157.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Song, Y.-H., Chiu, Y.-C., Chi, Y., Chou, P.-T., Cheng, Y.-M., Lin, C.-W., Lee, G.-H. & Carty, A. J. (2008). Organometallics, 27, 80–87.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tao, Y., Li, J.-R., Yu, Q., Song, W.-C., Tong, X.-L. & Bu, X.-H. (2008). CrystEngComm, 10, 699–705.
  12. Wang, L.-Z., Qu, Z.-R., Zhao, H., Wang, X.-S., Xiong, R.-G. & Xue, Z.-L. (2003). Inorg. Chem.42, 3969–3971. [DOI] [PubMed]
  13. Wen, X.-C. (2008). Acta Cryst. E64, m768. [DOI] [PMC free article] [PubMed]
  14. Wu, L.-L., Yang, C.-H., Sun, I.-W., Chu, S.-Y., Kao, P.-C. & Huang, H.-H. (2007). Organometallics, 26, 2017–2023.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809007892/im2104sup1.cif

e-65-0m382-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809007892/im2104Isup2.hkl

e-65-0m382-Isup2.hkl (67KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES