Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Mar 6;65(Pt 4):o676. doi: 10.1107/S1600536808041056

3-Methyl­sulfanyl-5-phenyl-4H-1,2,4-triazol-4-amine–water (6/1)

Deng-Ze Wu a, Miao-Chang Liu a, Hua-Yue Wu a, Xiao-Bo Huang a, Jian-Jun Li b,*
PMCID: PMC2969018  PMID: 21582420

Abstract

In the title compound, 6C9H10N4S·H2O, the dihedral angle between the five-membered triazole ring and the phenyl ring is 44.33 (16)°. The solvent water molecule is disordered about a special position with Inline graphic symmetry and its occupancy cannot be greater than 0.1667. The crystal structure is stabilized by inter­molecular N—H⋯N and C–H⋯N hydrogen bonds.

Related literature

For general background to 1,2,4-triazoles, see: Feng et al. (1992); Hui et al. (2000); Prasad et al. (1989); Mohan et al. (1987) For related structures, see: Xiang et al. (2004); Jin et al. (2004)graphic file with name e-65-0o676-scheme1.jpg

Experimental

Crystal data

  • 6C9H10N4S·H2O

  • M r = 1255.73

  • Hexagonal, Inline graphic

  • a = 23.0266 (15) Å

  • c = 10.5190 (9) Å

  • V = 4830.2 (6) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 K

  • 0.32 × 0.23 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.918, T max = 0.960

  • 8946 measured reflections

  • 2011 independent reflections

  • 1647 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.204

  • S = 0.99

  • 2011 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041056/sj2552sup1.cif

e-65-0o676-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041056/sj2552Isup2.hkl

e-65-0o676-Isup2.hkl (97.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.86 2.30 3.127 (4) 162
N4—H4B⋯N2ii 0.86 2.21 3.060 (4) 172
C5—H5⋯N1i 0.93 2.60 3.507 (6) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Opening Foundation of Zhejiang Provincial Top-Key Pharmaceutical Discipline (grant Nos. 20050603, 20050610 and 20080602) for financial support.

supplementary crystallographic information

Comment

A literature survey reveals that 1,2,4-triazoles are good intermediates in the synthesis of some fused heterocycles which exhibit various biological properties, including antimicrobial (Feng et al., 1992), antibacterial and antifungal (Hui et al., 2000), anti-inflammatory (Prasad et al., 1989) and diuretic (Mohan & Anjaneyulu, 1987) activities.

The molecule of (I), Fig. 1, contains a five-membered triazole ring A(N1,N2,C3,N3,C2) with a benzene ring substituent B(C1—C6). The two rings are each essentially planar, with average deviations from planarity of 0.003 (1) and 0.004 (1) Å, respectively. The dihedral angle between the thiadiazole ring and the benzene ring is 44.33 (16)°.

The water molecule is disordered about a threefold inversion axis such that the asymmetric unit comprises one C9H10N4S molecule and a water molecule with occupancy ca 0.167

The C—N bond lengths in the molecule lie in the range 1.302 (5)–1.364 (4) Å. These are longer than a typical double C=N bond [ca 1.269 (2) Å] (Xiang et al., 2004), but shorter than a C—N single bond [ca 1.443 (4) Å] (Jin et al., 2004), indicating a degree of electron delocalization in the triazole ring.

The crystal packing in (I), Fig. 2, is stabilized by intermolecular and intramolecular N—H···N and C–H···N hydrogen bonds, Table 1.

Experimental

4-Amino-5-phenyl-2,4-dihydro[1,2,4]triazole-3-thione(0.96 g 5.0 mmol), methyl iodide(1.07 g 7.5 mmol) and sodium hydroxide(0.28 g 7.0 mmol) were dissolved in stirred dichloromethane (30 ml)and left for 2 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 73% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 425–426 K).

Refinement

H atoms bound to N and O atoms were found in difference Fourier maps and their distances restrainted to N—H = 0.86 (2)Å and O—H = 0.85 (2)Å with Uiso = 1.2Ueq (parent atom), respectively. All other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp2—H = 0.93 Å with Uiso = 1.2 Ueq (parent atom), C(methyl)-H = 0.96 Å with Uiso = 1.5 Ueq (parent atom).

Figures

Fig. 1.

Fig. 1.

The formula unit of (I) with atom numbering, showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure, showing the infinite hydrogen-bonding network of (I) running along the a axis. Hydrogen bonds are indicated by dashed lines.

Crystal data

6C9H10N4S·H2O Dx = 1.314 Mg m3
Mr = 1255.73 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3 Cell parameters from 2375 reflections
Hall symbol: -R 3 θ = 2.2–23.0°
a = 23.0266 (15) Å µ = 0.27 mm1
c = 10.5190 (9) Å T = 298 K
V = 4830.2 (6) Å3 Prism, colorless
Z = 3 0.32 × 0.23 × 0.15 mm
F(000) = 2004

Data collection

Bruker SMART CCD area-detector diffractometer 2011 independent reflections
Radiation source: fine-focus sealed tube 1647 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −27→27
Tmin = 0.918, Tmax = 0.960 k = −27→20
8946 measured reflections l = −10→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1049P)2 + 19.9182P] where P = (Fo2 + 2Fc2)/3
2011 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.70 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 1.03285 (6) 0.89151 (5) 0.71331 (11) 0.0608 (4)
O1W 0.645 (2) 0.348 (3) 0.356 (2) 0.095 (12) 0.166667
H1W 0.6667 0.3333 0.3967 0.142* 0.50
H2W 0.6439 0.3779 0.3102 0.142* 0.166667
N1 1.08197 (15) 0.83742 (16) 0.5409 (3) 0.0520 (8)
N2 1.05881 (15) 0.77523 (16) 0.4828 (3) 0.0501 (8)
N3 0.98055 (13) 0.76822 (14) 0.6086 (3) 0.0381 (7)
N4 0.92266 (14) 0.74747 (15) 0.6827 (3) 0.0457 (8)
H4A 0.8918 0.7438 0.6318 0.055*
H4B 0.9136 0.7090 0.7124 0.055*
C1 1.1062 (3) 0.9644 (2) 0.6516 (5) 0.0809 (15)
H1A 1.1442 0.9579 0.6578 0.121*
H1B 1.1146 1.0031 0.7001 0.121*
H1C 1.0989 0.9709 0.5642 0.121*
C2 1.03399 (18) 0.83096 (18) 0.6157 (3) 0.0433 (9)
C3 0.99830 (17) 0.73476 (18) 0.5243 (3) 0.0410 (8)
C4 0.95704 (18) 0.66410 (18) 0.4868 (3) 0.0427 (8)
C5 0.8903 (2) 0.6366 (2) 0.4557 (4) 0.0555 (10)
H5 0.8695 0.6622 0.4626 0.067*
C6 0.8543 (2) 0.5711 (2) 0.4142 (5) 0.0726 (13)
H6 0.8092 0.5526 0.3935 0.087*
C7 0.8845 (3) 0.5333 (2) 0.4034 (5) 0.0783 (14)
H7 0.8600 0.4892 0.3746 0.094*
C8 0.9510 (3) 0.5600 (2) 0.4349 (5) 0.0689 (13)
H8 0.9714 0.5341 0.4276 0.083*
C9 0.9874 (2) 0.6252 (2) 0.4773 (4) 0.0524 (10)
H9 1.0322 0.6431 0.4996 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0603 (7) 0.0493 (6) 0.0676 (7) 0.0236 (5) 0.0099 (5) −0.0071 (5)
O1W 0.050 (15) 0.09 (3) 0.100 (18) 0.001 (10) 0.041 (12) −0.015 (14)
N1 0.0389 (17) 0.0496 (19) 0.060 (2) 0.0166 (15) 0.0097 (15) 0.0029 (15)
N2 0.0428 (18) 0.0512 (19) 0.0565 (19) 0.0236 (15) 0.0112 (14) 0.0018 (15)
N3 0.0322 (14) 0.0406 (16) 0.0436 (16) 0.0197 (13) 0.0060 (12) 0.0054 (12)
N4 0.0378 (16) 0.0474 (17) 0.0534 (19) 0.0225 (14) 0.0097 (13) 0.0090 (14)
C1 0.079 (3) 0.044 (2) 0.095 (4) 0.012 (2) 0.013 (3) −0.005 (2)
C2 0.0404 (19) 0.0412 (19) 0.048 (2) 0.0203 (16) 0.0030 (16) 0.0040 (15)
C3 0.0404 (19) 0.045 (2) 0.0417 (19) 0.0245 (16) 0.0027 (15) 0.0037 (15)
C4 0.048 (2) 0.045 (2) 0.0392 (19) 0.0258 (17) 0.0067 (15) 0.0056 (15)
C5 0.050 (2) 0.053 (2) 0.069 (3) 0.029 (2) −0.0036 (19) −0.005 (2)
C6 0.056 (3) 0.057 (3) 0.100 (4) 0.025 (2) −0.012 (2) −0.012 (3)
C7 0.080 (3) 0.048 (3) 0.102 (4) 0.028 (2) 0.000 (3) −0.014 (2)
C8 0.081 (3) 0.060 (3) 0.081 (3) 0.047 (3) 0.010 (3) 0.001 (2)
C9 0.055 (2) 0.056 (2) 0.054 (2) 0.033 (2) 0.0063 (18) 0.0038 (18)

Geometric parameters (Å, °)

S1—C2 1.743 (4) N4—H4B 0.8600
S1—C1 1.804 (5) C1—H1A 0.9600
O1W—O1Wi 0.88 (3) C1—H1B 0.9600
O1W—O1Wii 0.88 (3) C1—H1C 0.9600
O1W—O1Wiii 1.28 (4) C3—C4 1.470 (5)
O1W—O1Wiv 1.28 (4) C4—C5 1.378 (5)
O1W—O1Wv 1.55 (4) C4—C9 1.388 (5)
O1W—H1W 0.8501 C5—C6 1.379 (6)
O1W—H2W 0.8500 C5—H5 0.9300
N1—C2 1.302 (5) C6—C7 1.365 (7)
N1—N2 1.395 (5) C6—H6 0.9300
N2—C3 1.305 (5) C7—C8 1.375 (7)
N3—C2 1.352 (5) C7—H7 0.9300
N3—C3 1.364 (4) C8—C9 1.377 (6)
N3—N4 1.406 (4) C8—H8 0.9300
N4—H4A 0.8601 C9—H9 0.9300
C2—S1—C1 98.7 (2) S1—C1—H1C 109.5
O1Wi—O1W—O1Wii 93 (4) H1A—C1—H1C 109.5
O1Wi—O1W—O1Wiii 89.994 (4) H1B—C1—H1C 109.5
O1Wii—O1W—O1Wiv 89.995 (9) N1—C2—N3 110.8 (3)
O1Wiii—O1W—O1Wiv 60.000 (8) N1—C2—S1 128.0 (3)
O1Wi—O1W—O1Wv 55.4 (9) N3—C2—S1 121.2 (3)
O1Wii—O1W—O1Wv 55.4 (9) N2—C3—N3 109.2 (3)
O1Wi—O1W—H1W 85.0 N2—C3—C4 124.7 (3)
O1Wii—O1W—H1W 85.0 N3—C3—C4 126.1 (3)
O1Wv—O1W—H1W 48.2 C5—C4—C9 119.5 (4)
O1Wi—O1W—H2W 67.8 C5—C4—C3 121.8 (3)
O1Wii—O1W—H2W 108.1 C9—C4—C3 118.6 (3)
O1Wiii—O1W—H2W 144.8 C4—C5—C6 119.9 (4)
O1Wiv—O1W—H2W 110.0 C4—C5—H5 120.0
O1Wv—O1W—H2W 117.3 C6—C5—H5 120.0
H1W—O1W—H2W 149.9 C7—C6—C5 120.4 (4)
C2—N1—N2 106.3 (3) C7—C6—H6 119.8
C3—N2—N1 108.1 (3) C5—C6—H6 119.8
C2—N3—C3 105.6 (3) C6—C7—C8 120.1 (4)
C2—N3—N4 122.3 (3) C6—C7—H7 119.9
C3—N3—N4 132.0 (3) C8—C7—H7 119.9
N3—N4—H4A 106.6 C7—C8—C9 120.1 (4)
N3—N4—H4B 104.5 C7—C8—H8 120.0
H4A—N4—H4B 111.3 C9—C8—H8 120.0
S1—C1—H1A 109.5 C8—C9—C4 119.9 (4)
S1—C1—H1B 109.5 C8—C9—H9 120.1
H1A—C1—H1B 109.5 C4—C9—H9 120.1
C2—N1—N2—C3 0.4 (4) N4—N3—C3—C4 1.5 (6)
N2—N1—C2—N3 −0.6 (4) N2—C3—C4—C5 −135.3 (4)
N2—N1—C2—S1 −179.7 (3) N3—C3—C4—C5 45.9 (5)
C3—N3—C2—N1 0.6 (4) N2—C3—C4—C9 41.9 (5)
N4—N3—C2—N1 178.1 (3) N3—C3—C4—C9 −137.0 (4)
C3—N3—C2—S1 179.7 (2) C9—C4—C5—C6 −0.7 (6)
N4—N3—C2—S1 −2.7 (5) C3—C4—C5—C6 176.4 (4)
C1—S1—C2—N1 11.9 (4) C4—C5—C6—C7 −0.2 (7)
C1—S1—C2—N3 −167.1 (3) C5—C6—C7—C8 0.6 (8)
N1—N2—C3—N3 −0.1 (4) C6—C7—C8—C9 −0.1 (8)
N1—N2—C3—C4 −179.1 (3) C7—C8—C9—C4 −0.8 (7)
C2—N3—C3—N2 −0.3 (4) C5—C4—C9—C8 1.2 (6)
N4—N3—C3—N2 −177.5 (3) C3—C4—C9—C8 −176.0 (4)
C2—N3—C3—C4 178.7 (3)

Symmetry codes: (i) y+1/3, −x+y+2/3, −z+2/3; (ii) xy+1/3, x−1/3, −z+2/3; (iii) −y+1, xy, z; (iv) −x+y+1, −x+1, z; (v) −x+4/3, −y+2/3, −z+2/3.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N1vi 0.86 2.30 3.127 (4) 162
N4—H4B···N2vii 0.86 2.21 3.060 (4) 172
C5—H5···N1vi 0.93 2.60 3.507 (6) 167

Symmetry codes: (vi) y, −x+y+1, −z+1; (vii) −y+5/3, xy+1/3, z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2552).

References

  1. Bruker (2002). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Feng, X. M., Chen, R. & Yang, W. D. (1992). Chem. J. Chin. Univ.13, 187–194.
  3. Hui, X. P., Zhang, L. M. & Zhang, Z. Y. (2000). J. Chin. Chem. Soc.47, 535–541.
  4. Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [DOI] [PubMed]
  5. Mohan, J. & Anjaneyulu, G. S. R. (1987). Pol. J. Chem.61, 547–551.
  6. Prasad, A. P., Ramalingam, T. & Rao, A. B. (1989). J. Med. Chem.24, 199–214.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Xiang, G.-Q., Zhang, L.-X., Zhang, A.-J., Cai, X.-Q. & Hu, M.-L. (2004). Acta Cryst. E60, o2249–o2251.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808041056/sj2552sup1.cif

e-65-0o676-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041056/sj2552Isup2.hkl

e-65-0o676-Isup2.hkl (97.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES