Abstract
Hypoprothrombinemia is a serious adverse effect of antimicrobial therapy that occurs after administration of some second- and third-generation cephalosporins which contain the methyltetrazole-thiol (MTT) group. Previous studies have shown that in vitro MTT directly inhibits microsomal gamma-carboxylation of a synthetic pentapeptide. Since MTT is a thiocarbamide, a type of compound that can increase oxidation of glutathione, the present studies were carried out to determine whether alterations in hepatic glutathione redox state might interfere with vitamin K metabolism. Dose-related increases in biliary efflux and hepatic concentration of oxidized glutathione (GSSG) occurred after intravenous administration of MTT or MTT-containing antibiotics to rats. This finding suggested that these compounds could alter the hepatic glutathione redox state in vivo. Microsomal reduction of vitamin K epoxide occurred in the presence of 100 microM dithiothreitol (DTT), but was inhibited by preincubation with GSSG at concentrations as low as 10 microM. At higher concentrations of DTT (1.0 mM) inhibition by GSSG persisted, but higher concentrations were required, suggesting that the thiol/disulfide ratio, rather than the absolute concentration of GSSG was important. By contrast, GSSG did not effect microsomal gamma-carboxylation of a pentapeptide, using either vitamin K1 or its hydroquinone as a cofactor. These findings suggest a novel mechanism for the hypoprothrombinemia occurring after administration of MTT-containing antibiotics.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerboom T. P., Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–382. doi: 10.1016/s0076-6879(81)77050-2. [DOI] [PubMed] [Google Scholar]
- Bechtold H., Andrassy K., Jähnchen E., Koderisch J., Koderisch H., Weilemann L. S., Sonntag H. G., Ritz E. Evidence for impaired hepatic vitamin K1 metabolism in patients treated with N-methyl-thiotetrazole cephalosporins. Thromb Haemost. 1984 Jul 29;51(3):358–361. [PubMed] [Google Scholar]
- CLELAND W. W. DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry. 1964 Apr;3:480–482. doi: 10.1021/bi00892a002. [DOI] [PubMed] [Google Scholar]
- Gilbert H. F. Biological disulfides: the third messenger? Modulation of phosphofructokinase activity by thiol/disulfide exchange. J Biol Chem. 1982 Oct 25;257(20):12086–12091. [PubMed] [Google Scholar]
- Gilbert H. F. Redox control of enzyme activities by thiol/disulfide exchange. Methods Enzymol. 1984;107:330–351. doi: 10.1016/0076-6879(84)07022-1. [DOI] [PubMed] [Google Scholar]
- Hochman R., Clark J., Rolla A., Thomas S., Kaldany A., D'Elia J. A. Bleeding in patients with infections. Are antibiotics helping or hurting? Arch Intern Med. 1982 Aug;142(8):1440–1442. [PubMed] [Google Scholar]
- Houser R. M., Carey D. J., Dus K. M., Marshall G. R., Olson R. E. Partial sequence of rat prothrombin and the activity of two related pentapeptides as substrates for the vitamin K-dependent carboxylase system. FEBS Lett. 1977 Mar 15;75(1):226–230. doi: 10.1016/0014-5793(77)80092-6. [DOI] [PubMed] [Google Scholar]
- Kitson T. M. The effect of 5,5'-dithiobis(1-methyltetrazole) on cytoplasmic aldehyde dehydrogenase and its implications for cephalosporin-alcohol reactions. Alcohol Clin Exp Res. 1986 Jan-Feb;10(1):27–32. doi: 10.1111/j.1530-0277.1986.tb05608.x. [DOI] [PubMed] [Google Scholar]
- Kramer R. A., Zakher J., Kim G. Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science. 1988 Aug 5;241(4866):694–697. doi: 10.1126/science.3399900. [DOI] [PubMed] [Google Scholar]
- Krieter P. A., Ziegler D. M., Hill K. E., Burk R. F. Increased biliary GSSG efflux from rat livers perfused with thiocarbamide substrates for the flavin-containing monooxygenase. Mol Pharmacol. 1984 Jul;26(1):122–127. [PubMed] [Google Scholar]
- Lipsky J. J. Ability of 1-methyltetrazole-5-thiol with microsomal activation to inhibit aldehyde dehydrogenase. Biochem Pharmacol. 1989 Mar 1;38(5):773–779. doi: 10.1016/0006-2952(89)90230-x. [DOI] [PubMed] [Google Scholar]
- Lipsky J. J. Antibiotic-associated hypoprothrombinaemia. J Antimicrob Chemother. 1988 Mar;21(3):281–300. doi: 10.1093/jac/21.3.281. [DOI] [PubMed] [Google Scholar]
- Lipsky J. J., Lewis J. C., Novick W. J., Jr Production of hypoprothrombinemia by moxalactam and 1-methyl-5-thiotetrazole in rats. Antimicrob Agents Chemother. 1984 Mar;25(3):380–381. doi: 10.1128/aac.25.3.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsky J. J. Mechanism of the inhibition of the gamma-carboxylation of glutamic acid by N-methylthiotetrazole-containing antibiotics. Proc Natl Acad Sci U S A. 1984 May;81(9):2893–2897. doi: 10.1073/pnas.81.9.2893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipsky J. J. N-methyl-thio-tetrazole inhibition of the gamma carboxylation of glutamic acid: possible mechanism for antibiotic-associated hypoprothrombinaemia. Lancet. 1983 Jul 23;2(8343):192–193. doi: 10.1016/s0140-6736(83)90174-5. [DOI] [PubMed] [Google Scholar]
- Matsubara T., Otsubo S., Ogawa A., Kawamoto K., Okamoto J., Sugeno K., Tochino Y., Yoshida T., Hirai E. Effects of beta-lactam antibiotics and N-methyltetrazolethiol on the alcohol-metabolizing system in rats. Jpn J Pharmacol. 1987 Nov;45(3):303–315. doi: 10.1254/jjp.45.303. [DOI] [PubMed] [Google Scholar]
- Reed D. J., Fariss M. W. Glutathione depletion and susceptibility. Pharmacol Rev. 1984 Jun;36(2 Suppl):25S–33S. [PubMed] [Google Scholar]
- Sadowski J. A., Esmon C. T., Suttie J. W. Vitamin K-dependent carboxylase. Requirements of the rat liver microsomal enzyme system. J Biol Chem. 1976 May 10;251(9):2770–2776. [PubMed] [Google Scholar]
- Suttie J. W., Engelke J. A., McTigue J. Effect of N-methyl-thiotetrazole on rat liver microsomal vitamin K-dependent carboxylation. Biochem Pharmacol. 1986 Jul 15;35(14):2429–2433. doi: 10.1016/0006-2952(86)90472-7. [DOI] [PubMed] [Google Scholar]
- Suttie J. W. Recent advances in hepatic vitamin K metabolism and function. Hepatology. 1987 Mar-Apr;7(2):367–376. doi: 10.1002/hep.1840070226. [DOI] [PubMed] [Google Scholar]
- Sáez G. T., Romero F. J., Viña J. Effects of glutathione depletion on gluconeogenesis in isolated hepatocytes. Arch Biochem Biophys. 1985 Aug 15;241(1):75–80. doi: 10.1016/0003-9861(85)90363-7. [DOI] [PubMed] [Google Scholar]
- Vallari R. C., Pietruszko R. Human aldehyde dehydrogenase: mechanism of inhibition of disulfiram. Science. 1982 May 7;216(4546):637–639. doi: 10.1126/science.7071604. [DOI] [PubMed] [Google Scholar]
- Wallin R., Martin L. F. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. J Clin Invest. 1985 Nov;76(5):1879–1884. doi: 10.1172/JCI112182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallin R., Martin L. F. Warfarin poisoning and vitamin K antagonism in rat and human liver. Design of a system in vitro that mimics the situation in vivo. Biochem J. 1987 Jan 15;241(2):389–396. doi: 10.1042/bj2410389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walters D. W., Gilbert H. F. Thiol/disulfide exchange between rabbit muscle phosphofructokinase and glutathione. Kinetics and thermodynamics of enzyme oxidation. J Biol Chem. 1986 Nov 25;261(33):15372–15377. [PubMed] [Google Scholar]
- Ziegler D. M. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem. 1985;54:305–329. doi: 10.1146/annurev.bi.54.070185.001513. [DOI] [PubMed] [Google Scholar]
