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 Neonatal Neutrophils with Prolonged 
Survival Secrete Mediators Associated 
with Chronic Inflammation 
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The results of the present study extend previous observa-
tions of augmented function in surviving neonatal neutro-
phils, and further suggest their potential contribution to the 
pathogenesis of inflammatory disorders in neonates. 
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 Introduction 

 The prolonged survival of inflammatory neutrophils, 
which is associated with their delayed removal from tis-
sues, is a critical component in the pathogenesis of chron-
ic inflammatory and autoimmune disorders in adults
 [1–4]  and neonates  [5–8] . The accumulation of tissue 
neutrophils, a hallmark of the early phase of chronic in-
flammation, can mediate injury through two related pro-
cesses: (1) the recruitment and activation of additional 
neutrophils from the circulation, and (2) the delayed 
clearance of neutrophils with inflammatory or cytotoxic 
function  [9–12] . Neutrophils activated by an inflamma-
tory milieu can produce cytokines and cytotoxic factors 
which can also enhance continued inflammation and 
promote lung injury  [13–16] . Neonatal leukocytes have 
also been shown to produce IL-8  [17, 18] , a chemokine 
closely associated with the pathogenesis of chronic in-
flammatory disorders  [19–21] .
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 Abstract 
  Background:  The resolution of inflammation involves the 
efficient removal of apoptotic neutrophils (PMN). However, 
a subpopulation of PMN that are resistant to apoptosis may 
contribute to PMN persistence in tissues, an early hallmark
of chronic inflammation. We previously made observations 
that neonatal PMN with prolonged survival had augmented 
expression of CD18/CD11b, an adhesion molecule critical to 
inflammation.  Objectives:  The objectives of this study were 
to test the hypothesis that surviving neonatal PMN retain the 
capacity to secrete key mediators associated with chronic 
inflammation.  Methods:  We profiled cytokine and chemo-
kine secretion patterns of lipopolysaccharide (LPS)-stimulat-
ed neonatal and adult PMN using multicytokine array and 
ELISA.  Results:  We observed that surviving 24-hour neonatal 
PMN stimulated with LPS had enhanced secretion of inter-
leukin (IL)-8, a chemokine involved in PMN activation and 
recruitment. In addition, 24-hour neonatal PMN secreted 
levels of monocyte inhibitory protein (MIP)-1 �  that were 
higher than those secreted by 0-hour PMN, but amounts of 
IL-1 receptor antagonist (IL-1Ra) were lower.  Conclusions:  
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  Exposure of neutrophils to bacterial components or 
cytokines can prolong their longevity, and these surviv-
ing neutrophils retain inflammatory and cytotoxic func-
tions, including the secretion of critical mediators  [22–
24] . However, less information exists regarding neutro-
phils that survive spontaneous apoptosis in the absence 
of survival factors, which may also represent the subpop-
ulation of neutrophils with the capacity for very pro-
longed survival with intact inflammatory function  [24] . 
Savill et al.  [3]  originally observed that a small proportion 
of neutrophils from adult donors are intrinsically resis-
tant to spontaneous apoptosis. In contrast, we and others 
reported that a relatively larger subpopulation of neutro-
phils with preferential survival exists in neonates  [25, 26] . 

  Studies by Dransfield et al.  [27]  suggested that surviv-
ing nonapoptotic neutrophils retained selectin- and inte-
grin-mediated adherence. We previously reported that 
neonatal neutrophils enriched for this nonapoptotic pop-
ulation had robust upregulation of the adhesion mol-
ecule, CD18/CD11b, in addition to reactive oxygen in-
termediate production in response to stimulation  [28] . 
Given the likely contribution of these functions to in-
flammatory processes  [29, 30] , we wondered whether 
neonatal neutrophils with prolonged survival might re-
tain inflammatory potential. The goal of the present 
study was to test our hypothesis that neonatal neutrophils 
which survive spontaneous apoptosis can secrete media-
tors with the capacity to amplify inflammation.

  Methods 

 Neutrophil (PMN) Isolation and Culture 
 Samples from the umbilical veins of term placentas delivered 

after uncomplicated cesarean sections or from the peripheral ve-
nous blood of healthy adult volunteers were collected into hepa-
rinized syringes and processed immediately. Samples were ob-
tained in accordance with the guidelines of the Institutional Re-
view Board for Human Studies.

  Dextran-sedimented leukocytes were subjected to density 
centrifugation, and the resultant neutrophils were subjected to 
hypotonic lysis of contaminating erythrocytes, as previously de-
scribed  [31, 32] . Isolated PMN (10 6  cells/ml) suspended in RPMI-
1640/2% FCS (Mediatech Inc., Herndon, Va., USA) were cultured 
in polypropylene tubes at 37   °   C, 5% CO 2  for 24 h to induce spon-
taneous apoptosis, as described below.

  Enrichment of the Surviving, Nonapoptotic PMN Fraction 
 Nonapoptotic surviving neutrophils were separated from 

apoptotic neutrophils in 24-hour cultures using immunomagnet-
ic techniques, as previously reported  [28, 33] . Briefly, cells re-
moved from culture were stained with annexin V-PE (BD Biosci-
ences Pharmingen, San Diego, Calif., USA). Neutrophils washed 
and resuspended in binding buffer were then stained with an an-

ti-PE-selection cocktail followed by incubation with magnetic 
nanoparticles (both, EasySep TM , StemCell Technologies, Vancou-
ver, B.C., Canada). The neutrophil-magnetic particle suspension 
was then placed in a magnet (EasySep TM ), as per the manufac-
turer’s instructions, to enrich the cells for the nonapoptotic (an-
nexin V-negative) fraction. Purity of the enriched neutrophil sus-
pensions was  1 95%, as determined by flow cytometric analysis of 
eluted PMN by annexin V-PE staining. The resultant annexin V-
negative neutrophils were then cultured as described below.

  LPS Stimulation of Neutrophil Cultures 
 Freshly isolated, 0-hour neutrophils or 24-hour annexin V-

negative (surviving) neutrophils (enriched as above) were incu-
bated at a concentration of 1  !  10 6  cells/ml at 37   °   C for 4 h in the 
presence of bacterial lipopolysaccharide (LPS, 10 ng/ml; Sigma-
Aldrich Inc., St. Louis, Mo., USA) or in media alone. After incu-
bation, the cell-free supernatants were harvested and stored at 
–80   °   C until assay.

  Cytokine/Chemokine Profiling of PMN-Conditioned Media 
 Aliquots of conditioned media (culture supernatants) were 

thawed once and assayed in duplicate using a multiplex immuno-
assay cytokine/chemokine kit (Fluorokine �  MAP MultiAnalyte 
Profiling, R&D Systems, Minneapolis, Minn., USA) for the anal-
ysis of: ENA-78, FGFbasic, G-CSF, IFN- � , IL-1 � , IL-1 � , IL-1Ra, 
IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-17, MCP-1, MIP-1 � , MIP-1 � , 
RANTES, TNF- � , VEGF and TPO. The assays were performed 
on the Luminex 100IS platform (Luminex Corp., Austin, Tex., 
USA). Additional analyses of the cell-free supernatants (IL-6, sen-
sitivity  1 3.1 pg/ml; IL-8, sensitivity  1 31.2 pg/ml) were performed 
by ELISA, according to the manufacturer’s instructions (Quan-
tikine � , R&D Systems).

  Data Analysis 
 Statistical comparisons between groups were made using Stu-

dent’s t test or the Mann-Whitney rank sum test for nonparamet-
ric data (SigmaStat �  for Windows software, version 2.03, SPSS 
Inc.). p  !  0.05 was considered to be statistically significant. Data 
are presented as the mean  8  SD.

  Results 

 Neonatal and Adult Neutrophils Secrete a Variety of 
Inflammatory Mediators 
 Cell-free supernatants were harvested from paired 

neonatal and adult neutrophil samples cultured in paral-
lel for each of 5–9 separate experiments. Supernatants of 
LPS-stimulated freshly-isolated (0-hour) and nonapop-
totic surviving (24-hour) neutrophil cultures were pro-
filed for content of inflammatory mediators using multi-
cytokine array or ELISA. Of the cytokines/chemokines 
tested, supernatants were found to contain only a subset 
of mediators at levels above the limits of sensitivity for the 
assay. Specifically, and as shown in  table 1  and  figures 1  
and  2 , these mediators included proinflammatory cyto-



 Surviving Neutrophils and Inflammation Neonatology 2010;98:341–347 343

kines (IL-1 � , IL-1 � , IL-6, IL-8, TNF- � ), chemokines 
(ENA-78, MCP-1, MIP-1 � , RANTES), an angiogenic fac-
tor (VEGF) and an anti-inflammatory mediator (IL-1Ra).

  Surviving Neonatal Neutrophils Secrete Augmented 
Levels of IL-8 
 As shown in  figure 1 , freshly-isolated (0-hour) neona-

tal neutrophils stimulated with LPS secreted markedly 
elevated levels of IL-8 [neonatal (CB), 1,317  8  466 vs.  
 adult (AD), 170  8  71 pg/ml; p  !  0.001; n = 9 separate 
studies of paired neonatal and adult neutrophils). Surviv-
ing (24-hour) neutrophils stimulated with LPS also se-
creted robust levels of IL-8, and again, neonatal neutro-
phils secreted relatively higher levels (CB, 1,773  8  827 
pg/ml vs. AD, 1,097  8  462 pg/ml; p  !  0.01). The IL-8 lev-
els secreted by LPS-stimulated 0-hour and surviving (24-
hour) neonatal neutrophils were not different (p = 0.07). 
In contrast, stimulated surviving adult neutrophils se-
creted IL-8 at levels that were nearly sevenfold greater 
than levels secreted by freshly-isolated neutrophils (p  !  
0.01). We also examined the constitutive release of IL-8 
by unstimulated 0-hour and surviving (24-hour) PMN. 
Unstimulated 0-hour neonatal, but not adult, PMN se-
creted IL-8 (CB 0-hour, 39  8  52 pg/ml). These levels were 
not significantly different from those secreted by surviv-
ing, 24-hour neonatal PMN (148  8  100 pg/ml vs. p = 
0.10). Surviving, 24-hour adult PMN also secreted IL-8 at 

Table 1. V alues represent levels (pg/ml) of mediators in the culture supernatants of freshly-isolated (0-hour) and 
24-hour, annexin V-negative (nonapoptotic, surviving) PMN following LPS stimulation, as assayed by multi-
cytokine array and/or ELISA and as described in the Methods section

Mediator 0 h 2 4 h

AD PMN CB PMN p AD PMN CB PMN p

Chemokines
ENA-78 886 1286 0.43 ND ND –
MCP-1 4883 51860 0.98 ND ND –
RANTES 86839 200894 0.07 1484 1784 0.31

Cytokines
IL-1� 1085 1682 0.07 1083 1185 0.69
IL-1� 28827 1889 0.98 ND ND –
IL-6 1485 1681 0.62 984 12819 0.64
TNF-� 4382 65813 0.02 ND ND –

Anti-inflammatory mediators
IL-1Ra 6,56582,702* 7,1498992* 0.69 949880 9928235 0.74

Angiogenic mediators
VEGF 2684 52826 0.03 ND 781 –

Dat a represent the means 8 SD of data from 5 independent experiments using paired CB and AD PMN. 
ND = Levels below the assay limits of detection for that particular mediator. * p < 0.05, 0 h vs. 24-hour PMN.
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  Fig. 1.  IL-8 secretion by freshly-isolated and surviving PMN. In 
paired studies, AD and CB PMN that were freshly isolated (0-
hour), or enriched for the annexin V-negative (nonapoptotic, sur-
viving) fraction (24-hour), were cultured for 4 h in the presence 
of LPS (10 ng/ml final concentration) or media alone, and the cell-
free supernatants were tested for IL-8 content. The graph repre-
sents individual data points derived from 5–9 separate studies of 
paired cultures of AD and CB PMN. Labels in the x-axis represent 
cultures of 0-hour and 24-hour PMN in media alone or in the 
presence of LPS (+). The horizontal bars represent the mean values 
for each data set. 
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levels that tended to be lower compared to secretion by 
neonatal PMN, but which did not reach statistical sig-
nificance (49  8  37 pg/ml, p = 0.08 vs. 24-hour CB PMN).

  Surviving LPS-Stimulated Neonatal Neutrophils 
Secrete More of the Inflammatory Chemokine MIP-1 �  
 As shown in  figure 2 , LPS-stimulated 0-hour neonatal 

neutrophils tended to secrete higher levels of MIP-1 �  
compared to 0-hour adult neutrophils, although this did 
not reach statistical significance (CB, 4,089  8  3,154 vs. 
AD, 639  8  244 pg/ml; p = 0.08). In contrast, stimulated 
surviving 24-hour neonatal neutrophils secreted more 
MIP-1 �  (961  8  339) than did stimulated surviving adult 
neutrophils (277  8  36 pg/ml; p  !  0.01), but at levels that 
were not different from those secreted by 0-hour adult 
neutrophils (p = 0.28). In contrast to the greater MIP-1 �  
secretion observed in surviving (24-hour) versus freshly-
isolated (0-hour) neonatal PMN, MIP-1 �  secretion by 
surviving adult PMN was significantly less than that by 
0-hour adult PMN (p  !  0.05).

  Neonatal and Adult Neutrophils Secrete Similar 
Amounts of IL-1Ra, IL-1 �  and IL-6 
 Freshly-isolated (0-hour) neonatal and adult neutro-

phils stimulated with LPS secreted similar levels of the 
anti-inflammatory cytokine, IL-1Ra ( table 1 ). LPS-stim-
ulated surviving (24-hour) neonatal or adult neutrophils 
also secreted similar levels of IL-1Ra, although these were 
sixfold lower relative to levels secreted by 0-hour neutro-
phils (p  !  0.05). In contrast, secretion of IL-1 �  and IL-6 
by LPS-stimulated 0-hour and surviving 24-hour neona-
tal and adult neutrophils was similar between groups and 
time points ( table 1 ).

  Stimulated Surviving Neutrophils Secrete Lower or 
Negligible Levels of Other Inflammatory Mediators 
 Freshly-isolated (0-hour) neonatal neutrophils stimu-

lated with LPS secreted higher levels of the inflammatory 
cytokine TNF- � , but similar levels of IL-1 �  compared to 
stimulated 0-hour adult neutrophils ( table 1 ). Stimulated 
neonatal neutrophils (0-hour) also secreted relatively 
greater amounts of the chemokines MCP-1 and RANTES 
relative to levels secreted by stimulated 0-hour adult neu-
trophils. In contrast, stimulation of surviving (24-hour) 
neonatal or adult neutrophils induced minimal or unde-
tectable secretion of all four of these cytokines or chemo-
kines.

  Stimulation of freshly-isolated (0-hour) neutrophils 
with LPS also induced secretion of the angiogenic media-
tor, VEGF, at levels that were higher in neonatal neutro-
phils compared to those secreted by 0-hour adult neutro-
phils ( table 1 ). In contrast, surviving (24-hour) neonatal 
neutrophils secreted levels of VEGF that were lower com-
pared to 0-hour cultures (p  !  0.05) while VEGF secretion 
was undetectable in cultures of surviving adult neutro-
phils.

  Discussion 

 The goal of the present studies was to profile the in-
flammatory mediators secreted by the subpopulations of 
neonatal and adult neutrophils that survive spontaneous 
apoptosis. Surviving neutrophils were observed to secrete 
several key chemokines with relevance to chronic in-
flammatory disorders, and this was more prominent for 
neonatal neutrophils.

  Neonatal neutrophils (freshly-isolated, 0-hour) were 
induced by LPS to secrete elevated levels of IL-8, as shown 
in  figure 1  and in confirmation of previous reports  [18, 
34] . In addition, surviving (24-hour) neutrophils exhib-
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  Fig. 2.  MIP-1 �  secretion by freshly-isolated and surviving PMN 
stimulated with LPS. In paired studies, AD and CB PMN that 
were freshly isolated (0-hour), or enriched for the annexin V-neg-
ative (nonapoptotic, surviving) fraction (24-hour), were cultured 
for 4 h in the presence of LPS (10 ng/ml final concentration) and 
the cell-free supernatants tested for MIP-1 �  content. The graph 
represents individual data points derived from 5 separate studies 
of paired cultures of AD and CB PMN. Labels in the x-axis repre-
sent cultures of 0-hour and 24-hour PMN in the presence of LPS 
(+). The horizontal bars represent the mean values for each data 
set. 
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ited a unique capacity to secrete IL-8 at levels that were at 
least similar to (neonatal neutrophils) or in excess of 
(adult neutrophils) levels secreted by freshly-isolated (0-
hour) neutrophils. Furthermore, secretion of IL-8 was 
particularly robust in LPS-stimulated surviving neonatal 
neutrophils, and was observed even under basal condi-
tions. The C-X-C chemokine, IL-8, is a potent neutrophil 
chemoattractant that also enhances neutrophil function 
 [35] . Thus, the present observations are consistent with 
our previous data showing augmented inflammatory 
function in surviving neonatal neutrophils  [28] . Our ob-
servations also suggest that neutrophils are an important 
cellular source of the prominent IL-8 expression in neo-
nates at risk for or affected by inflammatory or infectious 
disorders  [18–21, 36–40] .

  Robust expression of IL-8 in neonatal neutrophils may 
be a reflection of age-specific neutrophil differences in 
the translational control of transcriptional events. In par-
ticular, Yost et al.  [41]  observed that IL-8 production by 
inflammatory neutrophils can be modulated through the 
retinoic acid receptor- �  transcription factor, which is un-
der the regulation of the signaling 12 kinase mammalian 
target of rapamycin (mTOR). Thus, the heightened ex-
pression of IL-8 in neonatal neutrophils may be related to 
alterations in regulatory signaling pathways. We recently 
reported prominent Akt-mediated survival signaling 
 [42]  and have observed a unique pattern of NF- � B-regu-
lated function in neonatal neutrophils (manuscript in 
preparation). In contrast to the pattern of IL-8 secretion, 
surviving neutrophils released negligible amounts of oth-
er inflammatory cytokines, including IL-1 � , IL-1 � , IL-6 
and TNF- � . The minimal secretion of these cytokines, 
also observed in freshly-isolated neutrophils  [16] , sug-
gests that cells other than neutrophils may contribute to 
the high expression of IL-1 � , IL-6 and TNF- �  associated 
with chronic inflammatory disorders  [20, 43–45] .

  Freshly-isolated neonatal and adult neutrophils stim-
ulated with LPS had marked secretion of MIP-1 � /CCL4, 
a chemokine involved in the recruitment of monocytes 
and neutrophils to inflammatory sites  [43, 46] , and is an 
observation consistent with existing literature  [47, 48] . 
We also now report that surviving neonatal neutrophils 
could be induced to secrete MIP-1 � . Of note, surviving 
neonatal neutrophils secreted higher amounts of MIP-1 �  
compared to secretion by freshly-isolated neutrophils, 
while secretion of MIP-1 �  was markedly downregulated 
in surviving adult neutrophils compared to adult 0-hour 
neutrophils. Elevated expression of CCL4 has been ob-
served in association with a variety of inflammatory dis-
orders, including in the lungs  [49–51] . Thus, the capacity 

of surviving neonatal neutrophils to secrete CCL4 may be 
an integral component of the proinflammatory pheno-
type that is suggested by the present study. In contrast, 
surviving neutrophils secreted minimal or undetectable 
amounts of the monocyte-specific chemokines, RAN-
TES and MCP-1, an observation consistent with prefer-
ential recruitment of activated neutrophils  [24, 52] .

  The present observations are consistent with accumu-
lating evidence that immaturity of the neonatal innate 
immune system results in an imbalance that promotes 
inflammation  [34, 53, 54] . The lower secretion of the an-
ti-inflammatory mediator, IL-1Ra, could theoretically 
potentiate the proinflammatory phenotype of surviving 
neonatal neutrophils by downregulating inhibitory func-
tion  [55] . In addition, recent data suggest that immaturity 
of Toll-like receptor signaling is associated with a pro-
nounced inflammatory response in neonatal immune 
cells  [56, 57] .

  The present studies provide novel evidence that sur-
viving neonatal neutrophils can secrete mediators with 
the potential to promote continued neutrophil recruit-
ment and to contribute to the establishment of chronic 
inflammatory processes. These data are consistent with 
observations by Chakravarti et al.  [24]  of a reprogrammed 
inflammatory phenotype in neutrophils with prolonged 
survival. Importantly, since a much larger subpopulation 
of neonatal neutrophils exhibit preferential survival com-
pared to those of adult neutrophils  [24–26, 58] , our data 
extend the concept that the neonatal innate immune re-
sponse may amplify processes that promote inflamma-
tion-related morbidity and mortality  [28, 59, 60] .
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