Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):m739–m740. doi: 10.1107/S160053680901959X

Dichloridobis(phenanthridine-κN)zinc(II)

Zeinab Khoshtarkib a, Amin Ebadi b, Robabeh Alizadeh c,*, Roya Ahmadi a, Vahid Amani a
PMCID: PMC2969295  PMID: 21582680

Abstract

In the mol­ecule of the title compound, [ZnCl2(C13H9N)2], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intra­molecular C—H⋯Cl inter­action results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, π–π contacts between the phenanthridine systems [centroid–centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C—H⋯π inter­actions are also found.

Related literature

For related structures, see: Ahmadi et al. (2008); Çelik et al. (2004); Cui et al. (1998); Gruia et al. (2007); Khalighi et al. (2008); Khan & Tuck (1984); Khavasi et al. (2008); Kozhevnikov et al. (2006); Liu et al. (2004); Markowitz et al. (2006); Musie et al. (2004); Preston & Kennard (1969); Reimann et al. (1966); Shen et al. (2004); Steffen & Palenik (1977). For bond-length data, see: Allen et al. (1987). graphic file with name e-65-0m739-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C13H9N)2]

  • M r = 494.71

  • Monoclinic, Inline graphic

  • a = 16.193 (3) Å

  • b = 10.101 (2) Å

  • c = 14.491 (3) Å

  • β = 116.02 (3)°

  • V = 2130.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.610, T max = 0.740

  • 16947 measured reflections

  • 5732 independent reflections

  • 4612 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.086

  • S = 1.09

  • 5732 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901959X/hk2696sup1.cif

e-65-0m739-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901959X/hk2696Isup2.hkl

e-65-0m739-Isup2.hkl (275KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cl1—Zn1 2.2234 (7)
Cl2—Zn1 2.2456 (7)
N1—Zn1 2.0785 (17)
N2—Zn1 2.0775 (17)
N2—Zn1—N1 105.19 (7)
N2—Zn1—Cl1 108.18 (5)
N1—Zn1—Cl1 106.23 (5)
N2—Zn1—Cl2 113.54 (5)
N1—Zn1—Cl2 107.46 (6)
Cl1—Zn1—Cl2 115.49 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.93 2.77 3.434 (3) 129
C17—H17⋯Cg6i 0.93 2.82 3.535 (3) 134
C24—H24⋯Cg5ii 0.93 2.81 3.508 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg5 and Cg6 are the centroids of the C15–C20 and C21–C26 rings, respectively.

Acknowledgments

We are grateful to Damghan University of Basic Sciences for financial support.

supplementary crystallographic information

Comment

There are several ZnII complexes, with formula, [ZnCl2(N)2], such as [ZnCl2(AMS)2], (II) (Shen et al., 2004), [ZnCl2(4-CNpy)2], (III) (Steffen & Palenik, 1977), [ZnCl2(pht)2], (IV) (Çelik et al., 2004), [ZnCl2(quin)2], (V) (Cui et al., 1998), [ZnCl2(quino)2], (VI) (Markowitz et al., 2006) and [ZnCl2(meim)2], (VII) (Musie et al., 2004) [where AMS is 3-Amino-5-methylisoxazole, 4-CNpy is 4-cyanopyridine, pht is phthalazine, quin is quinoline, quino is quinoxaline and meim is 1-methylimidazole] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several ZnII complexes, with formula, [ZnCl2(N—N)], such as [ZnCl2(bipy)], (VIII) (Khan & Tuck, 1984), [ZnCl2(biim)], (IX) (Gruia et al., 2007), [ZnCl2(phbipy)], (X) (Kozhevnikov et al., 2006), [ZnCl2(phen)], (XI) (Reimann et al., 1966), [ZnCl2(dmphen)], (XII) (Preston & Kennard, 1969), [ZnCl2(dpdmbip)], (XIII) (Liu et al., 2004), [ZnCl2(dm4bt)], (XIV) (Khavasi et al., 2008), [ZnCl2(5,5'-dmbpy)], (XV) (Khalighi et al., 2008) and [ZnCl2(6-mbipy)], (XVI) (Ahmadi et al., 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine, dm4bt is 2,2'-dimethyl-4,4'-bithiazole, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and 6-mbipy is 6-methyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of the title compound (Fig 1), ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two phenanthridine and two terminal Cl atoms (Table 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. Phenanthridine ring systems A (N1/C1-C13) and B (N2/C14-C26) are, of course, planar and the dihedral angle between them is A/B = 69.92 (3)°. Intramolecular C-H···Cl interaction (Table 2) results in the formation of a planar five-membered ring C (Zn1/Cl1/N1/C1/H1), which is oriented with respect to the adjacent phenanthridine ring system A at a dihedral angle of 8.32 (3)°.

In the crystal structure (Fig. 2), the π–π contacts between the phenanthridine rings, Cg2—Cg3i, Cg4—Cg6ii and Cg6—Cg6ii, [symmetry codes: (i) 1 - x, -y, -z, (ii) -x, -y, -z, where Cg2, Cg3, Cg4 and Cg6 are centroids of the rings (C2-C7), (C8-C13), (N2/C14/C15/C20/C21/C26) and (C21-C26), respectively] may stabilize the structure, with centroid-centroid distances of 3.839 (2), 3.617 (1) and 3.682 (1) Å, respectively. There also exist two weak C—H···π interactions (Table 2).

Experimental

For the preparation of the title compound, (I), a solution of phenanthridine (0.30 g, 1.66 mmol) in methanol (15 ml) was added to a solution of ZnCl2 (0.11 g, 0.83 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 30 min at 313 K, and then it was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.31 g, 75.5%).

Refinement

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound.

Crystal data

[ZnCl2(C13H9N)2] F(000) = 1008
Mr = 494.71 Dx = 1.543 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1987 reflections
a = 16.193 (3) Å θ = 2.5–29.3°
b = 10.101 (2) Å µ = 1.42 mm1
c = 14.491 (3) Å T = 298 K
β = 116.02 (3)° Prism, colorless
V = 2130.0 (9) Å3 0.45 × 0.30 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 5732 independent reflections
Radiation source: fine-focus sealed tube 4612 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 29.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −22→22
Tmin = 0.610, Tmax = 0.740 k = −13→13
16947 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.038P)2 + 0.5741P] where P = (Fo2 + 2Fc2)/3
5732 reflections (Δ/σ)max = 0.013
280 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.259400 (15) 0.26111 (2) 0.120119 (17) 0.03590 (7)
Cl1 0.25049 (4) 0.47913 (5) 0.09659 (5) 0.05264 (14)
Cl2 0.27473 (4) 0.19233 (6) 0.27420 (4) 0.05102 (14)
N1 0.37559 (11) 0.19993 (17) 0.10537 (13) 0.0373 (3)
N2 0.14942 (10) 0.17454 (16) −0.00248 (12) 0.0338 (3)
C1 0.42820 (14) 0.2930 (2) 0.09724 (16) 0.0410 (4)
H1 0.4056 0.3791 0.0863 0.049*
C2 0.51762 (14) 0.2716 (2) 0.10399 (16) 0.0417 (4)
C3 0.57131 (17) 0.3780 (3) 0.09923 (19) 0.0528 (6)
H3 0.5481 0.4637 0.0902 0.063*
C4 0.65812 (18) 0.3558 (3) 0.1079 (2) 0.0626 (7)
H4 0.6936 0.4260 0.1039 0.075*
C5 0.69249 (18) 0.2273 (3) 0.1228 (2) 0.0674 (8)
H5 0.7512 0.2124 0.1283 0.081*
C6 0.64215 (16) 0.1227 (3) 0.1293 (2) 0.0574 (6)
H6 0.6672 0.0380 0.1401 0.069*
C7 0.55249 (14) 0.1417 (2) 0.11974 (15) 0.0432 (5)
C8 0.49487 (14) 0.0368 (2) 0.12662 (15) 0.0409 (4)
C9 0.52121 (17) −0.0978 (2) 0.13981 (17) 0.0503 (5)
H9 0.5782 −0.1218 0.1441 0.060*
C10 0.46418 (19) −0.1931 (2) 0.14633 (18) 0.0548 (6)
H10 0.4828 −0.2812 0.1547 0.066*
C11 0.37861 (18) −0.1601 (2) 0.14065 (18) 0.0517 (5)
H11 0.3404 −0.2259 0.1453 0.062*
C12 0.35073 (16) −0.0305 (2) 0.12812 (16) 0.0448 (5)
H12 0.2939 −0.0084 0.1251 0.054*
C13 0.40733 (14) 0.0686 (2) 0.11980 (14) 0.0377 (4)
C14 0.16296 (13) 0.12723 (19) −0.07864 (15) 0.0360 (4)
H14 0.2222 0.1316 −0.0736 0.043*
C15 0.09352 (13) 0.06958 (18) −0.16859 (14) 0.0348 (4)
C16 0.11488 (16) 0.0160 (2) −0.24580 (16) 0.0417 (4)
H16 0.1747 0.0203 −0.2389 0.050*
C17 0.04765 (18) −0.0419 (2) −0.33016 (18) 0.0486 (5)
H17 0.0615 −0.0771 −0.3810 0.058*
C18 −0.04216 (17) −0.0482 (2) −0.34024 (18) 0.0510 (5)
H18 −0.0876 −0.0881 −0.3981 0.061*
C19 −0.06479 (15) 0.0033 (2) −0.26642 (17) 0.0454 (5)
H19 −0.1250 −0.0022 −0.2746 0.054*
C20 0.00307 (13) 0.06448 (18) −0.17833 (14) 0.0343 (4)
C21 −0.01463 (13) 0.12123 (18) −0.09734 (15) 0.0343 (4)
C22 −0.10280 (14) 0.1282 (2) −0.10056 (17) 0.0430 (5)
H22 −0.1531 0.0952 −0.1574 0.052*
C23 −0.11556 (15) 0.1830 (2) −0.02101 (19) 0.0481 (5)
H23 −0.1743 0.1872 −0.0247 0.058*
C24 −0.04179 (17) 0.2319 (2) 0.06441 (19) 0.0476 (5)
H24 −0.0510 0.2678 0.1183 0.057*
C25 0.04526 (15) 0.2277 (2) 0.07015 (17) 0.0417 (4)
H25 0.0947 0.2608 0.1279 0.050*
C26 0.05989 (12) 0.17376 (18) −0.01046 (14) 0.0328 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02853 (11) 0.03705 (12) 0.03880 (12) −0.00174 (9) 0.01173 (8) −0.00362 (9)
Cl1 0.0510 (3) 0.0376 (3) 0.0687 (4) 0.0014 (2) 0.0258 (3) −0.0007 (2)
Cl2 0.0481 (3) 0.0596 (3) 0.0436 (3) −0.0047 (3) 0.0185 (2) 0.0027 (2)
N1 0.0312 (8) 0.0388 (8) 0.0385 (8) 0.0034 (7) 0.0120 (7) −0.0012 (7)
N2 0.0265 (7) 0.0339 (7) 0.0374 (8) −0.0007 (6) 0.0107 (6) −0.0010 (6)
C1 0.0341 (10) 0.0424 (10) 0.0442 (11) 0.0019 (8) 0.0149 (8) −0.0014 (8)
C2 0.0317 (9) 0.0543 (12) 0.0367 (10) −0.0003 (9) 0.0127 (8) −0.0022 (9)
C3 0.0439 (12) 0.0640 (15) 0.0506 (13) −0.0062 (11) 0.0207 (10) −0.0017 (11)
C4 0.0429 (13) 0.087 (2) 0.0608 (15) −0.0129 (13) 0.0250 (12) −0.0031 (14)
C5 0.0333 (11) 0.104 (2) 0.0666 (16) 0.0047 (14) 0.0232 (11) −0.0006 (15)
C6 0.0354 (11) 0.0780 (17) 0.0564 (14) 0.0117 (12) 0.0178 (10) 0.0020 (12)
C7 0.0311 (9) 0.0620 (13) 0.0325 (10) 0.0082 (9) 0.0103 (8) −0.0010 (9)
C8 0.0339 (9) 0.0511 (11) 0.0306 (9) 0.0092 (9) 0.0075 (7) −0.0005 (8)
C9 0.0453 (12) 0.0557 (13) 0.0419 (11) 0.0201 (11) 0.0116 (10) 0.0029 (10)
C10 0.0656 (16) 0.0453 (12) 0.0409 (11) 0.0180 (12) 0.0116 (11) 0.0035 (9)
C11 0.0556 (14) 0.0425 (11) 0.0462 (12) −0.0001 (10) 0.0123 (10) 0.0037 (9)
C12 0.0395 (11) 0.0457 (11) 0.0430 (11) 0.0007 (9) 0.0125 (9) −0.0004 (9)
C13 0.0329 (9) 0.0412 (10) 0.0317 (9) 0.0044 (8) 0.0074 (7) −0.0023 (8)
C14 0.0286 (9) 0.0373 (9) 0.0394 (10) −0.0009 (7) 0.0125 (8) 0.0010 (8)
C15 0.0346 (9) 0.0313 (9) 0.0351 (9) −0.0016 (7) 0.0121 (8) 0.0008 (7)
C16 0.0436 (11) 0.0391 (10) 0.0431 (11) 0.0040 (9) 0.0198 (9) 0.0000 (8)
C17 0.0593 (14) 0.0412 (11) 0.0448 (12) −0.0011 (10) 0.0223 (11) −0.0077 (9)
C18 0.0519 (13) 0.0433 (11) 0.0459 (12) −0.0085 (10) 0.0105 (10) −0.0100 (9)
C19 0.0383 (10) 0.0408 (10) 0.0488 (12) −0.0094 (9) 0.0116 (9) −0.0039 (9)
C20 0.0313 (9) 0.0286 (8) 0.0375 (9) −0.0026 (7) 0.0099 (7) 0.0025 (7)
C21 0.0306 (9) 0.0295 (8) 0.0405 (10) −0.0020 (7) 0.0133 (8) 0.0036 (7)
C22 0.0307 (9) 0.0444 (11) 0.0513 (12) −0.0046 (8) 0.0155 (9) −0.0001 (9)
C23 0.0359 (10) 0.0465 (11) 0.0676 (15) 0.0004 (9) 0.0278 (10) 0.0024 (10)
C24 0.0468 (12) 0.0447 (11) 0.0588 (13) 0.0003 (10) 0.0302 (11) −0.0060 (10)
C25 0.0378 (10) 0.0409 (10) 0.0455 (11) −0.0024 (8) 0.0175 (9) −0.0062 (8)
C26 0.0287 (8) 0.0290 (8) 0.0394 (9) −0.0012 (7) 0.0138 (7) 0.0014 (7)

Geometric parameters (Å, °)

Cl1—Zn1 2.2234 (7) C12—H12 0.9300
Cl2—Zn1 2.2456 (7) C13—N1 1.405 (3)
N1—Zn1 2.0785 (17) C14—N2 1.306 (2)
N2—Zn1 2.0775 (17) C14—C15 1.420 (3)
C1—N1 1.308 (3) C14—H14 0.9300
C1—C2 1.424 (3) C15—C20 1.410 (3)
C1—H1 0.9300 C15—C16 1.416 (3)
C2—C3 1.402 (3) C16—C17 1.361 (3)
C2—C7 1.407 (3) C16—H16 0.9300
C3—C4 1.374 (4) C17—C18 1.398 (4)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.392 (4) C18—C19 1.376 (3)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.363 (4) C19—C20 1.410 (3)
C5—H5 0.9300 C19—H19 0.9300
C6—C7 1.410 (3) C20—C21 1.443 (3)
C6—H6 0.9300 C21—C22 1.410 (3)
C7—C8 1.444 (3) C21—C26 1.411 (3)
C8—C9 1.412 (3) C22—C23 1.374 (3)
C8—C13 1.414 (3) C22—H22 0.9300
C9—C10 1.366 (4) C23—C24 1.380 (3)
C9—H9 0.9300 C23—H23 0.9300
C10—C11 1.392 (4) C24—C25 1.376 (3)
C10—H10 0.9300 C24—H24 0.9300
C11—C12 1.371 (3) C25—C26 1.400 (3)
C11—H11 0.9300 C25—H25 0.9300
C12—C13 1.398 (3) C26—N2 1.403 (2)
N2—Zn1—N1 105.19 (7) C11—C12—C13 120.3 (2)
N2—Zn1—Cl1 108.18 (5) C11—C12—H12 119.8
N1—Zn1—Cl1 106.23 (5) C13—C12—H12 119.8
N2—Zn1—Cl2 113.54 (5) C12—C13—N1 118.57 (18)
N1—Zn1—Cl2 107.46 (6) C12—C13—C8 120.43 (19)
Cl1—Zn1—Cl2 115.49 (3) N1—C13—C8 121.00 (19)
C1—N1—C13 118.80 (18) N2—C14—C15 124.52 (18)
C1—N1—Zn1 116.76 (14) N2—C14—H14 117.7
C13—N1—Zn1 123.65 (14) C15—C14—H14 117.7
C14—N2—C26 118.60 (16) C20—C15—C16 120.69 (18)
C14—N2—Zn1 118.54 (13) C20—C15—C14 118.46 (18)
C26—N2—Zn1 122.69 (13) C16—C15—C14 120.84 (19)
N1—C1—C2 124.6 (2) C17—C16—C15 119.8 (2)
N1—C1—H1 117.7 C17—C16—H16 120.1
C2—C1—H1 117.7 C15—C16—H16 120.1
C3—C2—C7 120.6 (2) C16—C17—C18 119.9 (2)
C3—C2—C1 120.9 (2) C16—C17—H17 120.0
C7—C2—C1 118.4 (2) C18—C17—H17 120.0
C4—C3—C2 120.2 (3) C19—C18—C17 121.4 (2)
C4—C3—H3 119.9 C19—C18—H18 119.3
C2—C3—H3 119.9 C17—C18—H18 119.3
C3—C4—C5 119.3 (3) C18—C19—C20 120.1 (2)
C3—C4—H4 120.3 C18—C19—H19 119.9
C5—C4—H4 120.3 C20—C19—H19 119.9
C6—C5—C4 121.5 (2) C15—C20—C19 118.01 (19)
C6—C5—H5 119.2 C15—C20—C21 118.19 (17)
C4—C5—H5 119.2 C19—C20—C21 123.80 (18)
C5—C6—C7 120.6 (3) C22—C21—C26 117.92 (18)
C5—C6—H6 119.7 C22—C21—C20 123.54 (18)
C7—C6—H6 119.7 C26—C21—C20 118.54 (17)
C2—C7—C6 117.8 (2) C23—C22—C21 121.0 (2)
C2—C7—C8 118.03 (19) C23—C22—H22 119.5
C6—C7—C8 124.2 (2) C21—C22—H22 119.5
C9—C8—C13 117.5 (2) C22—C23—C24 120.5 (2)
C9—C8—C7 123.3 (2) C22—C23—H23 119.8
C13—C8—C7 119.14 (19) C24—C23—H23 119.8
C10—C9—C8 121.0 (2) C25—C24—C23 120.2 (2)
C10—C9—H9 119.5 C25—C24—H24 119.9
C8—C9—H9 119.5 C23—C24—H24 119.9
C9—C10—C11 120.9 (2) C24—C25—C26 120.4 (2)
C9—C10—H10 119.6 C24—C25—H25 119.8
C11—C10—H10 119.6 C26—C25—H25 119.8
C12—C11—C10 119.8 (2) C25—C26—N2 118.43 (17)
C12—C11—H11 120.1 C25—C26—C21 119.96 (18)
C10—C11—H11 120.1 N2—C26—C21 121.61 (17)
N1—C1—C2—C3 −177.0 (2) C18—C19—C20—C21 179.9 (2)
N1—C1—C2—C7 0.5 (3) C15—C20—C21—C22 176.71 (18)
C7—C2—C3—C4 1.3 (3) C19—C20—C21—C22 −3.7 (3)
C1—C2—C3—C4 178.7 (2) C15—C20—C21—C26 −2.7 (3)
C2—C3—C4—C5 −0.8 (4) C19—C20—C21—C26 176.82 (19)
C3—C4—C5—C6 −0.2 (4) C26—C21—C22—C23 −0.8 (3)
C4—C5—C6—C7 0.8 (4) C20—C21—C22—C23 179.8 (2)
C3—C2—C7—C6 −0.7 (3) C21—C22—C23—C24 −0.4 (3)
C1—C2—C7—C6 −178.2 (2) C22—C23—C24—C25 0.8 (4)
C3—C2—C7—C8 178.41 (19) C23—C24—C25—C26 0.0 (3)
C1—C2—C7—C8 0.9 (3) C24—C25—C26—N2 178.40 (19)
C5—C6—C7—C2 −0.4 (4) C24—C25—C26—C21 −1.2 (3)
C5—C6—C7—C8 −179.4 (2) C22—C21—C26—C25 1.5 (3)
C2—C7—C8—C9 178.4 (2) C20—C21—C26—C25 −179.01 (17)
C6—C7—C8—C9 −2.5 (3) C22—C21—C26—N2 −178.02 (17)
C2—C7—C8—C13 −1.5 (3) C20—C21—C26—N2 1.4 (3)
C6—C7—C8—C13 177.6 (2) C2—C1—N1—C13 −1.3 (3)
C13—C8—C9—C10 −0.4 (3) C2—C1—N1—Zn1 168.86 (16)
C7—C8—C9—C10 179.7 (2) C12—C13—N1—C1 −179.80 (18)
C8—C9—C10—C11 −0.3 (4) C8—C13—N1—C1 0.7 (3)
C9—C10—C11—C12 0.2 (4) C12—C13—N1—Zn1 10.7 (2)
C10—C11—C12—C13 0.8 (3) C8—C13—N1—Zn1 −168.77 (14)
C11—C12—C13—N1 179.0 (2) C15—C14—N2—C26 −2.6 (3)
C11—C12—C13—C8 −1.5 (3) C15—C14—N2—Zn1 −177.82 (14)
C9—C8—C13—C12 1.3 (3) C25—C26—N2—C14 −178.37 (18)
C7—C8—C13—C12 −178.80 (18) C21—C26—N2—C14 1.2 (3)
C9—C8—C13—N1 −179.20 (18) C25—C26—N2—Zn1 −3.3 (2)
C7—C8—C13—N1 0.7 (3) C21—C26—N2—Zn1 176.23 (13)
N2—C14—C15—C20 1.2 (3) C14—N2—Zn1—N1 −15.81 (16)
N2—C14—C15—C16 −177.53 (18) C26—N2—Zn1—N1 169.13 (14)
C20—C15—C16—C17 −0.4 (3) C14—N2—Zn1—Cl1 97.39 (14)
C14—C15—C16—C17 178.30 (19) C26—N2—Zn1—Cl1 −77.67 (14)
C15—C16—C17—C18 0.0 (3) C14—N2—Zn1—Cl2 −133.03 (13)
C16—C17—C18—C19 0.2 (4) C26—N2—Zn1—Cl2 51.91 (15)
C17—C18—C19—C20 0.1 (3) C1—N1—Zn1—N2 121.89 (15)
C16—C15—C20—C19 0.7 (3) C13—N1—Zn1—N2 −68.46 (16)
C14—C15—C20—C19 −178.05 (18) C1—N1—Zn1—Cl1 7.32 (16)
C16—C15—C20—C21 −179.75 (17) C13—N1—Zn1—Cl1 176.97 (14)
C14—C15—C20—C21 1.5 (3) C1—N1—Zn1—Cl2 −116.83 (14)
C18—C19—C20—C15 −0.6 (3) C13—N1—Zn1—Cl2 52.82 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl1 0.93 2.77 3.434 (3) 129
C17—H17···Cg6i 0.93 2.82 3.535 (3) 134
C24—H24···Cg5ii 0.93 2.81 3.508 (3) 132

Symmetry codes: (i) −x, y−1/2, −z−1/2; (ii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2696).

References

  1. Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (1998). SMART, SAINT and SADABS Bruker AXS, Madison, Wisconsin, USA.
  4. Çelik, Ö., İde, S., Kurt, M. & Yurdakul, Ş. (2004). Acta Cryst. E60, m1134–m1136.
  5. Cui, Y., Long, D., Chen, W. & Huang, J. (1998). Acta Cryst. C54, 1605–1607.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.
  9. Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212. [DOI] [PMC free article] [PubMed]
  10. Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.
  11. Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.
  12. Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett.47, 7025–7029.
  13. Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073–2079. [DOI] [PubMed]
  14. Markowitz, B. M. E., Turnbull, M. M. & Awwadi, F. F. (2006). Acta Cryst. E62, m1278–m1280.
  15. Musie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471–m472.
  16. Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965–1968.
  17. Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem.5, 1185–1189.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Shen, L., Li, M. C., Jin, Z. M., Hu, M. L. & Xuan, R. C. (2004). Acta Cryst. E60, m330–m331.
  20. Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem.16, 1119–1127.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901959X/hk2696sup1.cif

e-65-0m739-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901959X/hk2696Isup2.hkl

e-65-0m739-Isup2.hkl (275KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES