Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):m704. doi: 10.1107/S1600536809019588

Tetra­kis[3,5-bis­(trifluoro­meth­yl)phenyl]tin(IV)

Daniel Foucher a, Damion Miles a, Alan J Lough b,*
PMCID: PMC2969316  PMID: 21582650

Abstract

The title mol­ecule, [Sn(C8H3F6)4], lies on a twofold rotation axis with the SnIV ion in a distorted tetra­hedral coordination environment. Both –CF3 groups attached to one of the unique benzene rings are disordered over two sets of sites, with the ratios of refined occupancies being 0.719 (14):0.281 (14) and 0.63 (5):0.37 (5).

Related literature

For synthesis of the title compound, see King et al. (1986). Additional preparative details of similar compounds are given by Lu & Tilley (2000). For related crystal structures, see: Young et al. (2005); Smith et al. (1994); Wharf & Simard (1997). For further details of geometric distortions in related compounds, see Charissé et al. (1998).graphic file with name e-65-0m704-scheme1.jpg

Experimental

Crystal data

  • [Sn(C8H3F6)4]

  • M r = 971.11

  • Monoclinic, Inline graphic

  • a = 17.3506 (8) Å

  • b = 20.8038 (11) Å

  • c = 9.8944 (3) Å

  • β = 109.998 (3)°

  • V = 3356.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 150 K

  • 0.28 × 0.24 × 0.12 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.798, T max = 0.897

  • 10930 measured reflections

  • 3818 independent reflections

  • 3142 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.097

  • S = 1.06

  • 3818 reflections

  • 314 parameters

  • 211 restraints

  • H-atom parameters constrained

  • Δρmax = 1.80 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019588/pk2165sup1.cif

e-65-0m704-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019588/pk2165Isup2.hkl

e-65-0m704-Isup2.hkl (187.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Sn1—C9 2.146 (3)
Sn1—C1 2.150 (3)
C9—Sn1—C9i 109.73 (16)
C9—Sn1—C1 104.69 (11)
C9—Sn1—C1i 108.35 (11)
C1—Sn1—C1i 120.82 (17)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge NSERC Canada, the University of Toronto, the NSERC Discovery fund and the Dean’s Seed Fund Initiative (Ryerson University) for funding.

supplementary crystallographic information

Comment

The preparation of polymerizable dialkyl or diaryl tin monomers bearing either chlorine or hydride groups (Lu & Tilley, 2000) is accessed through the initial comportionation reactions involving the tetraalkyl- or tetraryltin(IV) compounds and tin(IV) tetrachloride. The incorporation of perfluorinated species in the backbone of polystannanes should by design impart an improved stability towards nucleophilic attack. Our interest in the distortions from tetrahedral geometry of other tin aryl compounds (Charissé et al., 1998), prompted us to determine the crystal structure of the title compound which was previously synthesized by King et al. (1986).

The title molecule (Fig. 1) lies on a twofold rotation axis. The SnIV ion is in a distorted tetrahedral coordination environment (Table 1). The angular disortion from the ideal values of 109.5° is most likely a consequence of the steric crowding caused by the 3,5 substitution of the bulky trifluoromethyl groups on the benzene rings. The Sn—C bond distances in the title compound are the same within experimental error and are comparable to those in the para-substituted and meta-substituted tetrakis[(trifluoromethyl)phenyl]stannane structures (Young et al., 2005; Smith et al., 1994) but are significantly longer than the Sn—C bonds in the related triaryltin(IV)chloride compounds (Wharf & Simard, 1997).

Experimental

The title compound was prepared from the refluxing Grignard reaction of 3,5-trifluoromethylphenyl magnesium bromide (12.5 mmol) in ether with anhydrous tin tetrachloride (3.125 mmol). The reaction mixture was refluxed overnight, cooled and filtered to remove salts. The crude compound was purified first by sublimation, and then recrystallization from ether to yield long large needles suitable for X-ray diffraction. Yield 1.33 g, 44%. m.p. 426 K (literature 436 K; King et al., 1986).

Refinement

H atoms were placed in calculated positions with C—H = 0.95 Å and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C). Both –CF3 groups attached to one of the unique benzene rings are disordered over two sets of sites with the ratios of refined occupancies being 0.719 (14):0.281 (14) for F1/F2/F3:F1A/F2A/F3A, and 0.63 (5):0.37 (5) for F4/F5/F6:F4A/F5A/F6A. The SADI and SIMU commands in SHELXL (Sheldrick, 2008) were used to restrain the disorder model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probabilty level. The minor comonent of disorder is not shown [symmetry code (a): -x + 1, y, -z + 1/2].

Crystal data

[Sn(C8H3F6)4] F(000) = 1880
Mr = 971.11 Dx = 1.922 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 10930 reflections
a = 17.3506 (8) Å θ = 2.9–27.5°
b = 20.8038 (11) Å µ = 0.92 mm1
c = 9.8944 (3) Å T = 150 K
β = 109.998 (3)° Block, colourless
V = 3356.1 (3) Å3 0.28 × 0.24 × 0.12 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3818 independent reflections
Radiation source: fine-focus sealed tube 3142 reflections with I > 2σ(I)
graphite Rint = 0.038
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 2.9°
φ scans and ω scans with κ offsets h = −22→20
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −24→26
Tmin = 0.798, Tmax = 0.897 l = −10→12
10930 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0382P)2 + 9.7798P] where P = (Fo2 + 2Fc2)/3
3818 reflections (Δ/σ)max = 0.001
314 parameters Δρmax = 1.80 e Å3
211 restraints Δρmin = −0.69 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sn1 0.5000 0.204875 (15) 0.2500 0.02382 (11)
C1 0.44875 (18) 0.25591 (16) 0.3883 (3) 0.0241 (7)
C2 0.4192 (2) 0.21779 (17) 0.4754 (3) 0.0308 (7)
H2A 0.4214 0.1723 0.4688 0.037*
C3 0.3864 (2) 0.24535 (19) 0.5721 (4) 0.0358 (8)
C4 0.3826 (2) 0.31171 (19) 0.5823 (4) 0.0376 (9)
H4A 0.3609 0.3307 0.6489 0.045*
C5 0.4109 (2) 0.35008 (17) 0.4942 (4) 0.0301 (7)
C6 0.44410 (19) 0.32238 (16) 0.3985 (3) 0.0269 (7)
H6A 0.4638 0.3491 0.3395 0.032*
C7 0.3561 (3) 0.2031 (2) 0.6667 (5) 0.0518 (11)
C8 0.4071 (3) 0.42168 (19) 0.5053 (4) 0.0420 (9)
C9 0.40171 (18) 0.14550 (15) 0.1187 (3) 0.0225 (6)
C10 0.32103 (18) 0.15735 (15) 0.1095 (3) 0.0232 (6)
H10A 0.3099 0.1908 0.1654 0.028*
C11 0.25646 (19) 0.12090 (15) 0.0196 (3) 0.0234 (6)
C12 0.27116 (19) 0.07233 (15) −0.0643 (3) 0.0254 (7)
H12A 0.2272 0.0477 −0.1264 0.030*
C13 0.3514 (2) 0.06033 (16) −0.0559 (3) 0.0273 (7)
C14 0.4159 (2) 0.09614 (16) 0.0350 (3) 0.0270 (7)
H14A 0.4705 0.0869 0.0402 0.032*
C15 0.1714 (2) 0.13382 (18) 0.0164 (4) 0.0315 (8)
C16 0.3678 (2) 0.00755 (19) −0.1447 (4) 0.0402 (9)
F1 0.3387 (8) 0.1480 (5) 0.6254 (12) 0.110 (5) 0.510 (14)
F2 0.2865 (4) 0.2297 (5) 0.6815 (9) 0.060 (3) 0.510 (14)
F3 0.4062 (4) 0.2039 (7) 0.8017 (6) 0.098 (4) 0.510 (14)
F1A 0.3073 (6) 0.1557 (6) 0.5899 (12) 0.074 (3) 0.490 (14)
F2A 0.3197 (9) 0.2296 (5) 0.7385 (15) 0.151 (6) 0.490 (14)
F3A 0.4188 (4) 0.1697 (6) 0.7542 (13) 0.122 (5) 0.490 (14)
F4 0.3437 (13) 0.4405 (10) 0.539 (3) 0.113 (5) 0.62 (5)
F5 0.4721 (11) 0.4474 (7) 0.5986 (12) 0.078 (4) 0.62 (5)
F6 0.3982 (8) 0.4522 (6) 0.3803 (8) 0.062 (2) 0.62 (5)
F4A 0.3656 (14) 0.4402 (16) 0.587 (3) 0.081 (5) 0.38 (5)
F5A 0.4839 (9) 0.4429 (9) 0.574 (2) 0.064 (4) 0.38 (5)
F6A 0.3803 (18) 0.4473 (12) 0.3853 (13) 0.094 (8) 0.38 (5)
F7 0.16383 (14) 0.12649 (15) 0.1440 (2) 0.0607 (7)
F8 0.14807 (14) 0.19481 (11) −0.0251 (3) 0.0595 (7)
F9 0.11541 (12) 0.09611 (11) −0.0743 (2) 0.0456 (6)
F10 0.3779 (2) −0.04902 (12) −0.0768 (3) 0.0724 (8)
F11 0.30798 (17) 0.00107 (16) −0.2707 (3) 0.0828 (10)
F12 0.43615 (16) 0.01590 (12) −0.1746 (3) 0.0568 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.02302 (16) 0.02508 (18) 0.02467 (17) 0.000 0.00986 (12) 0.000
C1 0.0201 (14) 0.0296 (17) 0.0228 (15) 0.0012 (13) 0.0078 (12) −0.0006 (13)
C2 0.0345 (18) 0.0299 (19) 0.0295 (17) −0.0011 (14) 0.0128 (14) −0.0008 (14)
C3 0.040 (2) 0.040 (2) 0.0312 (18) −0.0052 (16) 0.0169 (16) −0.0034 (16)
C4 0.041 (2) 0.044 (2) 0.0323 (18) −0.0032 (17) 0.0187 (16) −0.0084 (16)
C5 0.0286 (17) 0.0303 (18) 0.0311 (17) −0.0019 (14) 0.0096 (14) −0.0071 (15)
C6 0.0245 (16) 0.0284 (17) 0.0272 (16) 0.0001 (14) 0.0082 (13) −0.0012 (14)
C7 0.074 (3) 0.048 (3) 0.047 (2) −0.003 (2) 0.040 (2) 0.002 (2)
C8 0.054 (2) 0.031 (2) 0.045 (2) −0.0021 (19) 0.022 (2) −0.0098 (18)
C9 0.0243 (15) 0.0221 (16) 0.0216 (15) −0.0004 (12) 0.0086 (12) 0.0005 (12)
C10 0.0243 (15) 0.0240 (16) 0.0212 (15) 0.0004 (13) 0.0079 (12) 0.0012 (13)
C11 0.0257 (15) 0.0233 (16) 0.0217 (15) 0.0023 (13) 0.0087 (12) 0.0038 (13)
C12 0.0270 (16) 0.0260 (17) 0.0214 (15) −0.0001 (13) 0.0060 (12) 0.0016 (13)
C13 0.0319 (17) 0.0243 (17) 0.0264 (16) 0.0036 (14) 0.0108 (13) −0.0021 (13)
C14 0.0262 (16) 0.0276 (17) 0.0293 (16) 0.0009 (13) 0.0120 (13) −0.0002 (14)
C15 0.0275 (17) 0.036 (2) 0.0311 (17) −0.0016 (15) 0.0099 (14) −0.0050 (15)
C16 0.035 (2) 0.038 (2) 0.047 (2) 0.0041 (16) 0.0125 (17) −0.0124 (18)
F1 0.232 (14) 0.034 (4) 0.131 (10) −0.017 (7) 0.149 (11) −0.013 (6)
F2 0.033 (3) 0.096 (6) 0.061 (4) −0.002 (3) 0.028 (3) 0.017 (4)
F3 0.050 (4) 0.204 (12) 0.041 (3) −0.010 (5) 0.015 (3) 0.054 (5)
F1A 0.058 (4) 0.083 (7) 0.081 (5) −0.038 (4) 0.023 (4) 0.018 (4)
F2A 0.314 (18) 0.066 (6) 0.175 (13) −0.029 (10) 0.215 (13) −0.028 (8)
F3A 0.084 (6) 0.194 (12) 0.080 (7) −0.029 (6) 0.019 (5) 0.094 (8)
F4 0.127 (8) 0.037 (5) 0.227 (14) 0.020 (5) 0.128 (9) −0.004 (10)
F5 0.118 (8) 0.044 (4) 0.041 (4) −0.003 (5) −0.013 (4) −0.012 (3)
F6 0.105 (5) 0.029 (4) 0.058 (5) −0.003 (3) 0.036 (5) −0.005 (3)
F4A 0.135 (12) 0.044 (8) 0.108 (11) −0.004 (10) 0.098 (9) −0.026 (7)
F5A 0.060 (7) 0.030 (5) 0.110 (12) −0.026 (4) 0.037 (7) −0.030 (6)
F6A 0.149 (14) 0.045 (8) 0.041 (7) 0.028 (9) −0.030 (9) 0.012 (6)
F7 0.0406 (13) 0.110 (2) 0.0408 (13) 0.0007 (14) 0.0263 (10) −0.0102 (14)
F8 0.0309 (12) 0.0405 (14) 0.104 (2) 0.0091 (10) 0.0197 (13) 0.0040 (13)
F9 0.0249 (10) 0.0544 (14) 0.0565 (14) −0.0069 (10) 0.0125 (9) −0.0180 (11)
F10 0.107 (2) 0.0271 (13) 0.110 (2) 0.0066 (14) 0.072 (2) −0.0060 (14)
F11 0.0602 (17) 0.101 (2) 0.0673 (18) 0.0213 (16) −0.0035 (14) −0.0584 (17)
F12 0.0640 (16) 0.0546 (16) 0.0696 (16) −0.0009 (12) 0.0458 (14) −0.0217 (13)

Geometric parameters (Å, °)

Sn1—C9 2.146 (3) C8—F5 1.302 (11)
Sn1—C9i 2.146 (3) C8—F4 1.313 (12)
Sn1—C1 2.150 (3) C8—F4A 1.314 (16)
Sn1—C1i 2.150 (3) C8—F5A 1.346 (14)
C1—C6 1.391 (5) C8—F6 1.351 (10)
C1—C2 1.392 (5) C9—C14 1.393 (4)
C2—C3 1.393 (5) C9—C10 1.393 (4)
C2—H2A 0.9500 C10—C11 1.393 (4)
C3—C4 1.387 (5) C10—H10A 0.9500
C3—C7 1.504 (5) C11—C12 1.386 (4)
C4—C5 1.390 (5) C11—C15 1.489 (5)
C4—H4A 0.9500 C12—C13 1.389 (4)
C5—C6 1.391 (5) C12—H12A 0.9500
C5—C8 1.497 (5) C13—C14 1.388 (5)
C6—H6A 0.9500 C13—C16 1.493 (5)
C7—F1 1.220 (10) C14—H14A 0.9500
C7—F2A 1.231 (9) C15—F7 1.323 (4)
C7—F3 1.321 (7) C15—F9 1.330 (4)
C7—F3A 1.331 (7) C15—F8 1.352 (4)
C7—F1A 1.351 (10) C16—F11 1.328 (4)
C7—F2 1.381 (8) C16—F12 1.328 (4)
C8—F6A 1.239 (14) C16—F10 1.337 (5)
C9—Sn1—C9i 109.73 (16) F6A—C8—F4A 111.1 (12)
C9—Sn1—C1 104.69 (11) F6A—C8—F5A 109.0 (12)
C9i—Sn1—C1 108.35 (11) F4A—C8—F5A 104.5 (9)
C9—Sn1—C1i 108.35 (11) F5—C8—F6 104.9 (7)
C9i—Sn1—C1i 104.69 (11) F4—C8—F6 104.3 (8)
C1—Sn1—C1i 120.82 (17) F6A—C8—C5 111.7 (11)
C6—C1—C2 118.6 (3) F5—C8—C5 114.3 (8)
C6—C1—Sn1 125.7 (2) F4—C8—C5 112.2 (9)
C2—C1—Sn1 115.6 (2) F4A—C8—C5 112.6 (15)
C1—C2—C3 121.0 (3) F5A—C8—C5 107.6 (9)
C1—C2—H2A 119.5 F6—C8—C5 113.2 (6)
C3—C2—H2A 119.5 C14—C9—C10 118.0 (3)
C4—C3—C2 120.0 (3) C14—C9—Sn1 121.2 (2)
C4—C3—C7 120.1 (3) C10—C9—Sn1 120.7 (2)
C2—C3—C7 119.9 (4) C11—C10—C9 121.1 (3)
C3—C4—C5 119.4 (3) C11—C10—H10A 119.5
C3—C4—H4A 120.3 C9—C10—H10A 119.5
C5—C4—H4A 120.3 C12—C11—C10 120.5 (3)
C4—C5—C6 120.4 (3) C12—C11—C15 120.2 (3)
C4—C5—C8 119.5 (3) C10—C11—C15 119.3 (3)
C6—C5—C8 120.1 (3) C11—C12—C13 118.8 (3)
C1—C6—C5 120.6 (3) C11—C12—H12A 120.6
C1—C6—H6A 119.7 C13—C12—H12A 120.6
C5—C6—H6A 119.7 C14—C13—C12 120.8 (3)
F1—C7—F2A 119.8 (9) C14—C13—C16 120.1 (3)
F1—C7—F3 110.7 (7) C12—C13—C16 119.0 (3)
F2A—C7—F3A 109.0 (6) C13—C14—C9 120.9 (3)
F2A—C7—F1A 107.7 (6) C13—C14—H14A 119.6
F3—C7—F1A 130.4 (9) C9—C14—H14A 119.6
F3A—C7—F1A 101.6 (6) F7—C15—F9 106.7 (3)
F1—C7—F2 106.6 (6) F7—C15—F8 106.3 (3)
F3—C7—F2 100.6 (5) F9—C15—F8 105.9 (3)
F3A—C7—F2 133.7 (7) F7—C15—C11 112.3 (3)
F1—C7—C3 116.1 (6) F9—C15—C11 113.4 (3)
F2A—C7—C3 117.1 (7) F8—C15—C11 111.6 (3)
F3—C7—C3 111.8 (6) F11—C16—F12 105.9 (3)
F3A—C7—C3 109.2 (6) F11—C16—F10 108.0 (3)
F1A—C7—C3 111.2 (7) F12—C16—F10 104.7 (3)
F2—C7—C3 109.6 (6) F11—C16—C13 112.5 (3)
F6A—C8—F5 116.9 (15) F12—C16—C13 113.5 (3)
F5—C8—F4 107.2 (7) F10—C16—C13 111.7 (3)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2165).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Charissé, M., Zickgraf, A., Stenger, H., Bräu, E., Desmarquet, C., Dräger, M., Gertstmann, S., Dakternieks, D. & Hook, J. (1998). Polyhedron, 17, 4497–4506.
  4. King, B., Eckert, H., Denney, D. Z. & Herber, R. H. (1986). Inorg. Chim. Acta, 122, 45–53.
  5. Lu, V. Y. & Tilley, T. D. (2000). Macromolecules, 33, 2403–2412.
  6. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smith, F. E., Hynes, R. C., Zhang, Y. Z., Eng, G. & Khoo, L. E. (1994). Acta Cryst. C50, 1046–1049.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wharf, I. & Simard, M. G. (1997). J. Organomet. Chem.532, 1–9.
  12. Young, D. J., Manuaba, P., Healy, P. C. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m956–m957.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809019588/pk2165sup1.cif

e-65-0m704-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809019588/pk2165Isup2.hkl

e-65-0m704-Isup2.hkl (187.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES