Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jun 6;65(Pt 7):o1469. doi: 10.1107/S1600536809020443

3,4-Dinitro-2,5-bis­[4-(trifluoro­meth­yl)phen­yl]thio­phene

Ping-Hsin Huang a,*, Jiun-Yi Shen b, Yuh-Sheng Wen b
PMCID: PMC2969454  PMID: 21582772

Abstract

The title compound, C18H8F6N2O4S, is a precursor for the production of low-band-gap conjugated polymers. In the crystal structure, the dihedral angles between the thio­phene and benzene rings are 35.90 (8) and 61.94 (8)°, and that between the two benzene rings is 40.18 (8)°. The two nitro groups are twisted with respect to the thio­phene ring, the dihedral angles being 53.66 (10) and 31.63 (10)°. Weak inter­molecular C—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For a related structure, see: Bak et al. (1961).graphic file with name e-65-o1469-scheme1.jpg

Experimental

Crystal data

  • C18H8F6N2O4S

  • M r = 462.32

  • Orthorhombic, Inline graphic

  • a = 8.1572 (3) Å

  • b = 17.6371 (6) Å

  • c = 24.4150 (8) Å

  • V = 3512.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.4 × 0.36 × 0.1 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.895, T max = 0.973

  • 22650 measured reflections

  • 3098 independent reflections

  • 1888 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.053

  • S = 0.80

  • 3098 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020443/xu2528sup1.cif

e-65-o1469-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020443/xu2528Isup2.hkl

e-65-o1469-Isup2.hkl (149KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O4i 0.93 2.52 3.320 (2) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was partially supported by the Institute of Chemistry, Academia Sinica, and Cardinal Tien College of Healthcare and Management.

supplementary crystallographic information

Comment

The title compound, (I), has been shown to be an excellent precursor for the production of low band gap conjugated polymers and organic light-emitting devices etc. As indicated in Scheme 2, standard procedures were administrated to synthesize in high yield. The molecular structure is shown in Fig. 1. The double bonds and C—C single bond of (I) are slightly shorter than those of the parent thiophene, while the S—C single bond is slightly elongated (Bak et al., 1961). The dihedral angles between the thiophene (S/C1–C4) and benzene rings (C11–C16 and C21–C26) are 35.90 (8) and 61.94 (8)°, respectively, and that between the two benzene rings is 40.18 (8)°. The two nitro groups are oriented at the thiophene ring with the dihedral angles of 53.66 (10) and 31.63 (10)°, respectively. Intermolecular weak C—H···O hydrogen bonding helps to stabilize the crystal structure (Table 1).

Experimental

The compound was synthesized by the following procedure. A two-necked round-bottomed flask was charged with Pd(PPh3)4 (280 mg), tributyl(4-(trifluoromethyl)phenyl)stannane (3.26 g, 7.5 mmol), 2,5-dibromo-3,4-dinitrothiophene (1.00 g, 3.0 mmol) and DMF (20 ml), and the reaction mixture stirred under nitrogen and heated at 343 K for 48 h. After cooling, the mixture was diluted with diethyl ether and the organic phase was washed with water and brine. After drying over anhydrous MgSO4 and removing the volatiles, the residue was purified by column chromatography using CH2Cl2/n-hexane as eluent, followed by recrystallization from CH2Cl2 and hexane to yield 0.7 g (50%) of (I) as a white solid. Crystals suitable for X-ray diffraction were grown from a CH2Cl2 solution layered with hexane at room temperature.

Refinement

H atoms were located geometrically and treated as riding atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A molecular structure of (I) with 30% probability displacement ellipsoids, showing the atom-numbering scheme employed. H atoms are shown as small spheres of the arbitrary radii.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

C18H8F6N2O4S F(000) = 1856
Mr = 462.32 Dx = 1.748 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3689 reflections
a = 8.1572 (3) Å θ = 2.3–21.2°
b = 17.6371 (6) Å µ = 0.28 mm1
c = 24.4150 (8) Å T = 100 K
V = 3512.6 (2) Å3 Plate, colourless
Z = 8 0.4 × 0.36 × 0.1 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3098 independent reflections
Radiation source: fine-focus sealed tube 1888 reflections with I > 2σ(I)
graphite Rint = 0.058
ω and φ scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −8→9
Tmin = 0.895, Tmax = 0.973 k = −20→20
22650 measured reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0222P)2] where P = (Fo2 + 2Fc2)/3
S = 0.80 (Δ/σ)max < 0.001
3098 reflections Δρmax = 0.28 e Å3
281 parameters Δρmin = −0.28 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00042 (7)

Special details

Experimental. 1H NMR (CDCl3): 7.77 (d, J = 8.2, 4H), 7.64 (d, J = 8.2, 4H). FAB MS (m/e): 462 (M+). Analysis calculated for C18H8F6N2O4S: C 46.76, H 1.74, N 6.06%; found: C 46.80, H 1.88, N 5.79%.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.49028 (6) 0.16607 (3) 0.10370 (2) 0.01968 (14)
F1 0.35605 (13) 0.58240 (6) 0.14011 (4) 0.0308 (3)
F2 0.55441 (13) 0.58514 (6) 0.08266 (5) 0.0355 (3)
F3 0.31448 (13) 0.55311 (6) 0.05612 (4) 0.0317 (3)
F4 0.39559 (15) −0.25593 (7) 0.10705 (5) 0.0436 (4)
F5 0.59498 (14) −0.24370 (7) 0.05129 (5) 0.0414 (4)
F6 0.35364 (14) −0.21365 (7) 0.02679 (5) 0.0421 (4)
O1 0.84762 (17) 0.29479 (8) 0.21049 (6) 0.0336 (4)
O2 0.72134 (16) 0.23172 (8) 0.27348 (6) 0.0327 (4)
O3 0.89423 (17) 0.10570 (8) 0.23361 (6) 0.0326 (4)
O4 0.72044 (15) 0.01316 (8) 0.23007 (5) 0.0227 (4)
N2 0.75230 (19) 0.24606 (10) 0.22593 (7) 0.0206 (4)
N3 0.7648 (2) 0.07741 (10) 0.21850 (6) 0.0198 (4)
C1 0.5770 (2) 0.23578 (11) 0.14335 (7) 0.0154 (5)
C2 0.6654 (2) 0.20278 (11) 0.18389 (8) 0.0152 (5)
C3 0.6626 (2) 0.12295 (11) 0.18302 (7) 0.0151 (5)
C4 0.5731 (2) 0.09335 (10) 0.14100 (7) 0.0145 (5)
C11 0.5395 (2) 0.31580 (10) 0.13231 (8) 0.0153 (5)
C12 0.5170 (2) 0.36726 (11) 0.17431 (8) 0.0177 (5)
H12 0.5278 0.3514 0.2105 0.021*
C13 0.4788 (2) 0.44149 (11) 0.16326 (8) 0.0182 (5)
H13 0.4654 0.4758 0.1918 0.022*
C14 0.4601 (2) 0.46509 (11) 0.10993 (8) 0.0169 (5)
C15 0.4800 (2) 0.41410 (11) 0.06754 (8) 0.0213 (5)
H15 0.4659 0.4299 0.0315 0.026*
C16 0.5204 (2) 0.34036 (11) 0.07853 (8) 0.0203 (5)
H16 0.5353 0.3064 0.0498 0.024*
C17 0.4211 (2) 0.54560 (12) 0.09785 (9) 0.0225 (5)
C21 0.5441 (2) 0.01459 (11) 0.12329 (8) 0.0154 (5)
C22 0.5951 (2) −0.00879 (11) 0.07186 (8) 0.0191 (5)
H22 0.6485 0.0252 0.0488 0.023*
C23 0.5672 (2) −0.08169 (11) 0.05477 (8) 0.0204 (5)
H23 0.6030 −0.0973 0.0204 0.024*
C24 0.4859 (2) −0.13201 (11) 0.08861 (7) 0.0167 (5)
C25 0.4314 (2) −0.10885 (11) 0.13930 (8) 0.0182 (5)
H25 0.3749 −0.1424 0.1618 0.022*
C26 0.4607 (2) −0.03585 (11) 0.15652 (8) 0.0171 (5)
H26 0.4242 −0.0203 0.1908 0.021*
C27 0.4586 (3) −0.21090 (12) 0.06936 (9) 0.0249 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0205 (3) 0.0148 (3) 0.0238 (3) −0.0007 (3) −0.0048 (3) 0.0006 (2)
F1 0.0375 (8) 0.0209 (7) 0.0339 (8) 0.0100 (6) 0.0032 (6) −0.0016 (6)
F2 0.0225 (7) 0.0184 (7) 0.0654 (9) −0.0028 (6) 0.0090 (6) 0.0108 (6)
F3 0.0315 (7) 0.0291 (8) 0.0345 (8) 0.0085 (6) −0.0084 (6) 0.0057 (6)
F4 0.0709 (10) 0.0208 (7) 0.0391 (8) −0.0164 (7) 0.0180 (7) −0.0038 (6)
F5 0.0265 (8) 0.0240 (7) 0.0738 (10) 0.0025 (6) 0.0122 (7) −0.0171 (7)
F6 0.0447 (8) 0.0355 (8) 0.0462 (9) −0.0044 (6) −0.0134 (7) −0.0163 (7)
O1 0.0313 (9) 0.0344 (10) 0.0351 (9) −0.0202 (8) −0.0052 (8) 0.0047 (8)
O2 0.0415 (10) 0.0389 (10) 0.0176 (9) −0.0115 (8) −0.0001 (8) −0.0018 (8)
O3 0.0219 (9) 0.0289 (9) 0.0469 (10) −0.0039 (7) −0.0169 (8) −0.0003 (7)
O4 0.0227 (9) 0.0182 (8) 0.0271 (9) −0.0001 (7) 0.0004 (7) 0.0057 (7)
N2 0.0183 (11) 0.0192 (11) 0.0244 (12) 0.0025 (9) −0.0038 (9) −0.0018 (9)
N3 0.0189 (11) 0.0199 (11) 0.0206 (10) 0.0016 (9) 0.0001 (9) −0.0022 (9)
C1 0.0117 (11) 0.0178 (12) 0.0167 (11) −0.0027 (9) 0.0006 (9) −0.0006 (10)
C2 0.0112 (11) 0.0169 (12) 0.0177 (12) −0.0046 (10) 0.0003 (9) −0.0032 (10)
C3 0.0109 (12) 0.0179 (12) 0.0166 (12) 0.0014 (10) 0.0006 (10) 0.0029 (10)
C4 0.0093 (11) 0.0180 (12) 0.0163 (11) 0.0018 (9) 0.0024 (9) 0.0021 (10)
C11 0.0083 (11) 0.0163 (12) 0.0213 (12) −0.0042 (9) 0.0005 (10) 0.0001 (10)
C12 0.0155 (12) 0.0197 (12) 0.0179 (11) −0.0020 (10) −0.0018 (10) 0.0029 (10)
C13 0.0146 (12) 0.0175 (12) 0.0226 (12) −0.0021 (10) 0.0025 (10) −0.0028 (10)
C14 0.0101 (11) 0.0158 (12) 0.0248 (12) −0.0031 (9) −0.0007 (10) 0.0020 (10)
C15 0.0216 (12) 0.0206 (13) 0.0217 (12) −0.0025 (11) −0.0021 (10) 0.0030 (10)
C16 0.0214 (12) 0.0175 (12) 0.0220 (12) −0.0015 (11) 0.0013 (10) −0.0032 (10)
C17 0.0189 (13) 0.0217 (13) 0.0268 (14) 0.0010 (11) 0.0009 (11) −0.0012 (11)
C21 0.0106 (12) 0.0166 (12) 0.0190 (12) 0.0024 (9) −0.0041 (9) 0.0000 (9)
C22 0.0172 (12) 0.0196 (13) 0.0205 (12) −0.0027 (10) 0.0001 (10) 0.0036 (10)
C23 0.0193 (12) 0.0240 (13) 0.0179 (12) −0.0014 (10) 0.0025 (10) −0.0039 (10)
C24 0.0109 (11) 0.0160 (11) 0.0233 (12) 0.0002 (10) −0.0014 (10) −0.0021 (9)
C25 0.0131 (12) 0.0182 (12) 0.0232 (12) 0.0006 (9) 0.0016 (10) 0.0045 (10)
C26 0.0151 (12) 0.0181 (12) 0.0182 (11) 0.0039 (10) 0.0015 (10) −0.0002 (9)
C27 0.0233 (14) 0.0249 (13) 0.0266 (13) −0.0003 (11) 0.0048 (12) −0.0020 (11)

Geometric parameters (Å, °)

S—C4 1.7119 (19) C12—C13 1.373 (2)
S—C1 1.7173 (19) C12—H12 0.9300
F1—C17 1.329 (2) C13—C14 1.375 (2)
F2—C17 1.344 (2) C13—H13 0.9300
F3—C17 1.346 (2) C14—C15 1.381 (2)
F4—C27 1.320 (2) C14—C17 1.485 (3)
F5—C27 1.330 (2) C15—C16 1.368 (3)
F6—C27 1.347 (2) C15—H15 0.9300
O1—N2 1.2187 (19) C16—H16 0.9300
O2—N2 1.2147 (18) C21—C26 1.383 (2)
O3—N3 1.2249 (18) C21—C22 1.386 (2)
O4—N3 1.2226 (18) C22—C23 1.371 (3)
N2—C2 1.462 (2) C22—H22 0.9300
N3—C3 1.446 (2) C23—C24 1.382 (3)
C1—C2 1.356 (2) C23—H23 0.9300
C1—C11 1.469 (2) C24—C25 1.377 (2)
C2—C3 1.408 (2) C24—C27 1.485 (3)
C3—C4 1.363 (2) C25—C26 1.375 (2)
C4—C21 1.474 (2) C25—H25 0.9300
C11—C12 1.382 (2) C26—H26 0.9300
C11—C16 1.391 (2)
C4—S—C1 94.24 (9) C15—C16—C11 120.54 (18)
O2—N2—O1 125.10 (17) C15—C16—H16 119.7
O2—N2—C2 117.48 (17) C11—C16—H16 119.7
O1—N2—C2 117.40 (17) F1—C17—F2 106.49 (16)
O4—N3—O3 124.26 (17) F1—C17—F3 106.33 (16)
O4—N3—C3 118.87 (17) F2—C17—F3 105.24 (16)
O3—N3—C3 116.82 (17) F1—C17—C14 113.47 (17)
C2—C1—C11 131.07 (18) F2—C17—C14 112.20 (16)
C2—C1—S 108.86 (14) F3—C17—C14 112.51 (17)
C11—C1—S 119.92 (14) C26—C21—C22 119.21 (18)
C1—C2—C3 114.15 (17) C26—C21—C4 120.86 (17)
C1—C2—N2 123.10 (18) C22—C21—C4 119.88 (17)
C3—C2—N2 122.72 (18) C23—C22—C21 120.34 (19)
C4—C3—C2 113.78 (17) C23—C22—H22 119.8
C4—C3—N3 123.16 (18) C21—C22—H22 119.8
C2—C3—N3 122.46 (18) C22—C23—C24 120.00 (18)
C3—C4—C21 131.90 (18) C22—C23—H23 120.0
C3—C4—S 108.95 (14) C24—C23—H23 120.0
C21—C4—S 119.11 (14) C25—C24—C23 120.11 (18)
C12—C11—C16 118.74 (18) C25—C24—C27 120.92 (18)
C12—C11—C1 121.51 (17) C23—C24—C27 118.97 (18)
C16—C11—C1 119.71 (17) C26—C25—C24 119.76 (18)
C13—C12—C11 120.72 (17) C26—C25—H25 120.1
C13—C12—H12 119.6 C24—C25—H25 120.1
C11—C12—H12 119.6 C25—C26—C21 120.55 (18)
C12—C13—C14 119.99 (18) C25—C26—H26 119.7
C12—C13—H13 120.0 C21—C26—H26 119.7
C14—C13—H13 120.0 F4—C27—F5 107.18 (18)
C13—C14—C15 119.97 (19) F4—C27—F6 105.61 (16)
C13—C14—C17 120.08 (18) F5—C27—F6 105.08 (16)
C15—C14—C17 119.94 (18) F4—C27—C24 113.67 (17)
C16—C15—C14 120.02 (18) F5—C27—C24 112.76 (17)
C16—C15—H15 120.0 F6—C27—C24 111.91 (18)
C14—C15—H15 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13···O4i 0.93 2.52 3.320 (2) 144

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2528).

References

  1. Bak, B., Christensen, D., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1961). J. Mol. Spectrosc.7, 58–63.
  2. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809020443/xu2528sup1.cif

e-65-o1469-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809020443/xu2528Isup2.hkl

e-65-o1469-Isup2.hkl (149KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES