Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 12;65(Pt 9):o2141–o2142. doi: 10.1107/S1600536809031316

1,3-Bis[(4-nitro­benzyl­idene)amino­oxy]propane

Wen-Kui Dong a,*, Yin-Xia Sun a, Jun-Feng Tong a, Hai-Hong Zhao a, Li Wang a
PMCID: PMC2969883  PMID: 21577551

Abstract

The complete molecule of title compound, C17H16N4O6, is generated by a crystallographic twofold axis. Within the mol­ecule, the two benzene units are approximately perpen­dicular, making a dihedral angle of 85.91 (4)°. In the crystal, mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds and short O⋯O and N⋯O inter­actions, with distances of 2.998 (2) and 2.968 (3) Å, respectively.

Related literature

For general background to Schiff base complexes and their applications, see: Niederhoffer et al. (1984); Zhang et al. (1990); Tisato et al. (1994); Lacroix (2001); Sundari et al. (1997); Koehler et al. (1964); Cordes & Jencks (1962); Akine et al. (2006). For related structures, see: Fun et al. (2008a ,b ); Kia et al. (2009); Shi et al. (2007); Ren et al. (2008); Ding et al. (2009); Dong et al. (2008a ). For a related Schiff base bis­oxime compound synthesized using a similar route, see: Dong et al. (2008b ).graphic file with name e-65-o2141-scheme1.jpg

Experimental

Crystal data

  • C17H16N4O6

  • M r = 372.34

  • Monoclinic, Inline graphic

  • a = 29.005 (3) Å

  • b = 4.7878 (5) Å

  • c = 6.3579 (7) Å

  • β = 99.144 (1)°

  • V = 871.71 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.45 × 0.17 × 0.06 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.952, T max = 0.993

  • 2321 measured reflections

  • 872 independent reflections

  • 675 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.094

  • S = 0.96

  • 872 reflections

  • 123 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031316/fl2256sup1.cif

e-65-o2141-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031316/fl2256Isup2.hkl

e-65-o2141-Isup2.hkl (43.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.40 3.206 (4) 145
C9—H9⋯O3i 0.93 2.63 3.395 (4) 139
C9—H9⋯O2ii 0.93 2.71 3.374 (4) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0904-11) and the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

supplementary crystallographic information

Comment

Schiff bases are among the most prevalent mixed-donor ligands in the field of coordination chemistry in which there has been growing interest, mainly because of their wide application in areas such as biochemistry (Niederhoffer et al., 1984), catalysis (Zhang et al., 1990), medical imaging (Tisato et al., 1994), optical materials (Lacroix, 2001) and thin films (Sundari et al., 1997). Although most Schiff bases are stable in both solution and the solid state, C=N bonds often suffer exchange reactions (Koehler et al., 1964) as well as hydrolysis (Cordes & Jencks, 1962). Rate constants of oxime formation are smaller than those of imine formation and the equilibrium constants are larger by several orders (Akine et al., 2006). Hence, the title compound should be stable enough to resist the metathesis of the C=N bonds. Many bisdentate Schiff base compounds have been structurally characterized (Fun et al., 2008a; Fun et al., 2008b; Kia et al., 2009), but only a relatively small number of bisoxime compounds have had their X-ray structures reported (Shi et al., 2007; Ren et al., 2008). As an extension of our work (Ding et al., 2009; Dong et al., 2008a) on the structural characterization of bisoxime compounds, the title compound, is reported here (Fig. 1).

In the title compound all bond lengths are in normal ranges. The molecule sits on a crystallographic twofold passing through the central CH2 group (symmetry code: -x, y, -z) such that there is 1/2 molecule per asymmetric unit. Within the molecule, the dihedral angle between the plane of oxime functional group and benzene ring is about 0.54 (3)° for O1—N1—C3 and the C4—C9 ring, and the two benzene rings are approximately perpendicular with a dihedral angle of 85.91 (4)°. In the crystal intermolecular C—H···O hydrogen bonds link the molecules into an infinite three-dimensional supramolecular network. The molecules are held together by intermolecular hydrogen bonds (Table 1) to form infinite zigzag chains along the a axis and wave-like layers parallel to the ac plane (Fig. 2). In addition, the interesting features of the crystal structure are short intermolecular O···O and N···O interactions that form infinite helical chains along the b axis as depicted in Fig. 3. The O···O and N···O distances of 2.998 (2) and 2.968 (3) Å, respectively, are significantly shorter than the sum of the van der Waals radii of the relevant atoms. Thus, the zigzag and helical chains form a three-dimensional supramolecular structure through the crosslinked hydrogen-bonded and short intermolecular O···O and N···O interactions (Fig. 4).

Experimental

The title compound was synthesized according to an analogous method reported earlier (Dong et al., 2008b). To an ethanol solution (2 ml) of p-nitrobenzene (186.6 mg, 1.235 mmol) was added dropwise an ethanol solution (3 ml) of 1,3-bis(aminooxy)propane (51.3 mg, 0.473 mmol). The mixture was stirred at 328 K for 3 h. After cooling to room temperature, the precipitate was filtered off, and washed successively with ethanol and n-hexane, respectively. The product was dried in vacuo and purified by recrystallization from ethanol to yield 127.8 mg of (1); Yield, 71.8%. m. p. 427–429 K. Anal. Calcd. for C17H16N4O6: C, 54.84; H, 4.33; N, 15.05; Found: C, 55.06; H, 4.29; N, 15.04.

Colorless needle-like single crystals suitable for X-ray diffraction studies were obtained after about two weeks by slow evaporation from a chloroform-N,N-dimethylformamide of mixed solution of the title compound at room temperature.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2) and 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).Since it was not possible to determine the absolute configuration of the molecule from the experimental data the Friedel equivalents were merged prior to final refinement cycles.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The intermolecular hydrogen bonds and short O···O and N···O interactions (dashed lines), showing zigzag chains along a axis and wave-like layers parallel to the ac plane.

Fig. 3.

Fig. 3.

The infinite helical chains along b axis linked by short O···O and N···O interactions, other atoms are omitted for clarity.

Fig. 4.

Fig. 4.

Part of the three-dimensional supramolecular network structure of the title compound.

Crystal data

C17H16N4O6 F(000) = 388
Mr = 372.34 Dx = 1.419 Mg m3
Monoclinic, C2 Melting point = 427–429 K
Hall symbol: C 2y Mo Kα radiation, λ = 0.71073 Å
a = 29.005 (3) Å Cell parameters from 773 reflections
b = 4.7878 (5) Å θ = 2.9–25.3°
c = 6.3579 (7) Å µ = 0.11 mm1
β = 99.144 (1)° T = 298 K
V = 871.71 (16) Å3 Needle-like, colorless
Z = 2 0.45 × 0.17 × 0.06 mm

Data collection

Siemens SMART 1000 CCD area-detector diffractometer 872 independent reflections
Radiation source: fine-focus sealed tube 675 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→34
Tmin = 0.952, Tmax = 0.993 k = −5→5
2321 measured reflections l = −7→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0524P)2] where P = (Fo2 + 2Fc2)/3
872 reflections (Δ/σ)max < 0.001
123 parameters Δρmax = 0.13 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.93031 (9) 0.2933 (7) 0.6567 (4) 0.0497 (7)
N2 0.79744 (9) 1.2194 (6) 0.1169 (4) 0.0479 (7)
O1 0.94454 (7) 0.1141 (6) 0.8289 (3) 0.0560 (7)
O2 0.76377 (8) 1.3375 (6) 0.1705 (3) 0.0643 (7)
O3 0.81103 (8) 1.2669 (6) −0.0530 (3) 0.0656 (8)
C1 0.98599 (10) −0.0342 (8) 0.8012 (4) 0.0508 (9)
H1A 1.0106 0.0956 0.7815 0.061*
H1B 0.9799 −0.1551 0.6775 0.061*
C2 1.0000 −0.2040 (12) 1.0000 0.0511 (12)
H2A 0.9741 −0.3236 1.0203 0.061* 0.50
H2B 1.0259 −0.3236 0.9797 0.061* 0.50
C3 0.89337 (11) 0.4213 (8) 0.6853 (5) 0.0486 (9)
H3 0.8809 0.3840 0.8082 0.058*
C4 0.86975 (10) 0.6240 (8) 0.5337 (4) 0.0418 (8)
C5 0.88617 (10) 0.6955 (7) 0.3454 (4) 0.0501 (9)
H5 0.9130 0.6115 0.3120 0.060*
C6 0.86237 (10) 0.8918 (7) 0.2086 (5) 0.0481 (9)
H6 0.8733 0.9422 0.0841 0.058*
C7 0.82254 (10) 1.0105 (7) 0.2594 (4) 0.0405 (7)
C8 0.80565 (10) 0.9443 (8) 0.4438 (4) 0.0470 (9)
H8 0.7787 1.0280 0.4756 0.056*
C9 0.82958 (10) 0.7517 (8) 0.5798 (4) 0.0473 (8)
H9 0.8186 0.7061 0.7053 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0561 (17) 0.0467 (17) 0.0439 (14) −0.0031 (16) 0.0009 (12) 0.0075 (15)
N2 0.0530 (16) 0.0421 (18) 0.0486 (14) −0.0031 (15) 0.0076 (13) 0.0048 (14)
O1 0.0543 (14) 0.0622 (16) 0.0514 (12) 0.0090 (13) 0.0083 (10) 0.0130 (13)
O2 0.0691 (15) 0.0610 (18) 0.0650 (14) 0.0177 (15) 0.0178 (12) 0.0114 (14)
O3 0.0766 (15) 0.0688 (19) 0.0547 (12) 0.0025 (15) 0.0208 (11) 0.0196 (15)
C1 0.0476 (17) 0.047 (2) 0.0561 (19) −0.0001 (18) 0.0044 (15) −0.0014 (17)
C2 0.049 (3) 0.044 (3) 0.057 (3) 0.000 −0.001 (2) 0.000
C3 0.0467 (17) 0.051 (2) 0.0488 (18) −0.002 (2) 0.0108 (15) 0.0082 (18)
C4 0.0441 (17) 0.0393 (19) 0.0408 (15) −0.0048 (16) 0.0034 (14) 0.0022 (16)
C5 0.0471 (18) 0.056 (3) 0.0495 (17) 0.0035 (19) 0.0136 (15) 0.0007 (18)
C6 0.0535 (19) 0.052 (2) 0.0405 (16) −0.0020 (19) 0.0125 (14) 0.0062 (16)
C7 0.0457 (16) 0.0351 (18) 0.0395 (15) −0.0039 (15) 0.0032 (13) 0.0016 (14)
C8 0.0469 (18) 0.048 (2) 0.0486 (18) 0.0014 (18) 0.0165 (15) 0.0034 (17)
C9 0.0480 (17) 0.051 (2) 0.0448 (16) 0.0022 (18) 0.0139 (13) 0.0090 (17)

Geometric parameters (Å, °)

N1—C3 1.273 (4) C3—C4 1.459 (4)
N1—O1 1.401 (3) C3—H3 0.9300
N2—O2 1.223 (3) C4—C9 1.388 (4)
N2—O3 1.229 (3) C4—C5 1.399 (4)
N2—C7 1.464 (4) C5—C6 1.387 (4)
O1—C1 1.431 (3) C5—H5 0.9300
C1—C2 1.503 (5) C6—C7 1.371 (4)
C1—H1A 0.9700 C6—H6 0.9300
C1—H1B 0.9700 C7—C8 1.378 (4)
C2—C1i 1.503 (5) C8—C9 1.374 (5)
C2—H2A 0.9700 C8—H8 0.9300
C2—H2B 0.9700 C9—H9 0.9300
C3—N1—O1 109.5 (2) C4—C3—H3 118.5
O2—N2—O3 122.8 (3) C9—C4—C5 119.0 (3)
O2—N2—C7 119.0 (2) C9—C4—C3 118.4 (3)
O3—N2—C7 118.2 (3) C5—C4—C3 122.7 (3)
N1—O1—C1 110.9 (2) C6—C5—C4 119.9 (3)
O1—C1—C2 106.5 (2) C6—C5—H5 120.0
O1—C1—H1A 110.4 C4—C5—H5 120.0
C2—C1—H1A 110.4 C7—C6—C5 119.2 (3)
O1—C1—H1B 110.4 C7—C6—H6 120.4
C2—C1—H1B 110.4 C5—C6—H6 120.4
H1A—C1—H1B 108.6 C6—C7—C8 122.1 (3)
C1i—C2—C1 114.5 (5) C6—C7—N2 119.5 (3)
C1i—C2—H2A 108.6 C8—C7—N2 118.4 (3)
C1—C2—H2A 108.6 C9—C8—C7 118.5 (3)
C1i—C2—H2B 108.6 C9—C8—H8 120.7
C1—C2—H2B 108.6 C7—C8—H8 120.7
H2A—C2—H2B 107.6 C8—C9—C4 121.3 (3)
N1—C3—C4 122.9 (3) C8—C9—H9 119.3
N1—C3—H3 118.5 C4—C9—H9 119.3
C3—N1—O1—C1 179.8 (3) C5—C6—C7—N2 179.5 (3)
N1—O1—C1—C2 176.2 (3) O2—N2—C7—C6 −175.2 (3)
O1—C1—C2—C1i −64.9 (2) O3—N2—C7—C6 5.4 (4)
O1—N1—C3—C4 179.9 (3) O2—N2—C7—C8 3.4 (4)
N1—C3—C4—C9 179.9 (3) O3—N2—C7—C8 −176.0 (3)
N1—C3—C4—C5 −0.6 (5) C6—C7—C8—C9 −0.3 (5)
C9—C4—C5—C6 0.1 (5) N2—C7—C8—C9 −178.9 (3)
C3—C4—C5—C6 −179.4 (3) C7—C8—C9—C4 −0.4 (5)
C4—C5—C6—C7 −0.9 (5) C5—C4—C9—C8 0.5 (5)
C5—C6—C7—C8 1.0 (5) C3—C4—C9—C8 −179.9 (3)

Symmetry codes: (i) −x+2, y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O3ii 0.93 2.40 3.206 (4) 145
C9—H9···O3ii 0.93 2.63 3.395 (4) 139
C9—H9···O2iii 0.93 2.71 3.374 (4) 129

Symmetry codes: (ii) x, y−1, z+1; (iii) −x+3/2, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2256).

References

  1. Akine, S., Dong, W. K. & Nabeshima, T. (2006). Inorg. Chem.45, 4677–4684. [DOI] [PubMed]
  2. Cordes, E. H. & Jencks, W. P. (1962). J. Am. Chem. Soc.84, 832–837.
  3. Ding, Y.-J., Xue, Z.-L., Dong, W.-K., Sun, Y.-X. & Wu, J.-C. (2009). Acta Cryst. E65, o1193. [DOI] [PMC free article] [PubMed]
  4. Dong, W.-K., Ding, Y.-J., Luo, Y.-L., Yan, H.-B. & Wang, L. (2008a). Acta Cryst. E64, o1636. [DOI] [PMC free article] [PubMed]
  5. Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008b). Acta Cryst. E64, o1405. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471. [DOI] [PMC free article] [PubMed]
  8. Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o682–o683. [DOI] [PMC free article] [PubMed]
  9. Koehler, K., Sandstrom, W. & Cordes, E. H. (1964). J. Am. Chem. Soc.86, 2413–2419.
  10. Lacroix, P. G. (2001). Eur. J. Inorg. Chem.2, 339–348.
  11. Niederhoffer, E. C., Timmons, J. H. & Martell, A. E. (1984). Chem. Rev.84, 137–203.
  12. Ren, Z.-L., Dong, W.-K., Bai, W.-J., He, X.-N. & Wang, L. (2008). Acta Cryst. E64, o1678. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shi, J., Dong, W., Zhang, Y. & Gao, S. (2007). Acta Cryst. E63, o4080.
  16. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  17. Sundari, S. S., Dhathathreyan, A., Kanthimathi, M. & Balachandran, U. N. (1997). Langmuir, 13, 4923–4925.
  18. Tisato, J., Refosco, F. & Bandoli, F. (1994). Coord. Chem. Rev.135–136, 325–397.
  19. Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc.112, 2801–2803.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031316/fl2256sup1.cif

e-65-o2141-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031316/fl2256Isup2.hkl

e-65-o2141-Isup2.hkl (43.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES