Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 22;65(Pt 9):o2225. doi: 10.1107/S1600536809033029

5,6-Diphenyl­pyrazine-2,3-dicarbonitrile

Tuncer Hökelek a,*, Ergin Yalçın b, Zeynel Seferoğlu b, Ertan Şahin c
PMCID: PMC2970004  PMID: 21577624

Abstract

In the title compound, C18H10N4, the pyrazine ring is oriented at dihedral angles of 48.08 (7) and 44.80 (7)° with respect to the phenyl rings, while the dihedral angle between the phenyl rings is 49.47 (7)°. In the crystal structure, weak π–π contacts between pyrazine and phenyl rings [centroid–centroid distance = 3.813 (1) Å] may stabilize the structure.

Related literature

For applications of 2,3-dicyano­pyrazine derivatives, see: Hou et al. (1993); Jaung et al. (1996); Takematsu et al. (1981). For a related structure, see: Zhang et al. (2009). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o2225-scheme1.jpg

Experimental

Crystal data

  • C18H10N4

  • M r = 282.31

  • Monoclinic, Inline graphic

  • a = 9.2195 (2) Å

  • b = 7.2837 (2) Å

  • c = 21.5507 (5) Å

  • β = 101.108 (1)°

  • V = 1420.06 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 K

  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: none

  • 28933 measured reflections

  • 2911 independent reflections

  • 1708 reflections with I > 2σ(I)

  • R int = 0.137

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.145

  • S = 1.05

  • 2911 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033029/xu2592sup1.cif

e-65-o2225-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033029/xu2592Isup2.hkl

e-65-o2225-Isup2.hkl (140KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

supplementary crystallographic information

Comment

2,3-Dicyanopyrazine derivatives have become a potential subject of investigation because of their wide variety of applications, which include heterocycles for bioactive substances, coloring matters, nonlinear optical (NLO) and electroluminescence (EL) materials (Hou et al., 1993; Jaung et al., 1996). They are also the intermediate compounds to synthesize phthalocyanine dyes, which is nowadays a very important class of dyes. On the other hand, it has been found that a group of 2,3-dicyanopyrazine derivatives have very good herbicidial activity in treatment of the soil of water-submerged paddies, foliage of weeds in the growth period, and the soil of upland farms, these compounds generally tend to form a rigid chemical-treated layer in the surface of the soil, and have the ability to control barnyard grass and other annual and perennial weeds excellently with substantially no phytotoxicity to transplanted rise plants (Takematsu et al., 1981). The present study was undertaken in order to ascertain the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The cyano groups bond lengths C17—N4 [1.138 (3) Å] and C18—N3 [1.138 (3) Å] are in good agreement with the corresponding values [1.140 (2) and 1.142 (2) Å] reported in 4,5-diaminobenzene-1,2-dicarbonitrile (Zhang et al., 2009). Rings A (C1—C6), B (C7—C12) and C (N1/N2/C13—C16) are, of course, planar and they are oriented at dihedral angles of A/B = 49.47 (7), A/C = 48.08 (7) and B/C = 44.80 (7)°.

In the crystal structure, the π–π contact between the pyrazine and the phenyl rings, Cg1—Cg2i, [symmetry code: (i) 1/2 - x, 1/2 + y, 1/2 - z, where Cg1 and Cg2 are centroids of the rings C (N1/N2/C13—C16) and A (C1—C6), respectively] may stabilize the structure, with centroid-centroid distance of 3.813 (1) Å.

As can be seen from the packing diagram (Fig. 2), the molecules are stacked along the b axis and elongated along the a axis.

Experimental

For the preparation of the title compound, a mixture of benzyl (2.10 g, 10 mmol), diaminomaleonitrile (1.18 g, 11 mmol) and acetic acid (2 ml) in ethanol (20 ml) and water (15 ml) was heated at 348 K overnight. The reaction mixture was cooled, and water (20 ml) was added. The precipitate was filtered and washed with ethanol and then ether. The crude product was dissolved in dichloromethane and treated with activated charcoal. The solid was recrystallized from ethanol to give colorless crystals (yield; 1.97 g, 70%, m.p. 516–518 K).

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atom with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram.

Crystal data

C18H10N4 F(000) = 584
Mr = 282.31 Dx = 1.320 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4324 reflections
a = 9.2195 (2) Å θ = 2.3–26.4°
b = 7.2837 (2) Å µ = 0.08 mm1
c = 21.5507 (5) Å T = 294 K
β = 101.108 (1)° Block, colorless
V = 1420.06 (6) Å3 0.30 × 0.15 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-S diffractometer 1708 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.137
graphite θmax = 26.4°, θmin = 2.3°
ω scans h = −11→11
28933 measured reflections k = −9→8
2911 independent reflections l = −26→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.1959P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2911 reflections Δρmax = 0.14 e Å3
200 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.039 (5)

Special details

Experimental. IR (Mattson 1000 F T—IR spectrophotometer, KBr, νmax): 3073 cm-1 (aromatic C—H), 2238 cm-1 (CN), 1515 cm-1 (CC). 1H-NMR (Bruker-Spectrospin Avance DPX 400 MHz Ultra-Shield): (δ, DMSO-d6) 7.40–7.50 p.p.m. (m, 10H, ArH).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.9159 (2) 0.0899 (3) 0.77849 (9) 0.0548 (5)
N2 1.1240 (2) −0.0919 (3) 0.72267 (8) 0.0541 (5)
N3 1.1092 (3) 0.1454 (3) 0.92857 (11) 0.0803 (7)
N4 1.4193 (3) −0.1142 (3) 0.84155 (11) 0.0843 (8)
C1 0.6099 (3) 0.0462 (3) 0.70896 (11) 0.0558 (6)
H1 0.6212 0.0037 0.7503 0.067*
C2 0.4703 (3) 0.0730 (3) 0.67328 (13) 0.0642 (7)
H2 0.3876 0.0446 0.6903 0.077*
C3 0.4526 (3) 0.1412 (3) 0.61287 (13) 0.0677 (7)
H3 0.3582 0.1564 0.5888 0.081*
C4 0.5738 (3) 0.1870 (4) 0.58798 (12) 0.0688 (7)
H4 0.5615 0.2378 0.5477 0.083*
C5 0.7134 (3) 0.1579 (3) 0.62258 (11) 0.0617 (7)
H5 0.7954 0.1887 0.6054 0.074*
C6 0.7335 (2) 0.0829 (3) 0.68285 (10) 0.0508 (6)
C7 0.9497 (3) −0.1528 (3) 0.62762 (10) 0.0517 (6)
C8 0.8195 (3) −0.2521 (3) 0.60918 (11) 0.0625 (7)
H8 0.7527 −0.2615 0.6363 0.075*
C9 0.7894 (3) −0.3364 (4) 0.55095 (13) 0.0717 (7)
H9 0.7027 −0.4035 0.5390 0.086*
C10 0.8868 (3) −0.3215 (4) 0.51061 (12) 0.0755 (8)
H10 0.8650 −0.3765 0.4709 0.091*
C11 1.0169 (3) −0.2254 (4) 0.52857 (12) 0.0746 (8)
H11 1.0829 −0.2163 0.5011 0.090*
C12 1.0494 (3) −0.1427 (3) 0.58728 (11) 0.0631 (7)
H12 1.1382 −0.0803 0.5997 0.076*
C13 0.9860 (2) −0.0659 (3) 0.69065 (10) 0.0496 (6)
C14 0.8827 (2) 0.0355 (3) 0.71825 (10) 0.0490 (5)
C15 1.1567 (2) −0.0300 (3) 0.78196 (10) 0.0526 (6)
C16 1.0523 (2) 0.0551 (3) 0.81061 (10) 0.0521 (6)
C17 1.3043 (3) −0.0720 (3) 0.81610 (11) 0.0617 (7)
C18 1.0848 (3) 0.1071 (3) 0.87641 (12) 0.0592 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0558 (12) 0.0556 (12) 0.0531 (12) 0.0020 (9) 0.0111 (9) −0.0003 (9)
N2 0.0506 (12) 0.0585 (12) 0.0535 (12) 0.0001 (9) 0.0109 (9) 0.0005 (9)
N3 0.0844 (17) 0.0934 (18) 0.0607 (14) 0.0033 (13) 0.0083 (12) −0.0100 (12)
N4 0.0646 (16) 0.0988 (19) 0.0842 (17) 0.0087 (13) 0.0009 (13) −0.0086 (13)
C1 0.0601 (15) 0.0541 (14) 0.0556 (14) 0.0004 (12) 0.0168 (11) −0.0013 (11)
C2 0.0530 (15) 0.0619 (16) 0.0793 (18) 0.0008 (12) 0.0171 (13) −0.0019 (13)
C3 0.0542 (16) 0.0680 (17) 0.0765 (18) 0.0112 (12) 0.0012 (13) 0.0025 (14)
C4 0.0691 (18) 0.0709 (17) 0.0646 (16) 0.0123 (14) 0.0083 (14) 0.0117 (13)
C5 0.0588 (16) 0.0685 (17) 0.0595 (15) 0.0057 (12) 0.0160 (12) 0.0069 (12)
C6 0.0518 (14) 0.0493 (13) 0.0519 (13) 0.0046 (10) 0.0112 (10) −0.0019 (10)
C7 0.0533 (14) 0.0545 (14) 0.0472 (13) 0.0067 (11) 0.0096 (11) −0.0007 (10)
C8 0.0597 (15) 0.0671 (17) 0.0614 (15) 0.0027 (13) 0.0134 (12) −0.0081 (13)
C9 0.0681 (18) 0.0721 (18) 0.0709 (18) 0.0028 (13) 0.0032 (14) −0.0142 (14)
C10 0.088 (2) 0.0764 (19) 0.0560 (16) 0.0228 (16) −0.0024 (15) −0.0127 (13)
C11 0.087 (2) 0.083 (2) 0.0592 (16) 0.0206 (17) 0.0273 (15) 0.0004 (14)
C12 0.0651 (16) 0.0658 (16) 0.0602 (16) 0.0054 (12) 0.0167 (12) −0.0008 (12)
C13 0.0503 (13) 0.0514 (14) 0.0480 (13) −0.0014 (11) 0.0118 (10) 0.0014 (10)
C14 0.0489 (13) 0.0492 (13) 0.0500 (13) −0.0002 (10) 0.0126 (10) 0.0016 (10)
C15 0.0490 (13) 0.0574 (14) 0.0505 (14) −0.0016 (11) 0.0072 (10) 0.0011 (11)
C16 0.0556 (15) 0.0526 (14) 0.0476 (13) −0.0013 (11) 0.0090 (11) −0.0002 (10)
C17 0.0594 (16) 0.0664 (17) 0.0586 (15) −0.0014 (13) 0.0095 (13) −0.0045 (12)
C18 0.0599 (16) 0.0619 (16) 0.0559 (16) 0.0034 (12) 0.0111 (12) −0.0023 (12)

Geometric parameters (Å, °)

N1—C14 1.335 (3) C7—C12 1.383 (3)
N1—C16 1.338 (3) C8—C9 1.376 (3)
N2—C13 1.339 (3) C8—H8 0.9300
N2—C15 1.334 (3) C9—C10 1.369 (4)
C1—C2 1.380 (3) C9—H9 0.9300
C1—H1 0.9300 C10—C11 1.378 (4)
C2—H2 0.9300 C10—H10 0.9300
C3—C4 1.371 (4) C11—H11 0.9300
C3—C2 1.374 (3) C12—C11 1.381 (3)
C3—H3 0.9300 C12—H12 0.9300
C4—H4 0.9300 C13—C7 1.477 (3)
C5—C4 1.374 (3) C14—C13 1.422 (3)
C5—H5 0.9300 C15—C16 1.386 (3)
C6—C1 1.391 (3) C15—C17 1.450 (3)
C6—C5 1.388 (3) C17—N4 1.138 (3)
C6—C14 1.480 (3) C18—N3 1.138 (3)
C7—C8 1.393 (3) C18—C16 1.442 (3)
C14—N1—C16 117.58 (19) C8—C9—H9 119.9
C15—N2—C13 117.57 (19) C10—C9—C8 120.1 (3)
C2—C1—C6 119.8 (2) C10—C9—H9 119.9
C2—C1—H1 120.1 C9—C10—C11 120.2 (2)
C6—C1—H1 120.1 C9—C10—H10 119.9
C1—C2—H2 119.8 C11—C10—H10 119.9
C3—C2—C1 120.5 (2) C10—C11—C12 120.1 (3)
C3—C2—H2 119.8 C10—C11—H11 119.9
C2—C3—H3 119.9 C12—C11—H11 119.9
C4—C3—C2 120.1 (2) C7—C12—H12 120.0
C4—C3—H3 119.9 C11—C12—C7 120.0 (3)
C3—C4—C5 119.9 (2) C11—C12—H12 120.0
C3—C4—H4 120.0 N2—C13—C7 115.93 (19)
C5—C4—H4 120.0 N2—C13—C14 120.28 (19)
C4—C5—C6 120.7 (2) C14—C13—C7 123.8 (2)
C4—C5—H5 119.6 N1—C14—C6 116.61 (19)
C6—C5—H5 119.6 N1—C14—C13 120.96 (19)
C1—C6—C14 120.0 (2) C13—C14—C6 122.43 (19)
C5—C6—C1 118.8 (2) N2—C15—C16 122.0 (2)
C5—C6—C14 121.2 (2) N2—C15—C17 115.6 (2)
C8—C7—C13 121.0 (2) C16—C15—C17 122.2 (2)
C12—C7—C8 119.2 (2) N1—C16—C15 121.2 (2)
C12—C7—C13 119.7 (2) N1—C16—C18 117.1 (2)
C7—C8—H8 119.9 C15—C16—C18 121.7 (2)
C9—C8—C7 120.2 (2) N4—C17—C15 176.3 (3)
C9—C8—H8 119.9 N3—C18—C16 178.8 (3)
C16—N1—C14—C6 −177.30 (19) C12—C7—C8—C9 −1.2 (4)
C16—N1—C14—C13 3.9 (3) C13—C7—C8—C9 −178.2 (2)
C14—N1—C16—C15 1.6 (3) C8—C7—C12—C11 2.2 (4)
C14—N1—C16—C18 −177.3 (2) C13—C7—C12—C11 179.3 (2)
C15—N2—C13—C14 4.2 (3) C7—C8—C9—C10 −0.6 (4)
C15—N2—C13—C7 −174.0 (2) C8—C9—C10—C11 1.4 (4)
C13—N2—C15—C16 1.3 (3) C9—C10—C11—C12 −0.3 (4)
C13—N2—C15—C17 176.1 (2) C7—C12—C11—C10 −1.4 (4)
C6—C1—C2—C3 −2.1 (4) N2—C13—C7—C12 −43.6 (3)
C4—C3—C2—C1 −1.4 (4) N2—C13—C7—C8 133.4 (2)
C2—C3—C4—C5 2.6 (4) C14—C13—C7—C8 −44.7 (3)
C6—C5—C4—C3 −0.2 (4) C14—C13—C7—C12 138.3 (2)
C5—C6—C1—C2 4.3 (3) N1—C14—C13—N2 −7.0 (3)
C14—C6—C1—C2 −173.3 (2) N1—C14—C13—C7 171.0 (2)
C1—C6—C5—C4 −3.2 (4) C6—C14—C13—N2 174.2 (2)
C14—C6—C5—C4 174.5 (2) C6—C14—C13—C7 −7.8 (3)
C1—C6—C14—N1 −49.0 (3) N2—C15—C16—N1 −4.4 (4)
C1—C6—C14—C13 129.8 (2) N2—C15—C16—C18 174.4 (2)
C5—C6—C14—N1 133.4 (2) C17—C15—C16—N1 −178.9 (2)
C5—C6—C14—C13 −47.8 (3) C17—C15—C16—C18 0.0 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2592).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Hou, D. F., Oshida, A. & Matsuoka, M. (1993). J. Heterocycl. Chem.30, 1571–1575.
  5. Jaung, J. Y., Matsuoka, M. & Fukunishi, K. (1996). Dyes Pigments, 31, 141–153.
  6. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Takematsu, T., Segawa, H., Miura, T., Ataka, T., Chatani, M. & Nakamura, A. (1981). US Patent No. 4 259 489; Appl. No. 05/969938.
  10. Zhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809033029/xu2592sup1.cif

e-65-o2225-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033029/xu2592Isup2.hkl

e-65-o2225-Isup2.hkl (140KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES