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ABSTRACT

An RNA molecule, particularly a long-chain mRNA,
may exist as a population of structures. Further-
more, multiple structures have been demonstrated
to play important functional roles. Thus, a repre-
sentation of the ensemble of probable structures is
of interest. We present a statistical algorithm to
sample rigorously and exactly from the Boltzmann
ensemble of secondary structures. The forward step
of the algorithm computes the equilibrium partition
functions of RNA secondary structures with recent
thermodynamic parameters. Using conditional prob-
abilities computed with the partition functions in a
recursive sampling process, the backward step of
the algorithm quickly generates a statistically repre-
sentative sample of structures. With cubic run time
for the forward step, quadratic run time in the worst
case for the sampling step, and quadratic storage,
the algorithm is ef®cient for broad applicability. We
demonstrate that, by classifying sampled struc-
tures, the algorithm enables a statistical delineation
and representation of the Boltzmann ensemble.
Applications of the algorithm show that alternative
biological structures are revealed through sampling.
Statistical sampling provides a means to estimate
the probability of any structural motif, with or with-
out constraints. For example, the algorithm enables
probability pro®ling of single-stranded regions in
RNA secondary structure. Probability pro®ling for
speci®c loop types is also illustrated. By overlaying
probability pro®les, a mutual accessibility plot can
be displayed for predicting RNA:RNA interactions.
Boltzmann probability-weighted density of states
and free energy distributions of sampled structures
can be readily computed. We show that a sample of
moderate size from the ensemble of an enormous
number of possible structures is suf®cient to
guarantee statistical reproducibility in the estimates
of typical sampling statistics. Our applications sug-
gest that the sampling algorithm may be well suited
to prediction of mRNA structure and target

accessibility. The algorithm is applicable to the
rational design of small interfering RNAs (siRNAs),
antisense oligonucleotides, and trans-cleaving
ribozymes in gene knock-down studies.

INTRODUCTION

RNA molecules participate in a variety of important biological
processes that include catalysis, RNA splicing, regulation of
transcription, translation, and RNA:DNA, RNA:RNA and
RNA:protein interactions. The function of an RNA molecule
is determined by its structure. However, it is extremely
dif®cult to crystallize large RNA molecules for structural
determination. Crystal structure has been determined only for
a small number of RNA molecules, although exciting progress
has been made for rRNAs in recent years (1). Secondary
structures are highly conserved in evolution for most
functional RNAs, e.g. tRNAs (2). On the other hand, RNA
tertiary structural motifs involve interactions between second-
ary structure elements. To a large extent, RNA folding is
driven by secondary structural features. For these reasons,
elucidation of RNA secondary structure is an important step
toward determination of three-dimensional structure and
function of an RNA. Computational methods are valuable,
because determination of secondary structure, particularly for
long-chain RNA molecules, is dif®cult by experimental
means.

From the perspective of statistical mechanics, characteriz-
ation of the full ensemble of secondary structures for a given
RNA sequence is of great interest (3,4). For example, an
mRNA may exist as a population of different structures (5).
On the other hand, multiple structures are known to be
involved in a variety of RNA regulatory functions. These
include the functioning of the 5S rRNA during prokaryotic
protein synthesis (6,7), regulation of translation initiation in
prokaryotes (8,9), and attenuation of transcription in enteric
bacteria (10).

Free energy minimization is the most popular method for
the prediction of RNA secondary structure from a single
sequence. Although free energy models for secondary struc-
ture motifs have undergone re®nements for more accurate
characterization of folding thermodynamics, there is still
uncertainty in the experimental estimates of the parameters.
The free energy computed for a structure is an approximation
as well, because of the assumption of free energy additivity
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and the need to extrapolate to loop sequences and loop sizes in
the absence of measured estimates. Slight deviations in the
free energy parameters can lead to substantial differences in
the computed optimal folding. This ill conditioning of the
RNA folding problem by free energy minimization has been
well noted (11). Furthermore, the stability of secondary
structure motifs can be affected by potential tertiary inter-
actions that are unaccounted for in secondary structure
prediction, and little is known about the thermodynamic
contributions of tertiary motifs. Hence, the minimum free
energy (MFE) structure derived from a folding algorithm may
not be the true structure, and the true structure may be a
suboptimal folding. These considerations provide additional
motivations for us to more fully explore the ensemble of all
secondary structures. Existing algorithms have only partially
addressed the ensemble. We discuss below three major
solutions that have been described.

First, mathematical algorithms (12,13) can predict optimal
folding and can present a designed set of suboptimal foldings
within any prescribed P% (0 < P < 100) of the MFE. The
suboptimal algorithm is ef®cient for mitigating the uncertain-
ties in the predictions; however, it has limitations. For each
admissible base pair, the suboptimal algorithm generates the
constrained optimal folding, with this pair as the constraint.
Thus, it will regenerate the optimal folding if a base pair in the
optimal folding is the constraint. For a sequence of n
nucleotides, and n0 base pairs in the optimal folding, at most
n(n ± 1)/2 ± n0 suboptimal foldings are examined by this
algorithm. This set is common for all choices of P, and those
within P% of the MFE are returned by the algorithm. For large
P and for even moderate n, this is a small subset of all the
suboptimal foldings within P% of the MFE because, as P
increases, the number of all suboptimal foldings increases
exponentially with n. Furthermore, if the least stable structure
from this set is Q% away from the MFE, then for P < Q, no
new suboptimal foldings are produced. A structure that is not
one of the constrained optimal foldings generated by its base
pairs is in the complementary set of the `missing' suboptimal
foldings, i.e. the collection of suboptimal foldings excluded by
the suboptimal algorithm. For example, structures speci®ed by
removal of one or more base pairs from the optimal folding
fall into this set.

Secondly, a recent mathematical algorithm deals with the
computation of all suboptimal foldings within any speci®ed
increment of the MFE (14), and thus does comprehensively
address the issue of ensemble. This represents a more
analytical treatment than an earlier attempt (15). However,
for this algorithm, because the number of suboptimal foldings
grows exponentially, the run time shows an exponential
behavior, as the range of the energy interval increases (14).
Thus, even for moderate sequence length and moderate free
energy interval, enumeration and examination of this huge set
of suboptimal foldings become prohibitive.

Thirdly, the calculation of equilibrium partition functions
and base-pairing probabilities (3) is an important advance
toward the characterization of the Boltzmann ensemble of
secondary structures. However, this elegant algorithm does
not generate any secondary structures.

The dilemma, that the presentation of suboptimal foldings
through a designed set is limited, whereas complete enumer-
ation and examination of suboptimal foldings is dif®cult,

appears to be very hard to resolve by a mathematical
treatment. However, as we suggested with prototype algo-
rithms (16,17), the generation of a statistically representative
sample of secondary structures may provide a resolution to
this dilemma. Here we describe a secondary structure
sampling algorithm that incorporates comprehensive struc-
tural features and the recent thermodynamic parameters. We
show that the algorithm generates a sample that is guaranteed
to be representative. We present applications of the algorithm
to illustrate statistical characterization and representation of
the Boltzmann ensemble of secondary structures. Also, we
illustrate how the algorithm can be employed in predictions of
accessible target regions for rational design of RNA-targeting
nucleic acids.

ALGORITHM

For an RNA molecule, the secondary structures in the
Boltzmann ensemble are not all equally probable. The
Boltzmann equilibrium probability of a secondary structure I
for a sequence S is given by

P(I) = exp[±E(S, I)/RT]/U 1

where E(S, I) is the free energy of the structure for the
sequence, R is the gas constant, T is the absolute temperature
and U is the partition function for all admissible secondary
structures of the RNA sequence, i.e. U = SI exp[±E(S, I)/RT].
The Boltzmann equilibrium probability distribution gives the
probability for every structure, and therefore statistically
characterizes the ensemble. However, neither complete
enumeration nor usual statistical sampling from a discrete
distribution is feasible in this context, because the number of
secondary structures grows exponentially with increasing
length of the sequence. Here we describe a recursive algorithm
that draws a representative sample from the Boltzmann
equilibrium distribution.

The algorithm has two basic steps. Its forward step
computes equilibrium partition functions for all substrings of
an RNA sequence based on recent free energy parameters
(18,19). The backward step takes the form of a recursive
sampling algorithm to randomly draw secondary structures
according to their probabilities given by equation 1. The
equilibrium partition functions are used for calculating
conditional sampling probabilities. By applying the algorithm
to biological RNA sequences of a wide range of length, we
demonstrate that a statistically representative sample of
secondary structures can be quickly generated after the
calculation of the partition functions.

Computing equilibrium partition functions

For an RNA molecule of n ribonucleotides, let the sequence
fragment from the ith ribonucleotide from the 5¢ end to the jth
ribonucleotide be denoted by Rij = riri+1 ¼rj, 1 < i, j < n,
where ri = A, C, G or U. Let Iij be a secondary structure on Rij

that meets the usual constraints of unknotted structure and at
least three intervening bases between any base pair. For
structures under the constraints, let IPij be a structure on Rij

with the ends constrained to form a base pair. By summing
over all structures on the fragment, the equilibrium partition
functions restricted to Rij are de®ned as:
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u(i, j) = SIij exp[±E(Rij, Iij)/RT] 2

up(i, j) = SIPij exp[±E(Rij, IPij)/RT] 3

where the sum for u(i, j) is over all possible Iij, and the sum for
up(i, j) is over all possible IPij. E(Rij, Iij) is the free energy of
structure Iij for Rij, and for the gas constant R and the absolute
temperature T = 310.15 K, kcal/mol/RT = 1.6225. E(Rij, IPij)
is the free energy of structure IPij. Recursive calculation of
partition functions was previously employed for computing
base-pairing probabilities (3). The recursions in the Appendix
extend this early work by including all but coaxial stacking
from the recent free energy parameters (18,19). In particular,
free energies for dangling ends have been incorporated. More
speci®cally, the free energy rules and parameters include free
energies for stacking in a helix, stacking for a terminal
mismatch in a hairpin loop (size > 4 nt) or an interior loop,
and penalties for hairpin, bulge, interior and multibranched
loops. Free energies for dangling ends are used for exterior and
multibranched loops. For hairpins, a bonus for UU and GA ®rst
mismatches (included in the terminal stacking data) and a
bonus for G´U closure preceded by two G nucleotides in base
pairs are applied, and a penalty for oligo-C loops (all unpaired
nucleotides are C) is used. A table is consulted for tetraloops
with four unpaired nucleotides. For a bulge of 1 nt, the
stacking energy of the adjacent pairs is added. For interior
loops, tables for 1 3 1, 1 3 2 and 2 3 2 loops are consulted,
and a penalty for asymmetry is applied. A terminal A±U, G´U
penalty is explicitly applied to exterior loop, multibranched
loops, bulges longer than 1 nt and triloops (hairpin loops with
three unpaired nucleotides), while this penalty is included in
the terminal stacking data for hairpin loops (size > 4 nt) and
interior loops. The free energy parameters are for 37°C and
1 M Na+; however, this algorithm can be used with any set of
nearest-neighbor parameters derived for other conditions. The
recursions for partition functions are presented in such a
fashion that sampling probabilities can be readily derived.

With the partition function u(1, n) available, the Boltzmann
equilibrium probability for a secondary structure I1n of
sequence R1n can then be computed. Under the Boltzmann
model, I1n is a random variable. When R1n is also considered a
random variable, the Boltzmann equilibrium probability is, in
fact, a conditional probability of the secondary structure, given
the sequence data:

P(I1n|R1n) = exp[±E(R1n, I1n )/RT]/u(1, n) 4

Sampling structures from the Boltzmann equilibrium
probability distribution

In this section, we ®rst present equations for computing
sampling probabilities. Next, we describe the sampling
algorithm. At the end, we discuss the features of the sampling
algorithm, and illustrate them with examples.

Equations for computation of sampling probabilities. We
previously described sampling algorithms for RNA secondary
structures using a stacking energy model (16,17). The task of
structure sampling can also be accomplished for a more
comprehensive energy model, because the recursions for
restricted partition functions correspond to sampling prob-
abilities for mutually exclusive and exhaustive cases:

Sampling probability for a case = contribution to partition
function by the case/partition function.

Speci®cally, consider a fragment Rij for which it is
unknown whether the ends form a pair. For the ®ve cases
(a), (b), (c), (d) and (e) as shown in Figure A2 in the derivation
of the recursion for u(i, j) (equation A1 in the Appendix), the
sampling probabilities are given by the following equations:

P0 = 1/u(i, j)

Pij = up(i, j)exp[±etp(i, j)/RT]/u(i, j)

Phj = up(h, j)exp{±[ed5(h, j, h ± 1) + etp(h, j)]/RT}/
u(i, j), i < h < j,

Pil = up(i, l)exp[±etp(i, l)/RT]{exp[±ed3(i, l, l + 1)/RT]
u(l + 2, j) + u(l + 1, j) ± u(l + 2, j)}/u(i, j), i < l < j

Ps1h = s1(h, j)/u(i, j), i < h < j ± 1

Phl = up(h, l)exp{±[ed5(h, l, h ± 1) + etp(h, l)]/RT}
{exp[±ed3(h, l, l + 1)/RT]u(l+2, j) + u(l + 1, j) ± u(l + 2, j)}/
s1(h, j), h < l < j

where P0 is the sampling probability for case (a): Rij is single
stranded; Pij is the sampling probability for case (b): h = i, l = j;
{Phj} are the sampling probabilities for case (c): i < h < l = j;
{Pil} are the sampling probabilities for case (d): h = i < l<j;
{Ps1h} are the probabilities for ®rst sampling h for case (e):
and i < h < l < j; {Phl} are the probabilities for sampling l after
h is sampled. Other terms in the equations are de®ned in the
Appendix. Because the probabilities of all mutually exclusive
and exhaustive cases sum up to 1, we have P0 + Pij + Si < h < j

Phj + Si < l < j Pil + Si < h < j ± 1 Ps1h = 1, and Sh < l < j Phl = 1. The
computation is linear by using s1(h, j) (an auxiliary array
de®ned by equation A5 in the Appendix) through {Ps1h} and
{Phl}. When the ends are known to form a base pair ri±rj, the
pair can close a hairpin, or be the exterior pair of a base pair
stack, or close a bulge or an interior loop, or close a
multibranched loop. The conditional probabilities for these
cases, based on the recursion for up(i, j) (equation A2 in the
Appendix), are given by the following equations:

QijH = exp[±eh(i, j)/RT]/up(i, j)

QijS = exp[±es(i, j, i + 1, j ± 1)/RT]up(i + 1, j ± 1)/up(i, j)

QijBI = {Si< h < l < j exp[±ebi(i, j, h, l)/RT]up(h, l)}/up(i, j)

QijM = upm(i, j)/up(i, j)

QhlBI = exp[±ebi(i, j, h, l)/RT]up(h, l)/{Si < h¢ < l¢ <j

exp[±ebi(i, j, h¢, l¢)/RT]up(h¢, l¢)}, i < h¢ < l¢ < j

where QijH is the sampling probability for hairpin loop; QijS is
the sampling probability for base pair stack; QijBI is the
sampling probability for a bulge or an interior loop; and QijM is
the sampling probability for a multibranched loop. {QhlBI} are
used for sampling h and l after the case of bulge or interior
loop is sampled. Other terms in the equations are de®ned in the
Appendix. For mutually exclusive and exhaustive cases, we
have QijH + QijS + QijBI + QijM = 1, and Si < h < l < j QhlBI = 1.
upm(i, j) is the contribution to up(i, j) by the case of a
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multibranched loop (see equations A2 and A3 in the
Appendix).

In the case of a multibranched loop, the probabilities for
sampling the closing base pair rh1±rl1 of the ®rst 5¢ end internal
helix in the loop correspond to the terms in the recursion for
upm(i, j) (equation A3 in the Appendix) with the quartic term
expressed in terms of s2(h, j) (an auxiliary array de®ned by
equation A6 in the Appendix). More speci®cally, we ®rst
sample h and l according to the following conditional
probabilities:

Pij(i + 1)l = up(i + 1, l)exp{±[a + 2c + etp(i + 1, l)]/RT}
{exp[±ed3(i + 1, l, l + 1)/RT]u1(l + 2, j ± 1) + u1(l + 1, j ± 1) ±
u1(l + 2, j ± 1)}/upm(i, j), i + 1 < l < j

Pij(i + 2)l = up(i + 2, l)exp{±[a + 2c + b + ed3(j, i, i + 1)
+ etp(i + 2, l)]/RT}{exp[±ed3(i + 2, l, l + 1)/RT]u1(l + 2, j ± 1)
+ u1(l + 1, j ± 1) ± u1(l + 2, j ± 1)}/upm(i, j), i+2<l< j

Pijs2h = exp{±[a + 2c + (h ± i ± 1)b + ed3(j, i, i + 1)]/RT}
s2(h, j)/upm(i, j), i + 3 < h < j ± 1

Pijhl = up(h, l)exp{±[ed5(h, l, h ± 1) + etp(h, l)]/RT}
{exp[±ed3{h, l, l + 1)/RT]u1(l + 2, j ± 1) + u1(l + 1, j ± 1) ±
u1(l + 2, j ± 1)}/s2(h, j), h < l < j

where {Pij(i + 1)l} are sampling probabilities for the cases when
h = i + 1; {Pij(i + 2)l} are sampling probabilities for the cases
when h = i + 2; and {Pijhl} are probabilities for sampling l after
h > i + 3 is sampled with probabilities {Pijs2h}. For mutually
exclusive and exhaustive cases, we have Si + 1 < l < jPij(i + 1)l +
Si + 2 < l < jPij(i + 2)l + Si + 3 <h < j ± 1Pijs2h = 1, and Sh < l < j

Pijhl = 1. u1(k, j ± 1) is an auxiliary partition function for the
multibranched loop (see discussions on equation A3 in the
Appendix). Once both h and l are sampled, the closing base
pair rh1±rl1 of the ®rst internal helix is given by setting h1 = h
and l1 = l.

For sampling the second internal helix, the sampling
probabilities for base pair rh2±rl2 of the helix closest to the
5¢ end of R(l1 + 1)(j ± 1) correspond to terms in the recursion for
u1(l1 + 1, j ± 1) (equation A4 in the Appendix, with i
substituted by l1 + 1 and j substituted by j ± 1) with the quartic
term expressed in terms of s3(h, j ± 1) (an auxiliary array
de®ned by equation A7 in the Appendix).

More speci®cally, we ®rst sample h and l according to
conditional probabilities:

Q(l1 + 1)(j ± 1)(l1 + 1)l = up(l1 + 1, l)exp{±[c + etp(l1 + 1, l)]/
RT}{f(j, l1 + 1, l) exp[±(j ± 1 ± 1)b/RT] + exp[±ed3
(l1 + 1, l, l + 1)/RT]u1(l + 2, j ± 1) + u1(l + 1, j ± 1) ±
u1(l + 2, j ± 1)}/u1(l1 + 1, j ± 1), l1 + 1 < l < j ± 1

Q(l1 + 1)(j ± 1)(l1 + 2)l = up(l1 + 2, l)exp{±[c + b + etp
(l1 + 2, l)]/RT}{f(j, l1 + 2, l) exp[±(j ± 1 ± l)b/RT] +
exp[±ed3(l1 + 2, l, l + 1)/RT]u1(l + 2, j ± 1) + u1(l + 1, j ± 1) ±
u1(l + 2, j ± 1)}/u1(l1 + 1, j ± 1), l1 + 2 < l < j ± 1

Q(l1 + 1)(j ± 1)s3h = exp{±[c + (h ± l1 ± 1)b]/RT}s3(h, j ± 1)/
u1(l1 + 1, j ± 1), l1 + 3 < h < j ± 2

Q(j ± 1)hl = up(h, l)exp{±[ed5(h, l, h ± 1) + etp(h, l)]/RT}
{f(j, h, l) exp[±(j ± 1 ± 1)b/RT] + exp[±ed3(h, l, l + 1)/
RT]u1(l + 2, j ± 1) + u1(l + 1, j ± 1) ± u1(l + 2, j ± 1)}/
s3(h, j ± 1), h < l < j ± 1

where {Q(l1 + 1)(j ± 1)(l1 + 1)l} are sampling probabilities for
cases when h = l1 + 1; {Q(l1 + 1)(j ± 1)(l1 + 2)l} are sampling
probabilities for cases when h = l1 + 2; and {Q(j ± 1)hl} are
probabilities for sampling l after h > l1 + 3 is sampled with
probabilities {Q(l1 + 1)(j ± 1)s3h}. For mutually exclusive and
exhaustive cases, we have Sl1 + 1 < l < j ± 1 Q(l1 + 1)(j ± 1)(l1 + 1)l +
Sl1 + 2 < l < j ± 1 Q(l1 + 1)(j ± 1)(l1 + 2)l + Sl1 + 3 < h < j ± 2

Q(l1 + 1)(j ± 1)s3h = 1, and Sh < l < j ± 1Q(j ± 1)hl = 1. Once both h
and l are sampled, the closing base pair rh2±rl2 of the second
internal helix is given by setting h2 = h and l2 = l. Next, we
must consider two possibilities: either there is no additional
helix in the loop, or there is at least one more helix. These two
mutually exclusive cases are addressed by two additive terms
in equation A4 for u1(l1 + 1, j ± 1) in the Appendix.
Conditional on sampled h2 and l2, these terms give the
following binomial probability for no additional helix between
rl2 + 1 and rj ± 1:

PBh2l2(j ± 1) = f(j, h2, l2)exp[±(j ± 1 ± l2)b/RT]/{f(j, h2, l2)
exp[±(j ± 1 ± l2)b/RT] + exp[±ed3(h2, l2, l2 + 1)/RT]
u1(l2 + 2, j ± 1) + u1(l2 + 1, j ± 1) ± u1(l2 + 2, j ± 1)} 5

and the probability of at least one more helix is 1 ± PBh2l2(j ± 1).
If no additional helix is sampled, sampling is terminated for
this multibranched loop; otherwise, the closing base pair of the
next internal helix is sampled, followed by another binomial
sampling. This process stops whenever no additional helix is
sampled. At the end of this process, for L sampled internal
helices with closing base pairs rhk ± rlk , 1 < k < L, sampling
probabilities for rhk ± rlk are computed with equation A4 for
u1[l(k ± 1) + 1, j ± 1] (2 < k < L). This computation, and the
computation for the binomial sampling with probability
PBhklk(j ± 1) are performed (L±1) times on overlapping frag-
ments with decreasing length. PBhklk(j ± 1) is given by equation
5 with h2 and l2 substituted by hk and lk, respectively. Similar
to the probability computation for equation A1, the compu-
tation of the sampling probabilities with equations A3 and A4
is linear by using s2(h, j) and s3(h, j ± 1). When long interior
loops are disregarded, the probability computation for
equation A2 is bounded by a constant.

Description of the sampling algorithm. Two stacks A and B
are used by the sampling algorithm (Fig. 1). Stack A stores
fragments {(i, j, I)} for sampling, where, for the fragment from
the ith base to the jth base, I = 1 if it is known the ends form a
pair, or I = 0 if this pair is unknown. Stack B collects base pairs
and unpaired bases that will de®ne a sampled secondary
structure upon the completion of sampling. At the start, (1, n,
0) is the only fragment in stack A. Speci®cally, a structure is
drawn recursively as follows. (i) Starting with R1n, draw
single-stranded R1n or a base pair according to probabilities
P0, Pij, {Phj}, {Pil} and {Ps1h} for i = 1, j = n; if h is sampled
for case (e) in the derivation for equation A1, then l is sampled
with {Phl}. In case (a), i.e. single-stranded R1n, the sampling is
completed; in case (b), (1, n, 1) is stored in stack A; in case (c),
(h, n, 1) is stored in stack A, and the unpaired bases from the
®rst base to the (h ± 1)th base are stored in stack B; in case (d),
(1, l, 1) and (l + 1, n, 0) are stored in stack A; in case (e), (h, 1,
1) and (l + 1, n, 0) are stored in stack A, and the unpaired bases
from the ®rst base to the (h ± 1)th base are stored in stack B.
(ii) For a new fragment Rij from stack A, if base pair ri ± rj was
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not sampled previously (i.e. I = 0), we sample and store results
by the same process for R1n, with 1 and n substituted by i and j
respectively. (iii) For a new fragment Rij from stack A with
ends paired (i.e. I = 1), we ®rst sample loop type with
probabilities QijH, QijS, QijBI and QijM, and then proceed as
follows. (iiia) For a hairpin loop, the unpaired bases in the loop
and the closing pair are stored in stack B as part of a sampled
structure, and they are no longer involved in further sampling.

(iiib) For stacking, the exterior base pair is stored in stack B,
and the interior base pair de®nes a new fragment (i + 1, j ± 1, 1)
to be stored in stack A. (iiic) For a bulge or an internal loop,
we sample the interior base pair in the loop with {QhlBI}. The
exterior base pair and unpaired bases in the loop are stored in
stack B, and the interior base pair de®nes a new fragment to be
stored in stack A. (iiid) For a multibranched loop, we ®rst
sample the interior base pair closest to the 5¢ end of Rij; we

Figure 1. Flowchart for recursive sampling of an RNA secondary structure according to the Boltzmann equilibrium distribution. For the fragment from the ith
base to the jth base, I = 1 for (i, j, I) if it is known that the ends form a pair, or I = 0 if this pair is unknown.
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then sample the second interior base pair. Next, we perform a
binomial sampling for one of the two cases: no additional helix
on the 3¢ side of the loop, or at least one more helix. In the
latter case, we sample another interior base pair for one more
helix. For the remaining fragment on the 3¢ side of the loop, we
repeat the binomial and interior base pair sampling until no
additional helix is sampled. Unpaired bases in the loop and
ri ± rj are stored in stack B, and new fragments de®ned by
the interior base pairs are stored in stack A for further
sampling.

After the completion of sampling for a fragment from stack
A and storage of new fragment(s) in stack A and/or storage of
base pair and unpaired bases in stack B, the fragment in the
bottom of stack A is selected for subsequent sampling. The
process terminates when stack A is empty, and a sampled
secondary structure is formed by the base pairs and unpaired
bases in stack B. A statistically representative sample of RNA
secondary structures is generated by repeating this process.

Features of the sampling algorithm and examples. The
algorithm samples a structure exactly and rigorously from
the Boltzmann equilibrium probability distribution (equation
1), because the sampling probabilities are computed by
Boltzmann conditional probability distributions based on
partition functions restricted to fragments. This is obvious
for the unfolded state with a free energy of 0, whose sampling
probability of 1/u(1, n) is also its Boltzmann probability by
equation 1.

From a statistical mechanics perspective, there exists an
ensemble of probable structures. Furthermore, structure I is a
random variable that follows the Boltzmann distribution. I can
be expressed by an upper triangular matrix of random and
dependent indicator variables {Iij}, 1 < i < j < n. Iij = 1 if the
ith base is paired with the jth base, or Iij = 0 otherwise. The
requirement for at least three unpaired intervening bases
between any base pair implies Iij = 0 for j = i + 1, i + 2 and i +
3, 1 < i, i + 3 < n. The assumption of no pseudoknots implies
IijIi¢j¢ = 0 for i¢ < i < j¢ < j. Also, when base triples are
prohibited, S1 < i <n Iij < 1, and S1 < j < n Iij < 1.Thus, I is a
high-dimensional random variable. Sampling directly from a
high-dimensional probability distribution is often dif®cult. In
some cases, however, the dif®culty can be overcome by
conditional sampling at lower dimension(s). More speci®c-
ally, given data y, if we can sequentially sample x1 from the
conditional distribution p(x1|y), x2 from p(x2|x1, y) and xk from
p(xk|x1,..., xk ± 1, y) (k = 3,..., m), then x = (x1, x2,..., xm) follows
distribution p(x|y), because the joint probability distribution is

the product of the conditional distributions. This is the scheme
adopted for the secondary structure sampling described above.
For given RNA sequence data, the new base pairs and
unpaired bases are sampled by conditioning on already formed
substructures from previous sampling steps. Upon the com-
pletion of the process, the collection of substructures de®nes a
structure sampled according to the Boltzmann equilibrium
probability distribution.

The sampling process is similar to the traceback algorithm
employed in the dynamic programming algorithms (12,13),
but it differs in that base pairing is randomly sampled with
Boltzmann conditional probabilities, rather than selected by
the minimum energy principle for the fragments. Because the
probability of a structure decreases exponentially with
increasing free energy, the most likely structure in a sample
is the MFE structure. In other words, the MFE structure has
the largest sampling probability, because its Boltzmann
probability is larger than that for any other structure.

For Leptomonas collosoma spliced leader RNA (SL RNA),
56 nt in length, two experimental secondary structures 1 and 2
have been elucidated (20). Neither of these is the MFE
structure as computed by the mfold server (http://www.
bioinfo.rpi.edu/applications/mfold). Based on structures
generated by our sampling algorithm, sampling estimates for
the MFE structure and the two experimental structures are
computed (Table 1). The MFE structure has the largest
observed frequency among all sampled structures. Further-
more, for each of these three structures, the Boltzmann
equilibrium probability is closely estimated by its maximum
likelihood estimate (MLE) computed from the sample, and is
contained in the 95% con®dence interval (CI). This illustrates
the feature of our algorithm that secondary structures are
sampled by their Boltzmann equilibrium probabilities.

Because there are no more than (n ± 3)/2 base pairs in a
secondary structure, and because the time for sampling a pair
is at most O(n) when long interior loops are disallowed, the
time of the sampling algorithm is bounded by O(n2), i.e.
quadratic in the worst case. Thus, once the forward recursions
for the partition functions are completed in cubic time, a
sample of structures can be quickly generated. This is
illustrated, in Table 2, for 10 biological sequences having a
wide range of lengths.

APPLICATIONS

In this section, we show that structures generated by our
algorithm fall into classes. Thus, classi®cation of sampled

Table 1. Maximum likelihood estimate (MLE) and its standard deviation (SD) and 95% con®dence interval
(CI) for Boltzmann equilibrium probability of a secondary structure for L.collosoma SL RNA, computed
from 1 000 000 independently sampled secondary structuresa

Structure Boltzmann
probability

MLE SD 95% CI

MFE structure 0.287469 0.287476 0.000453 (0.286588, 0.288363)
Experimental structure 1 0.003598 0.003595 0.000060 (0.003477, 0.003713)
Experimental structure 2 0.018226 0.018219 0.000134 (0.017956, 0.018482)

aFor a structure with a probability p0 of being sampled, and for m independently sampled structures, the MLE
of p0 is p = ns/m, where ns is the frequency of the structure in the sample. The standard deviation of this
estimate is SD =

�����������������������
p�1ÿ p�=m

p
, and the 95% CI based on an asymptotic normal distribution is [p ± 1.96SD ±

1/(2m), p + 1.96SD + 1/(2m)] (21).
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structures presents a means for achieving a statistical deline-
ation and an ef®cient representation of the Boltzmann
ensemble of RNA secondary structures. We show that
experimentally veri®ed alternative structures are revealed
through sampling. The sampling algorithm enables probabil-
istic prediction of structural motifs. We illustrate this by
computing probability pro®les for the prediction of accessible
regions, for the design of RNA-targeting nucleic acids.
Probability pro®ling for speci®c loop types is also illustrated.
A mutual accessibility plot, in which probability pro®les of
two RNAs are overlaid for predicting RNA:RNA interaction,
and free energy distributions of sampled structures are also
illustrated. We show that a sample of moderate size from the
ensemble of an enormous number of structures is suf®cient to
guarantee statistical reproducibility in the estimates of typical
sampling statistics.

Class representation of Boltzmann ensemble of
secondary structures

Classi®cation of sampled structures. Alternative RNA
secondary structures are involved in a variety of RNA
regulatory functions through conformational switching (see
examples given in the Introduction). For the L.collosoma SL
RNA, two competing secondary structural forms 1 and 2 have
been indicated by RNase data, although the roles of the
structures have yet to be determined (20). We examined 1000
structures sampled by our algorithm for this sequence, and
found that the structures fall into two classes, corresponding to
the two experimental structural forms 1 and 2. Class 1 can be
further subdivided into classes 1A, 1B and 1C; each of these
subclasses has an even higher level of structural similarity
among its members. Class 2 can be further broken down into
classes 2A and 2B. A group of structures can be displayed by
means of a two-dimensional histogram (2Dhist). Distinct
patterns in this representation are indicative of common
structural features for the group, whereas scattering of the
squares would indicate its structural diversity. As illustrated in
Figure 2A±C, structures in classes 1A, 1B and 1C have in
common two helices, represented by the two clusters of ®ve
squares and four squares, respectively. Speci®cally, the ®rst

helix is formed by base pairs U16±A38, G17´C37, U18±A36, A19±
U35, G20´C34. The second helix is formed by U22±A32, C23´G31,
A24±U30 and G25´C29. On the other hand, the histograms also
show that members of these classes have different structural
features. Structures in classes 2A and 2B also have in common
two helices (Fig. 3A and B), which are different from the two
helices common to classes 1A, 1B and 1C. The major
difference between class 2A and class 2B is the existence of an
additional helix for class 2B. This helix is represented by a
cluster of squares in the bottom left portion of the histogram in
Figure 3B.

Probability of a class and the Boltzmann probability of its
representative. For a class of similar structures, the structure
occurring with the highest frequency (i.e. the most probable
structure) in the sample is taken as the representative of the
class. Class 1A is represented by experimental structural form
1 (Fig. 4A). The MFE structure from mfold shown by
Figure 4B is the representative of class 1B. Class 1C is
represented by the structure in Figure 4C that is the MFE
structure with a short helix removed. Experimental structure
form 2 (Fig. 5A) is the representative for class 2A. The
representative for class 2B, shown in Figure 5B, is experi-
mental structural form 2 with an additional hairpin±helix stem
on its long single-stranded 5¢ end. The probability of a class is
computed by that class's frequency in the sample, the
Boltzmann equilibrium probability of the representative
structure is computed by that structure's free energy, and the
partition function is computed from the forward step of our
algorithm (equation 1). The size of a class is re¯ected by the
class probability. It is a surprising observation that the
Boltzmann probability of the representative structure is not
necessarily re¯ective of the magnitude of the class probability
(Fig. 6). For example, the probability for class 1C is ~13.4%
larger than that for class 1B; however, the Boltzmann
probability of class 1C's representative is merely 37.8% that
of the representative structure for class 1B.

Entropic class. For class 2B, the ratio of the class probability
to the Boltzmann probability of its most probable member is

Table 2. Comparison of times (in seconds) for calculation of partition functions (PFs) and for sampling
1000 structures, and memory usage (in MB)a

Sequence (GenBank accession No.) Length (nt) PFs Sampling Memory

E.coli tRNAAla (X66515) 76 0.19 1.29 14.6
Xlob 5S rRNA (K02695) 120 0.68 3.67 14.9
E.coli RNase P (V00338) 377 15.26 14.50 17.9
Rabbit b-globin mRNA (V00879) 589 54.63 36.05 22.6
HSAc mRNA (NM_017567.1) 1187 394.63 110.59 47.2
BCRPd mRNA (AF098951) 2418 3235.80 270.06 149.2
E.coli lacZ (U00096) 3113 6886.44 405.23 237.4
E.coli lacZ + lacY (U00096) 4367 22742.86 694.65 452.6
MRPe mRNA (L05628.1) 5011 34406.22 1240.39 591.1
ESR1f mRNA (NM_000125) 6450 90880.13 2115.12 969.1

aFORTRAN code of the algorithm was executed on an AMD Opeteron 1.8 Ghz processor under the Linux
operating system.
bXenopus laevis oocyte.
cH.sapiens N-acetylglucosamine kinase.
dH.sapiens breast cancer resistance protein.
eH.sapiens multidrug resistance-associated protein.
fH.sapiens estrogen receptor 1.
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290.70, which is strikingly high. Despite the very small
Boltzmann probability for its most probable member, this
group contains a substantial number of similar structures such
that the collection of these structures has a much higher
aggregate probability than the probability of each group
member. Such `entropic classes' of structures can be revealed
by sampling and classi®cation of sampled structures.
However, a structure in an entropic class can be easily

Figure 2. Two-dimensional histograms (2Dhist) for classes 1A, 1B and 1C
for L.collosoma SL RNA. The 2Dhist shows the frequencies of base pairs,
with nucleotide position on both axes. Within each histogram, the sizes of
the solid squares are proportional to the frequencies of the base pairs. (A)
Class 1A is represented by structure form 1 (20). (B) Class 1B is
represented by the optimal folding from version 3.1 of mfold. (C) For
structures in class 1C, the hairpin and the two helices on the top of form 1
are conserved.

Figure 3. 2Dhist for classes 2A and 2B for L.collosoma SL RNA. (A) Class
2A is represented by structure form 2 (20). (B) Class 2B is for structures
with an additional stem on the 5¢ end of form 2.
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overlooked, when it is examined individually on the basis of
its free energy or Boltzmann probability.

Table 3 presents a summary of the above analyses.
Although the two experimental structures are 25.2% and
15.9% away from the MFE, respectively, they are both
predicted by the sample. This sequence was also folded on the
mfold server. For suboptimality percentage P under 15
(default = 5), only the optimal folding is returned. For a
large P, e.g. P = 30, the two alternative structures are returned,
among three suboptimal foldings. This example underscores
the importance of examining suboptimal structures. It also
shows that important alternative structures and structural
motifs can be revealed by a statistical sample of the
Boltzmann ensemble. These ®ndings suggest that the
Boltzmann ensemble of secondary structures for an RNA
molecule can be adequately represented by the classes
determined in a sample and the probabilities of the classes,
together with the class-representative structures and their
Boltzmann probabilities.

Prediction of alternative structures

The analysis of L.collosoma SL RNA suggests that alternative
biological structures can be adequately revealed by a statis-
tical sample. We investigate this further by applying the
sampling algorithm to prediction of mRNA secondary struc-
tures. mRNA secondary structures can play a regulatory role
in determining the rate of translation initiation (9). This is
explained by a model of co-existing alternative structures: one
structure favors the translation initiation while the other
inhibits the translation initiation (9). Also, it has been argued
that the accessibility of the initiation codon is important for
maximization of expression (22). The secondary structure of

an mRNA is generally unavailable from experimental
methods, because complete structural probing by chemical
or enzymatic methods is very dif®cult for long-chain RNAs. A
rare exception is the short mRNA for the cIII gene of
bacteriophage l, for which two conformations A and B
(Fig. 7A and B) were elucidated and were demonstrated to
co-exist in equilibrium (8). The sequence of 132 nt in the
structures spans 46 nt of the coding region and 86 nt upstream
from the initiation codon A0UG2. In structure A, the
initiation codon and part of the Shine±Dalgarno sequence
U±13AAGGAG±7 are in a closed, base-paired conformation
such that the ribosome-binding site is occluded. In structure B,
the ribosome-binding site is accessible for interactions. It is
speculated that the cIII gene expression is regulated at the
level of translation initiation through the ratio of the two
structures at equilibrium, and through changes in temperature
or Mg2+ concentration; perhaps ribosome binding can also
shift the equilibrium (8). For the mRNA sequence of the cIII
gene, a sample of 100 structures was generated by our
algorithm and was manually examined. In this sample, 89 are
close variants of structure A. The left-most stem in structure A
is precisely predicted in 67 of the 89 structures. The exact
right-most stem or a modi®cation with one or both of
additional pairs A±12±U42, A±11±U41 is predicted in 72 of the
89 structures. Appreciable variability in the location of the
interior and bulge loops is observed for the middle stem.
Structure C in Figure 7C is one of three structures in the
sample that closely resemble structure B. The appreciable
modi®cation is the additional short helix involving the Shine±
Dalgarno sequence formed by base pairs G±10´C44 and
G±9´C43. The remaining eight structures (structures not
shown) in the sample do not resemble either structure A or

Figure 4. The representative structures for classes 1A, 1B and 1C for L.collosoma SL RNA. (A) Structure form 1 (20) for class 1A. (B) The optimal folding
by mfold for class 1B. (C) The representative for class 1C.
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B, and have diverse structural features. The optimal folding by
mfold is a modi®cation of structure A with three additional
base pairs C±54´G±35, A±12±U42 and A±11±U4, with an MFE of
DG°37 = ± 48.5 kcal/mol. Structure A is well predicted by the
optimal folding. Its free energy is DG°37 = ± 46.1 kcal/mol, 5%
away from the MFE. Structure B has DG°37 = ± 40.2 kcal/mol,
17% away from the MFE. Structure C has DG°37 = ± 42.9 kcal/
mol, 12% away from the MFE. For P = 30, neither B nor a
variant resembling B as closely as C is predicted by
suboptimal foldings from mfold, although both structures B
and C are well within this range of suboptimality. By using the
option for specifying base pair constraint in mfold, we veri®ed
that structures B and C are indeed present in the `missing' set
of suboptimal foldings that are excluded by the algorithm
design for mfold, as discussed in the Introduction. In contrast
to the stability indicated by the free energies, experimental
analysis showed that structure B is favored by a factor of ~3
(8). The discrepancy could be explained by tertiary inter-
actions that preferentially stabilize structure B (8). This
application not only exempli®es that an important alternative
structure can be better predicted by a sample of moderate size,
but it also shows that alternative structures of low probability
can be biologically important, because stability contributions
from potential tertiary interactions are unaccounted for. The
®nding also suggests that the sampling algorithm is well suited
to the prediction of secondary structure of mRNAs, because an
mRNA may exist as a population of conformations in an
intracellular environment (5).

Assignment of probabilities to structural motifs

In many applications, certain types of structural motifs are of
biological interest. Sampling also enables probabilistic pre-
diction of any motif, with or without speci®c constraint(s).
The probability of a motif can be directly estimated by the
frequency of that motif's occurrence in a sample. For the
mRNA of the cIII gene of bacteriophage l, this is illustrated in
Table 4 for several constrained motifs involving the AUG
initiation codon or the Shine±Dalgarno sequence, and for a
helix, a base pair and a single-stranded fragment of two bases.

Probability pro®ling for predicting accessible regions in
RNA secondary structure

Single-stranded regions in RNA secondary structure may be
accessible for RNA:DNA, RNA:RNA and RNA:protein
interactions. For prediction of accessible sites for targeting
by antisense oligonucleotides, we developed a probability
pro®ling approach based on the sampling algorithm (23). On a
pro®le for fragment width W, the probability that W consecu-
tive bases are all unpaired is plotted against the ®rst base of the
segment. This approach was shown to make substantially
better predictions than the MFE structure. The signi®cance of
assigning probability as a measure of con®dence in prediction
is also highlighted by Figure 8A: a single-stranded region
(nucleotides 26±37) predicted by both the MFE structure and
the ss-count statistic from mfold has low probabilities on the
probability pro®le [W = 4 bases, as described in Ding and
Lawrence (23)]. The ss-count statistic gives the propensity of a
base to be unpaired, as measured by the frequency with which
it is unpaired in a group of the optimal and suboptimal foldings
within a speci®ed increment of the MFE. For this RNA
sequence, the same ss-count values were returned for
suboptimality percentages P = 5 and P = 30. These values
were averaged for W = 4 bases and were converted to the
probability scale. Figure 8B illustrates a case of several
substantial probability peaks on the pro®le (W = 4 bases), with
little signal from the MFE structure, but more comparable

Figure 5. The representative structures for classes 2A and 2B for
L.collosoma SL RNA. (A) Structure form 2 (20) for class 2A. (B) The
representative for class 2B.

Figure 6. Bar plot comparing the probability (estimated by the frequency in
a sample) of a class (open bar) with the Boltzmann probability (®lled bar)
for the representative structure of a class. Classes are from the structure
classi®cation for L.collosoma SL RNA.
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Table 3. Classi®cation, representation and statistical characterization of the Boltzmann ensemble of the secondary structures for L.collosoma SL RNA,
through the examination of a statistical sample of 1000 secondary structuresa

Class (2Dhist) Probability Representative DG°37 (kcal/mol) Boltzmann Probability
structure (% away from MFE) probability ratio

1A (Fig. 2A) 0.010 Fig. 4A (form 1) ±8 (25.2%) 0.003598 2.78
1B (Fig. 2B) 0.417 Fig. 4B ±10.7 (0%) 0.287469 1.45
1C (Fig. 2C) 0.473 Fig. 4C ±10.1 (5.6%) 0.108593 4.36
2A (Fig. 3A) 0.073 Fig. 5A (form 2) ±9 (15.9%) 0.018226 4.01
2B (Fig. 3B) 0.025 Fig. 5B ±5.7 (65.5%) 0.000086 290.70

aA manual examination was ®rst performed for a smaller sample of 100 structures to identify conserved helices of the classes. The conserved helices provide
input for a computer classi®cation of the sample. Two structures missing a characteristic helix in form 2 are not included in class 2. The probability of a class
is estimated by its observed frequency in the sample. The free energy is computed with the recent Turner parameters (18,19), and the Boltzmann probability
of a class-representative structure is computed by equation 1. The probability ratio is the probability of the class divided by the Boltzmann probability.
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predictions by ss-count. These cases occur when the MFE
structure and the majority of the competing structures do not
have a similar local structure. For the entire 1346 nt sequence,
the correlation between ss-count and the pro®le probability is
0.6592 for W = 4. This correlation decreases to 0.5482 for
W = 10. The MFE structure has commonly been used by
experimentalists for antisense nucleic acid design, although
with limited success (24). It is thus important to consider
suboptimal foldings in the selection of antisense target sites.
The probability pro®ling approach has the advantage that it
fully assesses the uncertainty in the predictions.

Probability pro®ling for speci®c loop types

A probability pro®le statistically delineates unpaired bases
(W = 1) or fragments (W >1), regardless of the type of loop in
which the base or fragment occurs. An extension to account
for loop type is straightforward by keeping track of the loop
type for unpaired bases returned from the sampling step. Thus,
the sampling algorithm also enables probability pro®ling of a
speci®c loop type.

For Escherichia coli tRNAAla, Figure 9 shows the pro®le
plots (W = 1) Hplot, Bplot, Iplot, Mplot and Extplot, for
hairpin loop, bulge loop, interior (internal) loop, multi-
branched loop and the exterior loop, respectively. For
example, at sequence position i, Hplot presents the probability

that nucleotide i is in a hairpin loop. The probability is
computed by the observed frequency in a sample of 1000
structures. The three high probability regions on Hplot
correspond to the regions for the D loop (A14GCUGGGA21),
the anticodon loop (A32UGGCAU38) and the TYC loop
(U54UCGAUC60) in the cloverleaf conformation determined
phylogenetically for this tRNA. There is no bulge or interior
loop in the cloverleaf structure. Accordingly, there is little
signal on Bplot, and only weak signal on Iplot. The three high
probability regions on Mplot correspond to the three segments
of unpaired bases (U8A9, G26 and A44GGUC48) in the

Figure 7. Alternative structures for the mRNA of the cIII gene of bacteriophage l. The initiation codon and the Shine±Dalgarno sequence are A0UG2 and
U±13AAGGAG±7. The substructure from the 5¢ end to nucleotide A±9 is the same for structure A and structure B. (A) Structure A proposed by Altuvia et al.
(8). (B) Structure B proposed by Altuvia et al. (8). (C) Structure C represents a modi®cation of B by an additional short helix involving a part of the
Shine±Dalgarno sequence.

Table 4. Probability estimates of structural motifs for the mRNA of the
cIII gene of bacteriophage l from a sample of 100 structures

Motif and constraint Probability

AUG initiation codon in a closed region (Fig. 7A) 0.95
AUG initiation codon in a partly open region (Fig. 7B and C) 0.05
At least four bases in either end of the Shine±Dalgarno 0.97
sequence are in a helical region (Fig. 7A)
The ends of the Shine±Dalgarno sequence are open, 0.03
but the bases in the middle are in a short helix (Fig. 7C)
The ®rst helix from the 5¢ end with 8 bp 0.69
Base pair U13±G20 0.93
Unpaired C±40 and U±39 (in a hairpin) 1.0
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multibranched loop of the cloverleaf. The high probability
segment on Extplot corresponds to the four free dangling bases
(A73CCA76) on the 3¢ end of the cloverleaf structure.
Interestingly, Extplot indicates that ~16% of the sampled
structures have A14GC16 as the junction that connects two
separate folding domains.

The most intriguing observation is that not only is the
anticodon loop (second peak from the left in Hplot) the most
conserved among three hairpin loops, but it also is the most
conserved accessible region for any loop type. The respective
probabilities on Hplot for the three anticodon bases G34, G35

and C36 are 0.968, 0.961 and 0.962. Thus, possible alternative

Figure 8. Comparison of predictions by sampling and by free energy minimization. At nucleotide position i, the probability that nucleotide i, i + 1, i + 2,
i + 3 (i.e. fragment width W = 4) are all single stranded is plotted against i. This probability is computed by a sample of 1000 structures (probability pro®le),
by MFE structure and by ss-count from mfold for the nucleotides 1±60 (A) and 1262±1322 regions (B) of the mRNA for H.sapiens g-glutamyl hydrolase
(GenBank accession No. U55206, with 66 additional nucleotides at the 5¢ end).
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foldings of this tRNA in the intracellular environment are
highly unlikely to affect the accessibility of the anticodon for
base pairing with the codon on the mRNA. In other words, for
this tRNA, the function of codon recognition is preserved with

high certainty even if the folding deviates from the classic
cloverleaf. Further analysis of other tRNA sequences from the
tRNA database (2) is warranted to assess the degree of
generality of such predicted anticodon accessibility. Before
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such an analysis, an extension of the algorithm for partition
functions needs to be developed to allow constraints, because
many tRNAs have modi®ed bases that cannot be involved in
base pairing.

Mutual accessibility plot for prediction of RNA:RNA
interaction

For RNA:RNA interactions through antisense binding, e.g.
between an RNA target and chemically synthesized or natural
occurring antisense RNAs, or between an RNA target and
trans-cleaving ribozymes, the structures of both RNAs are
important. Antisense binding is largely dependent on the
accessibility of both the bases at the target site and the
complementary bases on the antisense RNA or ribozyme. This
mutual accessibility between two RNAs can be assessed with
an overlay plot of probability pro®les for the two RNAs at the
target site (Fig. 10).

The mutual accessibility plot provides a new tool to address
local accessibility of both RNAs at the target site, in addition to

the uncertainty in the RNA folding predictions. This tool can
be valuable for the rational design of ribozymes and antisense
RNAs for gene inhibition. Based on the mutual accessibility
plot, we have tested three hammerhead ribozymes against
breast cancer resistance protein (BCRP) in cultured cells. All
three ribozymes were successful in substantially reducing the
levels of the protein (K.Kowaski, Y.Ding and E.Schneider,
unpublished data).

Boltzmann probability-weighted density of states and
free energy distributions

Cupal and co-workers (25) presented a recursive algorithm to
compute the free energy distribution of all secondary struc-
tures (i.e. the density of states, or DOS). The algorithm is
O(n5) in time with a memory requirement of O(n3), and is thus
computationally prohibitive even for sequences of moderate
length. For short sequences, this algorithm is useful for the
study of evolution, through comparison of DOS between

Figure 9. Loop pro®les for E.coli tRNAAla. (A) Hplot displays the probability that a base lies in a hairpin loop; (B) Bplot displays the probability that a base
is in a bulge loop; (C) Iplot displays the probability that a base is in an interior (internal) loop; (D) Mplot displays the probability that a base is in a
multibranched loop; and (E) Extplot displays the probability that a base is in the exterior loop.
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biological sequences and random sequences of the same
composition (26).

A sampling estimate of the free energy distribution of
probable structures is readily available from our sampling
algorithm and is referred to as the Boltzmann probability-
weighted density of states, or BPWDOS (Fig. 11A), because
structures are sampled with Boltzmann equilibrium prob-
abilities. Information for the BPWDOS can be displayed in
alternative forms for depiction of the probability that a
structure lies within a threshold of the MFE, or in a free energy

interval (Fig. 11B and C). For a speci®ed low energy interval,
sampling also generates representative structures for further
examination. This overcomes the disadvantage of the algo-
rithm by Cupal and co-workers that no information exists
about individual structures corresponding to the low energy
states. Such distributions could be valuable in evolutionary
studies on long sequences and studies of the RNA energy
landscape (27). Similarly, other sampling statistics, such as the
distribution of the number of base pairs in sampled structures,
can be computed.

Figure 10. (A) Mutual accessibility plot obtained by overlaying probability pro®les (fragment width W = 4) at the target site for a 60 nt antisense RNA
(embedded in a long RNA through an expression vector) and the targeted mRNA of H.sapiens g-glutamyl hydrolase. Both the RNA containing the 60 nt anti-
sense insert and the entire target mRNA were folded. Fairly good mutual accessibility is predicted by the overlapping high probability region between
nucleotides 730 and 750. (B) For the mRNA of H.sapiens breast cancer resistance protein (BCRP; GenBank accession No. AF098951) and an hammerhead
ribozyme designed for a GUC cleavage sequence on the target, fairly good mutual accessibility for the nucleation step of antisense binding is predicted for
both the target and the two binding arms of the ribozyme (W = 1 for the probability pro®les).
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Sample size and statistical reproducibility

The calculation of sampling statistics is typically based on a
sample of 1000 structures. To assess the adequacy of this
sample size, we generated two independent samples for the

mRNA of Homo sapiens N-acetylglucosamine kinase, 1187 nt
in length. Each sample contains 1000 structures. For this
sequence, an estimate of the number of all secondary
structures is 1.81187 » 10303. From the 2Dhist, the patterns of
base pair frequencies are nearly identical for the two samples

Figure 11. For L.collosoma SL RNA, (A) Boltzmann probability-weighted density of states (BPWDOS); (B) probability of a structure having a free energy
within P% of the minimum free energy; (C) probability of a structure having a free energy within a speci®ed P-interval.
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(Fig. 12A, ®rst sample; Fig. 12B, second sample). The
probability pro®les (W = 4) for both samples are also
computed and are overlaid in a single plot, by plotting against
common nucleotide position (Fig. 13A). The two pro®le
curves are colored red and blue, respectively. However, the
overlay plot is overwhelmingly dominated by the blue color;
the red curve is hardly visible when the two pro®les overlap.
The red curve is observed only in the case of distinguishable
variation. This statistical phenomenon is better observed by an
enlargement of a 200 nt region shown in Figure 13B.

Furthermore, through a pairwise structural comparison, we
found that the two samples do not have a single structure in
common. Thus, it might initially appear to be surprising that,
for an ensemble of ~10303 structures, a sample of only 1000
structures can yield statistical reproducibility of typical
sampling statistics, even if samples can be entirely different.
However, these results are fully expected, because a sample
generated by the algorithm is guaranteed to be statistically
representative. A simple analogy is sampling from the US
population of 280 million persons. If two random samples of
individuals are taken independently with a sample size of
1000, it is highly likely that the two samples will not have a
single individual in common, because the population is large,
and because sampling is not only random but also indepen-
dent. However, the two samples would produce highly
consistent estimates for demographic characteristics, such as
the percentage of males in the population.

Although the precision in the estimates of sampling
statistics does increase with sample size, a sample size of
1000 structures is adequate for most applications.
Nevertheless, in the case that a rare event of small
Boltzmann probability is of interest, the sample size can be
increased to improve the precision in the estimates. For
example, for the L.collosoma SL RNA, a sample size of
1 000 000 structures is used, because the Boltzmann prob-
ability for experimental structure 1 is merely 0.0036 (Table 1).

Availability of software Sfold

Based on the structure sampling algorithm and the novel tools,
we have developed a software packaged named Sfold, for
statistical RNA folding and rational design of RNA-targeting
nucleic acids. Sfold is available through Web servers at
http://sfold.wadsworth.org and http://www.bioinfo.rpi.edu/
applications/sfold.

DISCUSSION

We have presented a novel statistical algorithm to sample
RNA secondary structures exactly and rigorously, according
to the Boltzmann equilibrium probability distribution of the
secondary structures for a given RNA sequence. The forward
step of the algorithm for calculating partitions functions is
cubic when long interior loops are prohibited, and the
backward sampling step can rapidly generate a large,
statistically representative sample of structures. A sample
generated by the algorithm is guaranteed to be statistically
representative. Characteristics of the Boltzmann ensemble
revealed by sampling are statistically reproducible for
independent samples of moderate size.

In the full ensemble of secondary structures for an RNA
sequence, some structures are very similar, while others are

substantially different. Although it is not computationally
feasible to enumerate and classify all structures, the results on
L.collosoma SL RNA show that the ensemble can be
partitioned into mutually exclusive classes. Like the indi-
vidual structures, the classes are not equally probable. The
structure sample size of 1000 used in our classi®cation

Figure 12. Statistical reproducibility is illustrated by 2Dhist for two inde-
pendent samples of 1000 structures each for the mRNA of H.sapiens N-
acetylglucosamine kinase. The histograms (A and B) display nearly identi-
cal patterns of base pair probabilities estimated by sampling.

Nucleic Acids Research, 2003, Vol. 31, No. 24 7297



analysis sets a probability threshold of 0.001. Classes with
Boltzmann probabilities that are signi®cant relative to the
threshold are expected to be represented in the sample. Classes
with insigni®cant probabilities are unlikely to be observed in
the sample. Thus, sampling provides an ef®cient means to
statistically delineate the Boltzmann ensemble of secondary
structures through signi®cant classes. The development of an
algorithm for the determination of distinct classes will thus be
an important topic of future research.

The sampling algorithm enables a rigorous statistical
description of uncertainties in RNA folding prediction. The
demonstrated new predictive insights and novel application
tools are unique to this algorithm. The sampling approach
avoids the limitation of suboptimal folding presentation by a

designed set. It also bypasses the dif®culty associated with a
complete enumeration and examination of all suboptimal
foldings within a speci®ed increment of the MFE.

Prediction of suboptimal foldings is important, because the
biological structures may not be well predicted by the MFE
structure. Even for RNAs with possibly unique structures,
the sampling approach has the advantage of addressing
uncertainty in the predictions.

The algorithm is shown to meet the challenges of predicting
alternative biological structures and of making an adequate
representation of suboptimal foldings. The improved predic-
tions in applications to mRNAs reported both here and in our
previous work suggest that the sampling algorithm and the
probability pro®le approach are well suited to the prediction of

Figure 13. Statistical reproducibility is illustrated by nearly complete overlapping of probability pro®les for two independent samples of 1000 structures each
for the mRNA of H.sapiens N-acetylglucosamine kinase. (A) Complete pro®les for the entire mRNA. (B) An enlargement of the pro®le for the nucleotide
400±600 region.
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mRNA secondary structures and to the assessment of target
accessibility, because an mRNA may exist as a population of
different structures, and a stochastic approach to accessibility
evaluation may be appropriate (5). The probability pro®ling
approach reveals target sites that are commonly accessible for
a large number of statistically representative structures for the
target RNA. Through rigorous assignment of statistical
con®dence in predictions, this novel approach bypasses the
long-standing dif®culty of how to select a single structure for
accessibility evaluation.

For antisense oligonucleotides and trans-cleaving ribo-
zymes, it has been well established that the target accessibility
is primarily determined by the secondary structure of the
target RNA. Recently, experimental evidence has emerged to
support the idea that the potency of small interfering RNAs
(siRNAs) is also determined by the target secondary structure
and accessibility (28±31). In the post-genomic era, reverse
genetic tools based on these RNA-targeting nucleic acids are
becoming increasingly important for high throughput func-
tional genomics, drug target validation and development of
human therapeutics. The probability pro®ling method and the
mutual accessibility plot are useful tools for the rational design
of RNA-targeting nucleic acids for gene knock-down studies,
as well as for the design of nucleic acid probes such as
molecular beacons for tracing mRNAs (32). Based on
probability pro®ling, we have designed antisense oligonucle-
otides against E.coli lacZ, and siRNAs against the human
estrogen receptor. Results from preliminary testing in cell
extracts and in cultured cells are highly encouraging (a
summary of our unpublished data is available on the Sfold
Web sites). Large-scale experimental testing is warranted to
further validate the novel design methodology.
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APPENDIX: RECURSIONS FOR EQUILIBRIUM
PARTITION FUNCTIONS

The structural elements in RNA secondary structure include
helix, hairpin loop, bulge loop, interior (internal) loop and
multibranched loop (Fig. A1). The exterior loop consists of
free dangling bases on the 5¢ end and the 3¢ end, and bases in
the junction between two separate folding domains.

When an unpaired base is adjacent to two helices, we only
consider the 3¢ dangling, because it is usually more energet-
ically favorable than 5¢ dangling, according to the free energy
data for dangling ends (33). The assumed additivity of free
energy implies multiplicativity of contributions by structural
elements to the partition functions. The contributions to the
partition functions by mutually exclusive conformational
cases are, however, additive. These features are important in
the derivation of a recursive algorithm for partition functions.

Recursions

For fragment Rij, it can be either single stranded or there is at
least one base pair on the fragment. In the latter case, if we
consider the base pair rh±rl closest to the 5¢ end of the fragment
[the ®rst (h±i) bases are thus single stranded], we then have the
following mutually exclusive and exhaustive cases, as illus-
trated by Figure A2: (a) R ij is single stranded; (b) h = i, l = j;
(c) i < h < l = j; (d) h = i < l < j; (e) i < h < l < j. Thus, u(i, j) is a
sum of ®ve terms:

u(i, j) = 1 + up(i, j)exp[± etp(i, j)/RT] +
Si < h < j up(h, j)
exp{± [ed5(h, j, h ± 1) + etp(h, j)]/RT} +
Si < l < j up(i, l)
exp[± etp(i, l)/RT]{exp[± ed3(i, l, l + l)/RT]u(l + 2, j) +
u(l + 1, j) ± u(l + 2, j)} +
Si < h < l < j up(h, l)
exp{± [ed5(h, l, h ± 1) + etp(h, l)]/RT}{exp[± ed3(h, l, l + 1)/
RT]u(l + 2, j) + u(l + 1, j) ± u(l + 2, j)} A1

where for base pair ri±rj, etp(i, j) is the terminal A±U, G±U
penalty, and ed5(h, l, h ± 1) is the free energy for 5¢ dangling
rh ± 1 on rh±rl, and ed3(h, l, l + 1) is the free energy for 3¢

dangling rl + 1 on rh±rl. When ri and rj form a base pair, there
are the following exclusive and exhaustive cases: (i) ri±rj

closes a hairpin; (ii) ri±rj is the exterior pair of a base pair

Figure A1. Elements of RNA secondary structure: helix, hairpin loop,
bulge loop, interior (internal) loop and multibranched loop.

Figure A2. In the derivation of recursions for u(i, j), mutually exclusive and
exhaustive cases are enumerated by considering fragment Rij being single
stranded or the base pair rh±rl closest to the 5¢ end of the fragment [i.e. the
®rst (h±i) bases are single stranded]: (a) Rij is single stranded; (b) h = i,
l = j; (c) i < h < l = j; (d) h = i < l < j; and (e) i < h < l < j.
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stack; (iii) ri±rj closes a bulge or an interior loop; or (iv) ri±rj

closes a multibranched loop. Thus, up(i, j) is the sum of four
contributions:

up(i, j) = exp[±eh(i, j)/RT] + exp[±es(i, j, i + 1, j ± 1)/
RT]up(i + 1, j ± 1) + Si < h < l < j exp[±ebi(i, j, h, l)/
RT]up(h, l) + upm(i, j) A2

where eh(i, j), es(i,j, i + l, j ± 1) and ebi(i, j, h, l) are,
respectively, the free energies for a hairpin closed by ri±rj, for
stacking between base pairs ri±rj and ri + 1±rj ± 1, and for a
bulge or an interior loop with exterior base pair ri±rj and
interior base pair rh±rl, while upm (i, j) is the contribution from
case (iv). For case (iv), if we consider the internal helix closest
to ri with closing pair rh±rl, the recursion for upm(i, j) is

upm(i, j) = Si + 1 < l < j up(i + 1, l)exp{±[a + 2c + etp
i + 1, l)]/RT}{exp[±ed3(i + 1, l, l + 1)/RT]u1(l + 2, j ± 1) +
u1(l + 1, j ± 1) ± u1(l + 2, j ± 1)} +
Si + 2 < l < j up(i + 2, l)
exp{±[a + 2c + b + ed3(j, i, i + 1) + etp(i + 2, l)]/RT}
{exp[±ed3(i + 2, l, l + 1)/RT]u1(l + 2, j ± 1) + u1(l + 1, j ± 1) ±
u1(l + 2, j ± 1)} +
Si + 3 < h < l < j up(h, l)exp{±[a + 2c +
(h ± i ± 1)b + ed3(j, i, i + 1) + ed5(h, l, h ± 1) + etp(h, l)]/
RT}{exp[±ed3(h, l, l + 1)/RT]u1(l + 2, j ± 1) +
u1(l + 1, j ± 1) ± u1(l + 2, j ± 1)} A3

where a, b, c are the offset, free base penalty and helix penalty
of the assumed linear penalty for a multibranched loop: loop
penalty = a + b(number of unpaired bases) + c(number of
helices); the three sums with h = i + l, h = i + 2 and h > i + 3
are for different cases of dangling on ri±rj and rh±rl. u1(k, j ± 1)
is an auxiliary partition function for a multibranched loop with
the following properties: there is at least one helix between rk

and rj± 1; rk ± 1 is the 3¢ end of the previous helix in the loop; rj

is the 3¢ end base of the closing pair ri±rj for the loop. Similar
to the derivation of upm (i, j), we consider the closing base pair
rh¢±rl¢ of the helix closest to the 5¢ end of R(l + 1)j, and we take
into account both the dangling energy and the terminal
penalty. Furthermore, we must consider both the case of no
additional helix between rl¢ + 1 and rj and the case of at least
one more helix. For u1(i, j), rj + 1 is the 3¢ base of the closing
base pair for the multibranched loop, and ri ± 1 is the 3¢ end of
the previous helix in the loop. The recursion for u1(i, j) is:

u1(i, j) = Si < l < j up(i, l)exp{±[c + etp(i, l)]/RT}
{f(j + 1, i, l)exp[±(j ± l)b/RT] + exp[±ed3(i, l, l + 1)/
RT]u1(l + 2, j) + u1(l + 1, j) ± u1(l + 2, j)} +
Si + 1 < l < j up(i + 1, l)exp{±[c + b + etp(i + 1, l)]/
RT}{f(j + 1, i + 1, l)exp[±(j ± l)b/RT] + exp[±ed3
(i + 1, l, l + 1)/RT]u1(l + 2, j) + u1(l + 1, j) ± u1(l + 2,j)} +
Si + 2 < h < l < j up(h, l)exp{±[c + (h ± i)b + etp(h, l) +
ed5(h, l, h ± 1)]/RT}{f(j + 1, h, l)exp[±(j ± l)b/RT] +
exp[±ed3(h, l, l + 1)/RT]u1(l + 2, j) + u1(l + 1, j) ±
u1(l + 2, j)} A4

where f(j + l, h, l) = 1 for l = j and f(j + l, h, l) = exp[±ed3(h, l, l
+ 1)/RT] for l < j. The computation is O(n4) for equations A1,
A3 and A4 as written, and it is O(n3) for equation A2 when
long interior loops are disallowed. We introduce three
additional auxiliary arrays s1(h, j), s2(h, j) and s3(h, j):

s1(h, j) = Sh < l < j up(h, l)exp{±[ed5(h, l, h ± 1) +
etp(h, l)]/RT}{exp[±ed3(h, l, l + 1)/RT]u(l + 2, j) +
u(l + 1, j) ± u(l + 2, j)} A5

s2(h, j) = Sh < l < j up(h, l)exp{±[ed5(h, l, h ± 1) +
etp(h, l)]/RT}{exp[±ed3(h, l, l + 1)/RT]u1(l + 2, j ± 1) + u1(l +
1, j ± 1) ± u1(l + 2, j ± 1)} A6

s3(h, j) = Sh < l < j up(h, l)exp{±[ed5(h, l, h-1) + etp(h, l)]/
RT}{f(j + 1, h, l)exp[±(j ± l)b/RT] + exp[±ed3(h, l, l + 1)/
RT]u1(l + 2, j) + u1(l + 1, j) ± u1(l + 2, j)} A7

Then, the quartic sum in equation A1 becomes Si < h < j ± 1

s1(h, j), the quartic sum in equation A3 becomes exp[(±ed3(j,
i, i + l)/RT] Si + 3 < h < j ± 1 exp [±(a + 2c + (h ± i ± 1)b)/
RT]s2(h, j), and the quartic sum in equation A4 becomes
Si + 2 < h < j ± 1 exp [±(c + (h ± i) b)/RT ]s3(h, j). At the cost of
storage of these arrays, the algorithm is cubic when long
interior loops (e.g. size >30) are disregarded.

Boundary values

We start the computation with boundary values for short
fragments and proceed to longer ones using the recursions. For
1 < i < j < i + 3 < n, u(i, j) = 1, up(i, j) = 0, u1(i, j) = 0,
s1(i, j) = 0, s2(i, j) = 0, and s3(i, j) = 0; for j = i + 4 < n, u(i, i +
4) = 1 + exp[±(eh(3) + etp(i, i + 4))/RT], up(i, i + 4) = exp[±
eh(3)/RT], u1(i, i + 4) = exp[±(c + eh(3) + etp(i, i + 4))/RT],
s1(i, i + 4) = 0, s2(i, i + 4) = 0, and s3(i, i + 4) = exp[±(eh(3) +
etp(i, i + 4) + ed5(i, i + 4, i ± 1 )/RT]; for 1 < i < n, u(i + l, i) =
1, u1(i + l, i) = 0; and for 1 < i < n ± 1, u1(i + 2, i) = 0.
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