Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 26;65(Pt 10):o2555. doi: 10.1107/S1600536809037866

N-Phenyl-N-(3-phenyl­prop-2-yn­yl)aniline

Tao Pang a, Yi-chong Sun a, Jian-ming Zhang a,*
PMCID: PMC2970432  PMID: 21577996

Abstract

In the title compound, C21H17N, synthesized by a three-component coupling reaction in the presence of copper(I) iodide, the N-bound phenyl rings form a dihedral angle of 72.5 (1)° with each other. Thereare no remarkable inter­actions in the crystal structure.

Related literature

For the preparation of the title compound, see: Nilsson et al. (1992). For the biological activity of propargylamines and their use as synthetic inter­mediates, see: Bieber & da Silva (2004); Hattori et al. (1993); Huffman et al. (1995); Konishi et al. (1990).graphic file with name e-65-o2555-scheme1.jpg

Experimental

Crystal data

  • C21H17N

  • M r = 283.36

  • Monoclinic, Inline graphic

  • a = 11.376 (1) Å

  • b = 5.7287 (5) Å

  • c = 13.409 (1) Å

  • β = 111.276 (3)°

  • V = 814.30 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.23 × 0.13 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 5689 measured reflections

  • 1953 independent reflections

  • 1448 reflections with I > 2σ(I)

  • R int = 0.136

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.141

  • S = 0.91

  • 1953 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809037866/lx2105sup1.cif

e-65-o2555-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037866/lx2105Isup2.hkl

e-65-o2555-Isup2.hkl (96.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Central China Normal University for support.

supplementary crystallographic information

Comment

Propargylamines are compounds of interesting biological properties and important synthetic intermediates (Konishi et al., 1990; Huffman et al., 1995; Hattori et al., 1993; Bieber et al., 2004). The reaction which a three component procedure between terminal alkynes, formaldehyde and secondary amines has been extended to some less activated alkynes by the introduction of copper catalysts. Here we report the crystal structure of the title compound (Fig. 1).

In the molecule of the title compound, the N-bound two phenyl rings form a dihedral angle of 72.5 (1)° with each other.

Experimental

The title compound was synthesized according to the literature procedure of Nilsson et al. (1992). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform : methanol (50 : 1) at room temperature.

Refinement

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: (C–H = 0.97 Å) and Uiso(H) =1.2 Ueq(C) for methylene, and (C–H = 0.93 Å) and Uiso(H) =1.2Ueq(C) for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

Crystal data

C21H17N F(000) = 300
Mr = 283.36 Dx = 1.156 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1607 reflections
a = 11.376 (1) Å θ = 2.9–22.6°
b = 5.7287 (5) Å µ = 0.07 mm1
c = 13.409 (1) Å T = 298 K
β = 111.276 (3)° Block, colorless
V = 814.30 (12) Å3 0.23 × 0.13 × 0.10 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 1448 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.136
graphite θmax = 27.0°, θmin = 1.6°
Detector resolution: 10.0 pixels mm-1 h = −13→14
φ and ω scans k = −7→7
5689 measured reflections l = −17→10
1953 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: difference Fourier map
wR(F2) = 0.141 H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.074P)2] where P = (Fo2 + 2Fc2)/3
1953 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.15 e Å3
1 restraint Δρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2341 (2) 0.1972 (5) 0.3674 (2) 0.0541 (7)
C2 0.1912 (3) 0.1537 (7) 0.4505 (2) 0.0716 (9)
H2 0.1255 0.2420 0.4565 0.086*
C3 0.2457 (4) −0.0199 (7) 0.5240 (3) 0.0859 (11)
H3 0.2158 −0.0466 0.5789 0.103*
C4 0.3427 (3) −0.1539 (8) 0.5183 (3) 0.0870 (11)
H4 0.3790 −0.2695 0.5688 0.104*
C5 0.3851 (3) −0.1131 (7) 0.4356 (3) 0.0775 (9)
H5 0.4500 −0.2039 0.4298 0.093*
C6 0.3327 (2) 0.0596 (6) 0.3619 (2) 0.0606 (7)
H6 0.3635 0.0853 0.3074 0.073*
C7 0.1821 (2) 0.3552 (4) 0.1865 (2) 0.0473 (6)
C8 0.1297 (2) 0.1628 (5) 0.1253 (2) 0.0555 (7)
H8 0.0980 0.0420 0.1546 0.067*
C9 0.1235 (3) 0.1472 (6) 0.0206 (2) 0.0646 (8)
H9 0.0885 0.0158 −0.0201 0.078*
C10 0.1692 (3) 0.3265 (6) −0.0233 (2) 0.0651 (8)
H10 0.1657 0.3167 −0.0936 0.078*
C11 0.2198 (3) 0.5184 (6) 0.0370 (3) 0.0690 (8)
H11 0.2496 0.6407 0.0072 0.083*
C12 0.2273 (3) 0.5334 (5) 0.1416 (2) 0.0606 (7)
H12 0.2632 0.6645 0.1821 0.073*
C13 0.0902 (3) 0.5331 (5) 0.3057 (2) 0.0637 (7)
H13A 0.0843 0.6719 0.2627 0.076*
H13B 0.1166 0.5817 0.3799 0.076*
C14 −0.0356 (3) 0.4259 (6) 0.2741 (2) 0.0611 (7)
C15 −0.1346 (3) 0.3302 (6) 0.2484 (2) 0.0627 (7)
C16 −0.2554 (3) 0.2165 (6) 0.2187 (2) 0.0589 (7)
C17 −0.2702 (4) 0.0104 (7) 0.2656 (3) 0.0808 (9)
H17 −0.2010 −0.0604 0.3170 0.097*
C18 −0.3885 (5) −0.0912 (9) 0.2361 (4) 0.1097 (16)
H18 −0.3990 −0.2296 0.2681 0.132*
C19 −0.4903 (5) 0.0132 (13) 0.1594 (5) 0.1160 (19)
H19 −0.5697 −0.0548 0.1397 0.139*
C20 −0.4753 (3) 0.2131 (11) 0.1130 (4) 0.1032 (15)
H20 −0.5446 0.2817 0.0607 0.124*
C21 −0.3604 (3) 0.3163 (7) 0.1413 (3) 0.0760 (9)
H21 −0.3518 0.4551 0.1086 0.091*
N1 0.1865 (2) 0.3795 (4) 0.29364 (18) 0.0548 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0509 (14) 0.0643 (16) 0.0386 (12) −0.0118 (12) 0.0061 (10) −0.0006 (13)
C2 0.0736 (18) 0.092 (2) 0.0501 (16) −0.0029 (18) 0.0231 (14) 0.0022 (17)
C3 0.094 (2) 0.114 (3) 0.0463 (16) −0.006 (2) 0.0216 (17) 0.0205 (19)
C4 0.082 (2) 0.101 (3) 0.061 (2) 0.004 (2) 0.0065 (17) 0.026 (2)
C5 0.0654 (18) 0.086 (2) 0.0677 (19) 0.0086 (16) 0.0085 (15) 0.0125 (19)
C6 0.0503 (14) 0.0747 (19) 0.0496 (15) −0.0017 (14) 0.0096 (12) 0.0065 (14)
C7 0.0430 (12) 0.0519 (14) 0.0453 (13) −0.0001 (11) 0.0139 (10) 0.0052 (12)
C8 0.0564 (15) 0.0556 (16) 0.0488 (14) −0.0085 (12) 0.0120 (11) 0.0017 (13)
C9 0.0681 (18) 0.0638 (18) 0.0508 (15) −0.0011 (14) 0.0082 (13) −0.0048 (14)
C10 0.0657 (17) 0.083 (2) 0.0476 (15) 0.0153 (16) 0.0216 (13) 0.0090 (16)
C11 0.0769 (19) 0.0682 (19) 0.071 (2) −0.0052 (16) 0.0381 (16) 0.0152 (18)
C12 0.0650 (16) 0.0546 (15) 0.0655 (18) −0.0137 (14) 0.0275 (13) −0.0015 (15)
C13 0.0715 (18) 0.0593 (16) 0.0621 (17) 0.0007 (15) 0.0265 (14) −0.0023 (15)
C14 0.0622 (17) 0.0729 (18) 0.0523 (15) 0.0082 (15) 0.0257 (13) −0.0003 (15)
C15 0.0634 (17) 0.080 (2) 0.0490 (15) 0.0096 (16) 0.0252 (13) −0.0016 (15)
C16 0.0642 (17) 0.0692 (19) 0.0500 (15) 0.0063 (14) 0.0288 (13) −0.0089 (15)
C17 0.092 (2) 0.082 (2) 0.072 (2) −0.0031 (19) 0.0344 (18) −0.008 (2)
C18 0.141 (4) 0.102 (3) 0.112 (4) −0.045 (3) 0.077 (4) −0.033 (3)
C19 0.087 (3) 0.168 (5) 0.110 (4) −0.052 (3) 0.055 (3) −0.059 (4)
C20 0.060 (2) 0.149 (5) 0.097 (3) −0.002 (2) 0.024 (2) −0.029 (3)
C21 0.0680 (19) 0.085 (2) 0.074 (2) 0.0091 (17) 0.0248 (16) −0.0135 (18)
N1 0.0555 (12) 0.0624 (13) 0.0476 (12) −0.0017 (10) 0.0201 (10) −0.0001 (11)

Geometric parameters (Å, °)

C1—C2 1.391 (4) C11—C12 1.377 (4)
C1—C6 1.395 (4) C11—H11 0.9300
C1—N1 1.405 (4) C12—H12 0.9300
C2—C3 1.378 (5) C13—N1 1.459 (3)
C2—H2 0.9300 C13—C14 1.471 (4)
C3—C4 1.368 (5) C13—H13A 0.9700
C3—H3 0.9300 C13—H13B 0.9700
C4—C5 1.379 (5) C14—C15 1.185 (4)
C4—H4 0.9300 C15—C16 1.441 (5)
C5—C6 1.372 (5) C16—C17 1.377 (5)
C5—H5 0.9300 C16—C21 1.390 (4)
C6—H6 0.9300 C17—C18 1.386 (6)
C7—C8 1.374 (4) C17—H17 0.9300
C7—C12 1.377 (4) C18—C19 1.376 (8)
C7—N1 1.425 (3) C18—H18 0.9300
C8—C9 1.383 (4) C19—C20 1.344 (7)
C8—H8 0.9300 C19—H19 0.9300
C9—C10 1.377 (5) C20—C21 1.358 (5)
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.362 (5) C21—H21 0.9300
C10—H10 0.9300
C2—C1—C6 117.6 (3) C7—C12—C11 120.3 (3)
C2—C1—N1 122.7 (3) C7—C12—H12 119.8
C6—C1—N1 119.6 (2) C11—C12—H12 119.8
C3—C2—C1 120.2 (3) N1—C13—C14 114.0 (2)
C3—C2—H2 119.9 N1—C13—H13A 108.7
C1—C2—H2 119.9 C14—C13—H13A 108.7
C4—C3—C2 121.8 (3) N1—C13—H13B 108.7
C4—C3—H3 119.1 C14—C13—H13B 108.7
C2—C3—H3 119.1 H13A—C13—H13B 107.6
C3—C4—C5 118.3 (3) C15—C14—C13 177.1 (3)
C3—C4—H4 120.9 C14—C15—C16 178.9 (3)
C5—C4—H4 120.9 C17—C16—C21 118.7 (3)
C6—C5—C4 120.9 (3) C17—C16—C15 121.6 (3)
C6—C5—H5 119.5 C21—C16—C15 119.7 (3)
C4—C5—H5 119.5 C16—C17—C18 119.8 (4)
C5—C6—C1 121.1 (3) C16—C17—H17 120.1
C5—C6—H6 119.5 C18—C17—H17 120.1
C1—C6—H6 119.5 C19—C18—C17 119.9 (5)
C8—C7—C12 118.9 (2) C19—C18—H18 120.1
C8—C7—N1 122.0 (2) C17—C18—H18 120.1
C12—C7—N1 119.1 (2) C20—C19—C18 120.2 (4)
C7—C8—C9 120.6 (3) C20—C19—H19 119.9
C7—C8—H8 119.7 C18—C19—H19 119.9
C9—C8—H8 119.7 C19—C20—C21 120.8 (4)
C10—C9—C8 119.9 (3) C19—C20—H20 119.6
C10—C9—H9 120.1 C21—C20—H20 119.6
C8—C9—H9 120.1 C20—C21—C16 120.6 (4)
C11—C10—C9 119.5 (3) C20—C21—H21 119.7
C11—C10—H10 120.3 C16—C21—H21 119.7
C9—C10—H10 120.3 C1—N1—C7 120.1 (2)
C10—C11—C12 120.8 (3) C1—N1—C13 118.9 (2)
C10—C11—H11 119.6 C7—N1—C13 114.6 (2)
C12—C11—H11 119.6
C6—C1—C2—C3 0.1 (4) C14—C15—C16—C21 90 (18)
N1—C1—C2—C3 −176.6 (3) C21—C16—C17—C18 −0.8 (4)
C1—C2—C3—C4 0.1 (5) C15—C16—C17—C18 178.9 (3)
C2—C3—C4—C5 −0.6 (6) C16—C17—C18—C19 0.6 (5)
C3—C4—C5—C6 0.9 (6) C17—C18—C19—C20 0.1 (6)
C4—C5—C6—C1 −0.8 (5) C18—C19—C20—C21 −0.6 (6)
C2—C1—C6—C5 0.2 (4) C19—C20—C21—C16 0.4 (6)
N1—C1—C6—C5 177.1 (3) C17—C16—C21—C20 0.3 (5)
C12—C7—C8—C9 0.6 (4) C15—C16—C21—C20 −179.3 (3)
N1—C7—C8—C9 178.2 (2) C2—C1—N1—C7 −148.9 (3)
C7—C8—C9—C10 −0.5 (4) C6—C1—N1—C7 34.4 (3)
C8—C9—C10—C11 −0.2 (4) C2—C1—N1—C13 1.4 (4)
C9—C10—C11—C12 1.0 (4) C6—C1—N1—C13 −175.3 (3)
C8—C7—C12—C11 0.1 (4) C8—C7—N1—C1 50.4 (3)
N1—C7—C12—C11 −177.5 (3) C12—C7—N1—C1 −132.0 (3)
C10—C11—C12—C7 −0.9 (4) C8—C7—N1—C13 −101.1 (3)
N1—C13—C14—C15 9(6) C12—C7—N1—C13 76.4 (3)
C13—C14—C15—C16 136 (16) C14—C13—N1—C1 −74.1 (3)
C14—C15—C16—C17 −89 (18) C14—C13—N1—C7 77.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2105).

References

  1. Bieber, L. W. & da Silva, M. F. (2004). Tetrahedron Lett.45, 8281–8283.
  2. Bruker (12001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hattori, K., Miyata, M. & Yamamoto, H. (1993). J. Am. Chem. Soc.115, 1151–1152.
  4. Huffman, M. A., Yasuda, N., DeCamp, A. E. & Grabowski, E. J. J. (1995). J. Org. Chem.60, 1590–1594.
  5. Konishi, M., Ohkuma, H., Tsuno, T., Oki, T., VanDuyne, G. D. & Clardy, J. (1990). J. Am. Chem. Soc.112, 3715–3716.
  6. Nilsson, B. M., Vargas, H. M., Ringdahl, B. & Hacksell, U. (1992). J. Med. Chem.35, 285–294. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809037866/lx2105sup1.cif

e-65-o2555-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037866/lx2105Isup2.hkl

e-65-o2555-Isup2.hkl (96.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES