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Abstract
In this paper we propose a novel and robust system for the automated identification of major sulci
on cortical surfaces. Using multiscale representation and intrinsic surface mapping, our system
encodes anatomical priors in manually traced sulcal lines with an intrinsic atlas of major sulci. This
allows the computation of both individual and joint likelihood of sulcal lines for their automatic
identification on cortical surfaces. By modeling sulcal anatomy with intrinsic geometry, our system
is invariant to pose differences and robust across populations and surface extraction methods. In our
experiments, we present quantitative validations on twelve major sulci to show the excellent
agreement of our results with manually traced curves. We also demonstrate the robustness of our
system by successfully applying an atlas of Chinese population to identify sulci on Caucasian brains
of different age groups, and surfaces extracted by three popular software tools.

1 Introduction
The automated identification of major sulci on the human cortex is a challenging problem with
important applications in brain mapping[1]. While their form and location can vary quite
significantly, there is no difficulty for an anatomist to observe the regularity of major sulci
based simply on the geometry of cortical surfaces regardless of their size, orientation, and the
software used to extract them from MRI images. From an engineering point of view, this
simplicity is critical for a computational system to achieve the same level of robustness, which
essentially lies in its ability of modeling sulcal anatomy with the geometry of cortical surfaces.
To this end, we propose in this work a novel system for automated sulci identification by
integrating local geometry, i.e., curvature, with global descriptors derived from the Laplace-
Beltrami eigen-system [2,3,4] and intrinsic surface mapping [5].

At the core of our system is an intrinsic atlas of major sulci that represents prior knowledge in
training data and enables the integration of curvature information into major sulci. This atlas-
based approach is most related to learning-based methods for sulci identification in previous
work [6,7,8,9,10]. Principal component analysis were used to model sulcal basins [6] and sulcal
lines on the sphere [7]. Boosting methods were used in [9,10]. The Markovian relation of
multiple sulci was incorporated with graphical models [8,10]. The main novelty in our system
is that the modeling of cortical anatomy is based entirely on intrinsic geometry, which
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eliminates the use of coordinates in conventional MRI atlases such as the Talairach atlas. This
makes our system robust to pose differences and variations across populations. We demonstrate
this robustness by using an atlas constructed from a Chinese population to detect twelve major
sulci on Caucasian brains of different age groups and surfaces extracted by different software
tools.

The rest of the paper is organized as follows. In section 2, we describe the construction of the
intrinsic atlas for the modeling of sulcal anatomy. The sulci identification algorithm based on
this atlas is developed in section 3. Experimental results are presented in section 4. Finally
conclusions are made in section 5.

2 Atlas Construction
As illustrated in Fig. 1, there are two main steps in the construction of the atlas. In the first
step, a multiscale representation of the cortical surface is constructed. In the second step,
surface maps at a selected scale are computed to bring manually traced sulcal lines to an atlas
surface. We describe the two steps in detail next.

2.1 Multiscale Surface Representation
Let  = ( , ) denote the triangular mesh representation of a cortical surface, where  and

 are the set of vertices and triangles. We construct the multiscale representation of  by
using the eigen-system of its Laplace-Beltrami operator , which is defined as

(1)

The spectra of  is discrete and we denote the eigenvalues as λ0 ≤ λ1 ≤ · · · and the
corresponding eigenfunctions as f0, f1, · · ·. To numerically compute the eigenfunctions, we use
the finite element method and solve a generalized matrix eigenvalue problem[2,3,4].

Let X(·, 0) :  → ℝ3 denote the coordinate function on , i.e., X(p, 0) = p for p ∈ . Using
the eigen-system, we can express the heat diffusion of the coordinate function as

(2)

By replacing the coordinates of the vertices on  with X(·, t), we have a multiscale
representation of . For numerical implementation, we approximate the diffusion with the
first 300 eigenfunctions that are computed efficiently with the spectrum shift technique [11].
As an illustration, we show in Fig. 2 the multi-scale representation of a cortical surface at the
scale t = 0, 10, 100, 1000. With the increase of the scale, we can see the surface exhibits more
regularity that is common across population. However, sulcal landmarks on the original surface
might be overly distorted in terms of length and angle if t is too large. In our work, we usually
choose t = 100 as a tradeoff between surface regularity and landmark distortion.

2.2 Atlas Construction via Intrinsic Surface Mapping
To construct the atlas at a selected scale, we extend the intrinsic surface mapping technique
developed for sub-cortical surfaces in [5] to cortical surfaces. Given a pair of surfaces  and
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 at a scale t, we compute two maps  and  by minimizing the
following energy:

(3)

where  are the feature functions defined on the surfaces that characterize
their intrinsic geometry. In each integral, the first term penalizes the difference of feature
functions, the second term encourages inverse consistency, and the third term uses the harmonic
energy [12] for smoothness regularization, where Ju1 and Ju2 are the Jacobian of the maps. The
regularization parameters αD, αIC, αH control the weight of different terms.

To model the sulcal anatomy intrinsically, we define three feature functions on cortical surfaces
as shown in Fig. 3(a) by using the Reeb graph of the first and second eigen-function of its
Laplace-Beltrami operator [5]. We can see these functions characterize the frontal-posterior,
superior-inferior, and medial-lateral profile of the surface intrinsically. By projecting each
point  to ( ), we construct an embedding of each surface in the feature
space. As shown in Fig. 3(b), the two cortical surfaces align much better in the embedding
space, which enables us to find a good initial map between them by simply looking for the
nearest point on the other surface. Starting from the initial maps, we iteratively evolve them
by solving a pair of PDEs on the surfaces in the gradient descent directions [5].

By choosing one of the surface  in the training set as the atlas surface, we compute the maps
from all other surfaces in the training data to this atlas surface . All the manually traced sulcal
lines can then be projected onto the atlas surface as shown in the third row of Fig. 1. Since both
the multiscale representation and surface mapping are established via intrinsic geometry, we
denote the collection of sulcal lines projected onto the atlas surface  as the intrinsic atlas of
major sulci.

3 Automated Identification of Major Sulci
Using the atlas of major sulci, we develop in this section an automated system for their
identification on cortical surfaces. Given a new surface , the skeletal representation of its
sulcal region is first computed based on the mean curvature of  [13] as shown in Fig 4(a).
The skeleton is decomposed into a set of branches B = {B1, B2, · · ·}, where each branch is a
polyline on . The multiscale representation  of  and the map u :  →  is then
computed. With the map u, the branches are projected onto the atlas surface and denoted as
B̂ = {B̂1, B̂2, · · ·,}. Our goal is to extract anatomically consistent sulcal lines from these skeletal
branches.

Let  denote the set of training curves for the i-th sulcus on the atlas surface.
Given the prior model Si, the challenge is how to model the likelihood of skeletal branches in
B̂. The difficulty arises from the fact that B contains only partial observations of major sulci
as they frequently cross gyral regions. To bridge the gap between the prior model of complete
sulci and the partial observation in skeletal branches, we propose below a projection operator
to model the likelihood of a branch on a major sulcus. Given a curve segment C on , its
projection onto the training data Si is defined as:
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(4)

where  and dH is the Hausdorff distance. Given a branch B̂k and its
projection PSi (B̂k), we calculate the Hausdorff distance Dk = dH (B̂k, PSi (B̂k), and the projection
ratio Rk = ||PSi (B̂k)||/||B̂k||, where ||·|| denotes the length of a curve. Using the distance Dk and
projection ratio Rk, we can pick a set of candidate branches as N̂ = {B̂k ∈ B̂| Dk ≤ T HD1, Rk ≥
T HD2} where T HD1 and T HD2 are thresholds which we choose as 15mm and 0.5 in our
practice. The candidate branches are plotted together with the training set over the atlas surface
in Fig. 4(b).

Using the candidate branches in N̂, we construct a directed graph to generate a set of sample
paths on  as candidate curves for the sulcus. Given two nodes B̂p and B̂q in N̂, whose points
are ordered according to the indices of their projection on Si, we form a new curve Cp,q =

(B̂p, B̂q) by connecting the end point  of B̂p with the start point  of B̂q. Once again we
compute the projection of Cp,q onto Si to evaluate the likelihood of Bp and Bq belonging to the
same sulcus. Let Dp,q and Rp,q denote the distance and projection ratio of Cp,q. If Rp,q ≥ T

HD2, we add an edge from B̂p to B̂q and define the weight as , where the distance

 is included to encourage the connection of close branches. Starting from any branch
without parents, we perform random walks on the graph to generate sample paths on the atlas
surface. The probability of taking an edge during any walk is in proportion to its weight.

Let  be the set of sample paths for the i-th sulcus. For a candidate curve, its
distance to the training data is defined as:

(5)

where d̄(·, ·) is the average distance from points on a curve to the other curve. We also define
the “sulcality” of each curve as:

(6)

which measures how good the path follows the sulcal regions. We then define the likelihood
of each curve as

(7)

and choose the detection result as the sample curve in Ci with the maximum likelihood. As an
illustration, we show on  the set of sample paths and the path with the maximum likelihood
for the superior frontal sulcus in Fig. 4(c). The branches in this path are then connected via a
curvature-weighted geodesic on the original surface to obtain the detected sulcus as plotted in
Fig. 4(d).
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Let Ci1 and Ci2 denote the candidate curves of the i1-th and i2-th sulcus, we define the joint
distance from a pair of curves  and  to the training curves Si1 and Si2 as:

(8)

The joint likelihood of the two curves is then defined as:

(9)

The joint detection results are the pair of curves in the sample space Ci1 × Ci2 achieving the
maximum likelihood.

4 Experimental Results
In this section, we present experimental results on four different datasets, including surfaces
extracted from 3 software tools, to demonstrate our sulci detection system.

4.1 Atlas Construction and Quantitative Validation
In the first experiment, we applied our method to pial surfaces extracted from the 3T MRI
images of 65 Chinese young subjects (18 ~ 27 years) by Freesurfer [14]. The left hemispheres
were used in this work. Twelve major sulci as listed in Table 1 were manually traced on each
surface. We used 40 surfaces as training data to construct the intrinsic atlas of major sulci,
which is shown on the third row of Fig. 1, and the algorithm developed in section 3 was used
to identify the twelve major sulci on the other 25 surfaces for testing and quantitative validation.
For robustness, the central and post-central sulcus were detected jointly by maximizing the
joint likelihood in (9). The other 10 sulci were detected separately by maximizing the likelihood
in (7).

As an illustration, the results from 4 subjects in the testing data are plotted in Fig. 5. For better
visualization, we plotted the detected curves on the surfaces at the scale t = 10 in Fig. 5(a) and
(b). As shown in Fig. 5(c), the automatically detected sulcal lines align very well with manually
traced sulci plotted in black. Quantile statistics of two distances dam and dma of each sulcus
were listed in Table 1, where dam is the distance from points on a detected curve to the
corresponding manually traced curve, and dma denotes the distance from points on each manual
curve to the detected sulcus. For example, the first number in the column of S1 means that 70%
of the points on the automatically identified central sulcus are within a distance of 3.2mm to
the manually traced curve. While there is variability across different sulci, we can see the
quantile statistics show the automated results accurately capture the main body of the major
sulci.

4.2 Robustness
In the second experiment, we applied the atlas built from the Chinese population in the first
experiment to detect sulci on three different datasets of Caucasian brains. The first dataset
consists of the left pial surfaces of eight elderly subjects (63 ~ 85 years) extracted by Freesurfer.
The second dataset is composed of the left pial surfaces of two young adults extracted by
BrainSuite [15]. The third dataset consists of white matter surfaces of two young adults
extracted by BrainVisa [16]. For better visualization, we also plot the detected curves on all
surfaces at the scale t = 10 in Fig. 6. These results demonstrate the robustness of our method
across ethnic and age groups, and different software tools for surface extraction.
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5 Conclusion
In summary, we have developed a novel system for the automated detection of major sulci on
cortical surfaces. Quantitative validations on twelve major sulci showed excellent agreement
between our system and manual tracing. We also demonstrated the robustness of our system
across different populations and surface extraction tools. For future work, we will augment our
system with the intrinsic modeling of gyral landmarks to further improve its performance.
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Fig. 1.
Atlas construction
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Fig. 2.
Multiscale representation of a cortical surface
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Fig. 3.
(a) Intrinsic feature functions. (b) Embedding in the feature space.
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Fig. 4.
(a) Skeletal branches of the sulcal region. (b) Candidate branches (black) together with the
training curves of the superior frontal sulcus. (c) Sample paths (black) and the most likely path
(red). (d) The detected curve on the original surface.
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Fig. 5.
Detection results on testing data. (a) Lateral view. (b) Medial view. (c) Overlay with manually
traced curves (black).
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Fig. 6.
Row 1–4: results on elderly subjects. Row 5: results on BrainSuite surfaces. Row 6: results on
BrainVisa surfaces.
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