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Abstract
In this paper we propose a novel approach for the mapping of 3D surfaces. With the Reeb graph of
Laplace-Beltrami eigenmaps, our method automatically detects stable landmark features intrinsic to
the surface geometry and use them as boundary conditions to compute harmonic maps to the unit
sphere. The resulting maps are diffeomorphic, robust to natural pose variations, and establish
correspondences for geometric features shared across population. In the experiments, we demonstrate
our method on three subcortical structures: the hippocampus, putamen, and caudate nucleus. A group
study is also performed to generate a statistically significant map of local volume losses in the
hippocampus of patients with secondary progressive multiple sclerosis.

1 Introduction
In many imaging studies, surface mapping plays an important role as it can provide localized
information complementary to volume measurements [1]. The task of mapping general 3D
surface models, however, remains challenging because it is usually difficult to define
homologous points across population. In this paper, we propose a novel method of computing
maps for a class of subcortical structures by using Laplace-Beltrami eigenmaps to capture their
salient geometry and harmonic maps to establish diffeomorphic correspondences.

Various approaches have been proposed in previous work for the automated construction of
surface maps. The first approach computes surface maps based on a canonical parameterization
such as the spherical parameterization [2–5]. Using techniques from image registration, a map
between two surfaces can be established by warping the image space surrounding the
anatomical structure of interest [6–8]. The medial model, or skeleton, is a popular tool to
represent shapes and it can also be used to construct geometrically intuitive maps between
surfaces [9]. Because the skeleton is sensitive to noise, a simplified topology was usually
assumed for robustness and consistency [10,11].

In this work we propose a novel approach for the automated mapping of three subcortical
structures: the hippocampus, putamen and caudate nucleus. As shown in Fig. 1, these shapes
share a similar profile globally. For each shape, we can consider its thinner part on the left as
the “tail”, and the thicker part on the right as the “head”. This kind of division can also be
useful in anatomical and functional studies. Not only globally, these shapes also have locally
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similar ridge features as highlighted by the red curve in each picture. By using Laplace-Beltrami
eigenmaps, we describe in section 2 an automated approach to capture these salient features.
After that, the landmarks are used to guide harmonic maps to the sphere in section 3 and
generate feature-aligned, one-to-one correspondences across shapes. Experimental results will
be presented to demonstrate our algorithm in section 4. Finally, conclusions are made in section
5.

2 Laplace-Beltrami Eigenmaps of Surfaces
Given a surface , we compute a function f: → ℝ that maps  smoothly into ℝ by solving

(1)

where  is the intrinsic gradient operator on . Using Stokes’ theorem, we have

(2)

where  is the Laplace-Beltrami operator on . For a manifold with boundary, the above
equation still holds if we choose the Neumann boundary condition. Based on (2), we find the
optimal map f by considering the spectrum of the operator , which is discrete for a compact
manifold. Let us denote the eigenvalues of  as λ0 ≤ λ1 ≤ λ2 ≤ ··· and the corresponding
eigenfunctions as f0, f1, f2, ···. In previous work on shape analysis, the set of eigenvalues was
used for classification [12] and the eigenfunctions were used for denoising [13]. Here we use
the spectrum to characterize the salient geometry of . For λ0 = 0, the eigenfunction f0 is
constant. So the smoothest and non-trivial map from  to ℝ is f1 because it achieves the
minimal energy λ1 =  ||  f1||2 d .

For compact manifolds, a generic property of the Laplace-Beltrami operator is that its
eigenfunctions are Morse functions [14]. This motivates us to use the Reeb graph [15] of f1 to
capture the global property of the surface intrinsically. For the eigenmap f1:  → ℝ, its Reeb
graph is defined as the quotient space of  × ℝ with the equivalent relation (x1, f1(x1)) ≃ (x2,
f1(x2)) for x1, x2 ∈ . The structure of the Reeb graph is closely related to the global
characteristics, such as topology, of the manifold . For example, the number of loops in the
Reeb graph of a Morse function on  equals its number of genus. Besides that, we can see
below it reveals richer structural similarities between different shapes, such as the hippocampus
and the sphere. To build the Reeb graph numerically, we assume the surface  is represented
as a triangular mesh and compute its Laplace-Beltrami spectrum with the finite element method
[12,13]. As a result, the eigenmap f1 is defined on each vertex of . Let f1 ∈ [fmin, fmax]. We
trace the level sets of f1 on  at K values (α1, α2, ···, αK) such that fmin = α0 < α1 < α2 < ··· <
αK < fmax = αK+1 and

(3)
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where  = {x ∈ |αk < f1(x) ≤ αk+1}. This generates a set of level contours distributing evenly
spaced on the surface. Note that each level set can be composed of multiple contours for
arbitrary surfaces. With each contour as a node in the Reeb graph, two neighboring level
contours are connected with an edge if they can deform into each other without crossing other
contours.

With the hippocampus in Fig. 1(a) as an example, we visualize in Fig. 2(a), (b), (c) the eigenmap
f1, its level contours, and the Reeb graph, respectively. If we assume the hippocampus is aligned
in Talairach orientation and fix the sign of f1 to be negative at the most posterior vertex of

, we have the Reeb graph as an explicit representation of the simple, tail-to-head structure
of the hippocampus. As we traverse the graph from the node representing the level set f1 =
α1 to the other end, we move from the tail of the hippocampus to its head. Interestingly, if we
compute the Laplace-Beltrami eigenmap of the sphere, its Reeb graph also has a chain structure
as in Fig. 2(c). Using the Reeb graph of the Laplace-Beltrami eigenmap, we thus have a richer
and intrinsic characterization of structural similarities between shapes beyond topology. In this
case, it provides a deeper justification of using spherical parameterizations for the mapping of
hippocampal surfaces besides the fact they both have genus-zero topology. On the other hand,
it might improve our understanding of the difficulties in building spherical parameterizations
for more irregular shapes and eventually lead to the selection of more suitable parameterization
domains.

With the Reeb graph providing information about the global structure of a surface, we compute
a second Laplace-Beltrami eigenmap to detect the point on level contours that marks the salient
local feature highlighted in Fig. 1. For this purpose, we represent a contour as a set of L points
xl(1 ≤ l ≤ L) and build a smooth mesh in ℝ3 with the contour as the boundary. As a first step,
we construct a Delaunay triangulation from these points using the software triangle [16]. The
final smooth mesh  is then obtained by applying Laplacian smoothing to vertices belonging
to the interior of this mesh while fixing the boundary points xl. Using the Neumann boundary
condition, we map this surface patch to ℝ by computing the first eigenfunction of the Laplace-
Beltrami operator on , which we denote as g1. As in the first eigenmap, we remove the
ambiguity in the sign of g1 by fixing it to be negative at the most lateral vertex in .

As an illustration, we visualize the second eigenmap in Fig. 2(d) by plotting the level sets of
the eigenmap g1 on three interpolated surface patches. From the results we can see the second
eigenmap g1 projects each patch along the medial-to-lateral direction for brains in Talairach
orientation, and we can locate the feature point on the ridge by picking the point on the level
contour attaining the maximal values in g1. To detect the whole ridge line, we compute the
above eigenmap g1 for the level sets of f1 at the value αk for K1 ≤ k ≤ K2 and connect their
feature points sequentially to form the landmark curve  shown as the red contour in Fig. 1
(a). For the subcortical surfaces under study here, the ridge feature becomes less salient as we
approach the tail or head part, thus we choose K1 > 1 and K2 < K to pick out the most
distinguished part of the ridge line and use it to guide the mapping process. For all surfaces
tested so far in our work, we sample K = 100 level contours from the first eigenmap and find
that choosing K1 = 20, K2 = 85 gives robust results in the second embedding. More generally,
these parameters may as well be determined with a learning-based approach.

3 Spherical Mapping With Landmark Constraints
Following the landmark detection process with Laplace-Beltrami eigenmaps, we compute a
harmonic map from each surface to the sphere. By combining these harmonic maps, we can
obtain diffeomorphic maps between different surfaces[17].
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To ensure the one-to-one correspondences on the landmark curve  of different surfaces are
maintained in their spherical parameterizations, we sample a curve  = {(θ, φ)|0.25π ≤ θ ≤
0.75π, φ = 0} on the unit sphere  with K2 − K1 + 1 evenly spaced points and define a boundary
condition by fixing the map from each landmark point on  to the corresponding point on

 with the same index. Besides the boundary condition, the Laplace-Beltrami eigenmaps also
provide a convenient way of estimating a good initial map from  to . Using the detected
feature point as the origin, we divide each level contour of f1 with its index K1 ≤ k ≤ K2 into 4
segments of equal length and connect the corresponding end points of these segments to divide
the hippocampus into 6 regions as shown in Fig. 3(a). Similarly we divide the sphere into 6
regions as shown in Fig. 3(b). For a point in a specific region on , we find its initial map as
the point in the corresponding region on  that correlates best with it in terms of their distances
to the 4 boundary segments of the regions. The quality of the map is visualized in Fig. 3(d),
which is obtained by using the initial map to project a colored chessboard on the sphere shown
in Fig. 3(c) to the hippocampus.

Starting from the initial map, the numerical algorithm we developed previously [18] is then
used to compute the harmonic map from  to  while respecting the boundary condition. By
representing the surface  and the sphere  implicitly as a signed distance function ϕ and ψ,
respectively, we compute the harmonic map u:  →  by solving the following PDE
iteratively:

(4)

where  is the intrinsic Jacobian of the map u with Ju denoting the regular
Jacobian in ℝ3. When discretizing the gradient operators in (4), adaptive numerical schemes
were developed in [18], where more numerical details can be found, to take into account the
boundary condition on the landmark curve. For the hippocampus in Fig. 3, the result of the
harmonic map is visualized in Fig. 3(e). The quality of the map is illustrated in its ability of
preserving the regularity of the chessboard pattern.

4 Experimental Results
In this section we present experimental results to demonstrate the application of our algorithm
in brain mapping. In our method, the only assumption on the input data is that they are from
brains in Talairach orientation. Both the landmark detection step using Laplace-Beltrami
eigenmaps and the harmonic mapping process are intrinsic to the surface geometry, so natural
pose variations among shapes can be handled automatically. In the first experiment, we
demonstrate this property of our algorithm and its ability in aligning common geometric
features on three subcortical structures: the hippocampus, putamen, and caudate nucleus. Two
examples from each structure are used as input data and shown in the first column of Fig. 4.
The whole mapping process is completely automated, and it takes around 10 minutes on a PC
for each surface. For each structure, the harmonic maps of the two surfaces are visualized in
the second and third column of Fig. 4 by using the maps to project the chessboard pattern in
Fig. 3(c) onto the surfaces. For all examples, we can see geometrically salient features are
correctly aligned with our mapping algorithm even though they have different poses.

In the second experiment, we apply our method to study changes in hippocampal morphometry
for patients with secondary progressive multiple sclerosis (SPMS). The input data are the left
hippocampi from a group of 16 normal controls and 11 patients with SPMS shown in their
natural poses in Fig. 5. Once the mapping to the sphere is completed, we project a regular
triangular mesh of the sphere to each surface, establishing one-to-one correspondences that are

Shi et al. Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2010 November 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



critical for group analyses. After factoring out rotation and translation, we compute an atlas
, shown in Fig. 6, by averaging shapes from the control group. By aligning each surface

rigidly with the atlas, we compute the displacement from each vertex on the surface to the
corresponding vertex on . To test group differences, a Wilcoxon rank-sum test is applied to
the displacement values of the control and patient group at each vertex. The map of P values
on all vertices are visualized in Fig. 6(a), together with the average displacement of the patient
group in Fig. 6(b). From the results we can see large areas of volume losses in the hippocampi
of patients with SPMS are successfully localized. To correct for multiple comparisons, we
apply a permutation test [1] for 1 million times and an overall P value of 0.000076 is obtained,
which clearly shows the significance of our mapping results.

5 Conclusions
In this paper we have developed a novel surface mapping algorithm applicable to a class of
subcortical structures. The maps from our method are diffeomorphic, and also correctly align
geometric features, both locally and globally, that are automatically detected with Laplace-
Beltrami eigenmaps. An application of our method in group analyses has also been presented
to demonstrate its robustness and ability of detecting anatomical changes due to pathology.
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Fig. 1.
Examples of subcortical structures.

Shi et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2010 November 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
The Laplace-Beltrami eigenmaps of a hippocampal surface.
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Fig. 3.
The computation of the harmonic map from a hippocampus to the unit sphere.
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Fig. 4.
Mapping results of subcortical structures with different poses. Row one: hippocampi; row two:
putamens; row three: caudate nuclei.
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Fig. 5.
The hippocampal surfaces of (a) the control group; (b) the patient group.
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Fig. 6.
The mapping results. (a) The map of P values. (b) The map of the average displacement of the
patient group.
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