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Abstract
For the automated analysis of cortical morphometry, it is critical to develop robust descriptions of
the position of anatomical structures on the convoluted cortex. Using the eigenfunction of the
Laplace-Beltrami operator, we propose in this paper a novel feature space to characterize the cortical
geometry. Derived from intrinsic geometry, this feature space is invariant to scale and pose variations,
anatomically meaningful, and robust across population. A learning-based sulci detection algorithm
is developed in this feature space to demonstrate its application in cortical shape analysis. Automated
sulci detection results with 10 training and 15 testing surfaces are presented .

1 Introduction
The analysis and registration of cortex morphometry is an important area in human brain
mapping and has produced valuable findings for the modeling of both normal and pathological
brains[1]. With the increasing availability of brain scans from large scale studies[2], manual
labeling becomes infeasible and it is thus critical to automate the cortical shape analysis process
and robustly resolve its complicated and highly variable convolution pattern. In this paper, we
propose a novel feature space derived from the eigenfunction of the Laplace-Beltrami operator
to study the cortical surface. This feature space provides an intrinsic and anatomically
interesting characterization of locations on the cortical surface and leads to compact modeling
of anatomical landmarks invariant to scale and natural pose differences.

One main goal of cortical shape analysis is the automatic labeling of the major sulci that can
serve as the landmarks for cortical normalization[1,3]. Various learning-based approaches have
been developed to incorporate priors from manual labeling[4–8]. The features used in previous
work, however, rely on coordinates in canonical spaces such as the Euclidean space of a brain
atlas or the unit sphere to model the position of anatomical landmarks on the cortex, which is
not intrinsic and can be sensitive to the image registration results. This is especially problematic
for pathological brains as they can exhibit large deviations from standard atlases. To overcome
this limitation, we propose to characterize the relative locations of cortical landmarks with an
intrinsic feature space that has the nice property of being invariant to pose and scale variations.
This feature space is computed using the eigenfunction of the Laplace-Beltrami operator[9–
12] of the cortex and a series of surface patches to describe intrinsically the anterior/posterior,
superior/inferior, and medial/lateral profile of the cortex. A sulci detection algorithm in the
feature space is also developed to demonstrate the application of this feature space in cortical
shape analysis.

The rest of the paper is organized as follows. In section 2, we propose the Laplace-Beltrami
feature space and develop the algorithm for its numerical computation. In section 3, we develop
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a learning-based sulci detection algorithm in the feature space to demonstrate its value in
analyzing cortical anatomy. Preliminary experimental results are presented in section 4. Finally
conclusions are made in section 5.

2 Laplace-Beltrami Feature Space of Cortical Surfaces
For general data analysis, a subset of the Laplacian eigenfunctions were used to form a feature
space [13]. To study medical shapes, however, this is not sufficient because it does not take
into account the anatomical knowledge of the underlying structure. For elongated structures
such as hippocampus, the second eigenfunction of the Laplace-Beltrami operator was used to
detect stable anatomical landmarks [14]. In this section, we generalize this approach to cortical
surfaces and define a Laplace-Beltrami(LB) feature space , where

 and  is a cortical surface, to capture the anatomical characteristics of
cortex morphometry. We assume all brains are in the neurological orientation to remove
ambiguity in the sign of eigenfunctions.

Compared with simple shapes such as hippocampus, the cortical surface is a much more
complicated structure. In particular, the highly variable convolution pattern makes the
extraction of stable features a challenging problem. To tackle this difficulty, we follow the
multi-scale strategy. Given a cortical surface , we construct its feature space using a surface

 that represents  at a coarser scale. For numerical computation, we represent both

 and  as triangular meshes, where  and  are the set of vertices and Τ
is the set of triangles. In this work, the surface  is obtained by applying the Laplacian
smoothing to the original surface , thus the vertices in  have one-to-one correspondences
to vertices in . As shown in Fig. 1(a) and (b), the smoothing process filters out the fine details
in the convolution pattern and keeps geometric structures at the coarser scale shared across
population, thus making the smoothed surface suitable to derive intrinsic location
characterizations that are stable across population. Using the correspondences between  and

, we can then compare detailed cortical features defined on the vertices of  in the common
feature space  and perform analysis tasks such as sulci and gyri labeling.

For the surface , the eigenfunctions of its Laplace-Beltrami operator  are defined as:

(1)

The eigenvalues of  can be ordered according to their magnitude as 0 = λ0 ≥ λ1 ≥ λ2 ≥⋯.
The corresponding eigenfunction of λi is denoted as . By using the weak form of (1)
and the finite element method, we can compute the eigenfunctions by solving a generalized
matrix eigenvalue problem:

(2)

where Q and U are matrices derived with the finite element method.

The first feature function  is defined using the Reeb graph [15] of the second eigenfunction

f1, which minimizes the smoothness measure  and can be viewed as the smoothest
non-constant projection from  to the real line . As shown in Fig. 1(c), the nodes of the Reeb
graph are the level contours of the eigenfunction. Because the eigenfunction is generally a
Moss function [16], the Reeb graph of f1 has a tree structure. Small branches in the Reeb graph
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are pruned according to the length of the associated level contour such that the final graph has
a chain structure. The level contours of the Reeb graph are denoted as Ci(i = 0, ⋯ ,N) with their
order determined by the corresponding value of the eigenfunction f1. Numerically we represent
each contour as a polyline of K points Ci = [Ci,1, Ci,2,, ⋯ ,Ci,K]. The linear interpolation relation
between these points and the vertices of  can be expressed as the following equation:

(3)

where C = [C0, C1, ⋯ ,CN]T and A is the matrix representing the linear interpolation operation.
To quantitatively describe the anterior/posterior distribution of the cortical surface, we define

 on the level contours as . To extend  from the level contours to the
vertices of the entire mesh, we solve the following regularized linear inverse problem:

(4)

where  and  are vectors of the values of  on the level contours and the vertices
of the mesh , respectively, and the matrix Q is the same as in (2). The regularization term

 encourages smoothness of the feature function. By solving this least square

problem, we obtain  as

(5)

To define the second feature function , we first compute a surface patch approximating the
minimal surface of each level contour Ci as proposed in [14]. As shown in Fig. 1(c), this surface
patch smoothly interpolates the interior of the contour. We use the eigenfunction of each surface
patch to define  and characterize the superior/inferior profile of cortical surfaces. Let 
denote the second eigenfunction of the Laplace-Beltrami operator of the i-th surface patch. We
then compute the Reeb graph of  by sampling it at N + 1 level contours Dj(j = 0, ⋯ ,N) and

assign a value  to Dj to describe its superior-to-inferior position on the surface,
where Li is the length of Ci and Lmax is the maximal length of all level contours. The value of

 on the points Ci,k is defined using linear interpolation from the values of neighboring level
contours of . Following the same approach of computing , we can extend the second feature
function to the vertices of the entire mesh:

(6)

where  and  are the vectors of values of  on the level contours and the vertices,
respectively.

We use the same eigenfunction  of the surface patches to define the third feature function
 to characterize the medial/lateral distribution of the cortical surface. Using the assumption

that the cortical surface is in the neurological orientation, we denote the two end points of the
level contour Dj as the medial and lateral point of Dj by comparing the magnitude of their x-
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coordinates, which are plotted as the blue and red dots in Fig. 1(d). For the medial point of

Dj, we assign a value . For the lateral point of Dj, we assign a value

. The same interpolation procedure of computing  is then applied to extend
these values to the entire mesh and obtain the feature function .

As an illustration, we plot in Fig. 2(a), (b) and (c) the three feature functions of the surface in
Fig. 1(b) with the parameter β =1, N = 100, K = 100. Using the sign of , we can easily separate
the medial and lateral side of the surface. For each point on the medial or lateral side, the two
functions ( ) provide an intrinsic description of its relative location on the cortex. With
the only assumption that the brain is in neurological orientation, these descriptions are invariant
to scale differences and natural pose variations.

3 Sulci Detection in the Feature Space
In this section, we demonstrate the application of the LB feature space in cortical shape analysis
by applying it to the automated detection of major sulci. To illustrate the advantage of the LB
feature space in describing the location on cortical surfaces, we show in Fig. 3(a) two cortical
surfaces in the Euclidean space and their central and pre-central sulcus in Fig. 3(b). After we
compute the LB feature functions, we project the sulci of both surfaces into the common space
( ). From the result in Fig. 3(c), we can see the sulci are much better aligned in the feature
space than in the original space. This shows the invariance of LB features and suggests their
ability of building more compact sulcal models.

For automated sulci detection, we follow the learning-based approach in [8] by first generating
a sample space of candidate curves in the feature space and then finding the most likely curve
as the projection of the detected sulci in . Due to space limitation, we describe our method
briefly in the following. To learn the prior model of a sulcus in the feature space, we assume
a training set of cortical surfaces with manually labeled sulcal curves and compute the feature
functions for each surface to project the sulcus into the feature space. Using these projected

training curves, we estimate a density function  with the Parzen window method, where
 represents a point of a curve in the feature space and  is the tangent vector of the curve at

the point . For a curve in the feature space, we can then compute its likelihood of being part
of the major sulcus as the integral of the density function on this curve divided by its length.
Besides this local model, we also apply the principal component analysis (PCA) [17] to the set
of projected training curves to capture their global characteristics.

There are four main steps in our sulci detection algorithm. Using the central sulcus as an
example, we illustrate the result generated from each step in Fig. 4. Given a cortical surface

, we first construct the skeletal representation of the folding pattern by computing the
Hamilton-Jacobi skeleton of the sulcal regions [18] as shown in Fig. 4(a). After that, we
compute the feature space ( ). For major sulci on the lateral surface, we then project
all skeletal branches with  onto the feature space ( ). Similarly, skeletal branches
with  will be processed for major sulci on the medial surface. We divide each skeletal
branch into curve segments of fixed length and compute their probability of being on the major

sulcus of interest using the density function . Curve segments with the probability
greater than a threshold, which we set as 0.01 in all our experiments, are then chosen as
candidate segments on the major sulcus, which we plot in blue in Fig. 4(b). In the third step,
we follow the sample space generation algorithm in [8] to construct a graph model from these
curve segments and generate a set of candidate curves via random walking on the graph model.
For each candidate curve, we compute its likelihood of being the major sulcus as the product
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of the probability obtained from the density function and the PCA model to account for both
local and global information. The most likely path, as shown in red in Fig. 4(c), is chosen as
the projection of the detected sulcal curve in the feature space. Finally we connect the skeletal
segments of the most likely path with curvature-weighted geodesics on the original surface

 as the automatically generated major sulcus shown in Fig. 4(d).

4 Experimental Results
In this section, we present preliminary experimental results on the detection of two major sulci:
the central and precentral sulcus using the LB feature space. The data set is composed of 25
right hemispherical cortical surfaces of spherical topology[19]. We manually labeled the two
sulci on 10 of the 25 surfaces and use them as the training data. The projection of these training
curves in the feature space is shown in the upper left of Fig. 5. From these training curves, we
learn the density function and PCA model. Using these prior models, we tested our sulci
detection algorithm on the other 15 cortical surfaces. The automatically detected sulcal curves
on these surfaces are plotted in Fig. 5.

From the results we can see that our method is able to successfully detect the two major sulci
on all testing surfaces. Even though the brains vary quite significantly in terms of shape and
orientation, our method is robust to such pose and geometric variations because it is designed
in the space of intrinsic eigenfeatures. In our future work, we will incorporate Markovian priors
of neighboring sulci in the feature space for the detection of multiple sulci and validate on
larger data sets of different populations.

5 Conclusion
In this paper, we proposed a novel approach of constructing feature spaces for cortical shape
analysis using the eigenfunction of the Laplace-Beltrami operator. The LB feature space
provides an intrinsic and anatomically meaningful way of characterize locations on the cortical
surfaces. We demonstrated its application in automated sulci detection and preliminary
experimental results have been presented.
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Fig. 1.
(a) . (b) . (c) Level contours of f1 and the surface patches used to define  and . (d)
Medial(blue) and lateral(red) points of Dj.
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Fig. 2.
Feature functions plotted on .
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Fig. 3.
Sulci in the Euclidean and LB feature space.
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Fig. 4.
(a) Hamilton-Jacobi skeletons of sulcal regions. (b) Skeletons in the LB feature space. (c) The
most likely path (red) in the LB feature space. (d) The detected central sulcus on the original
cortical surface.
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Fig. 5.
Training data (upper left) and sulci detection results on the 15 testing surfaces (red: central
sulcus; blue: pre-central sulcus).

Shi et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2010 November 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


