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Abstract
In this paper, we present a complete and practical algorithm for the approximation of level-set-based
curve evolution suitable for real-time implementation. In particular, we propose a two-cycle
algorithm to approximate level-set-based curve evolution without the need of solving partial
differential equations (PDEs). Our algorithm is applicable to a broad class of evolution speeds that
can be viewed as composed of a data-dependent term and a curve smoothness regularization term.
We achieve curve evolution corresponding to such evolution speeds by separating the evolution
process into two different cycles: one cycle for the data-dependent term and a second cycle for the
smoothness regularization. The smoothing term is derived from a Gaussian filtering process. In both
cycles, the evolution is realized through a simple element switching mechanism between two linked
lists, that implicitly represents the curve using an integer valued level-set function. By careful
construction, all the key evolution steps require only integer operations. A consequence is that we
obtain significant computation speedups compared to exact PDE-based approaches while obtaining
excellent agreement with these methods for problems of practical engineering interest. In particular,
the resulting algorithm is fast enough for use in real-time video processing applications, which we
demonstrate through several image segmentation and video tracking experiments.

Index Terms
Curve evolution; image segmentation; integer operation; level set; real-time; video tracking

I. Introduction
Curve evolution is a powerful technique in many image and video analysis problems. In curve
evolution applications, an initial curve is specified in the image domain and its location is
updated iteratively according to a speed function, which is designed to localize the object
boundary of interest. For the numerical implementation of curve evolution, the level-set method
[1]–[3] has become especially popular [4]–[17] because of its many advantages, such as the
automatic handling of topological changes, general numerical schemes for high dimensions,
etc. Conventionally, the level-set implementation of the curve evolution process is based on
the solution of certain partial differential equations (PDEs). This PDE-based solution results
in a significant computational burden and has limited the use of level-set-based curve evolution
methods in real-time applications, such as video-based object tracking. In this paper, we present
a complete and practical algorithm for the approximation of level-set-based curve evolution
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corresponding to a broad class of evolution speeds which avoids the need to solve PDEs. With
our fast algorithm, we can obtain real-time performance while retaining excellent agreement
with PDE-based approaches on problems of practical engineering interest, such as the tracking
of deformable objects in video sequences.

The basic idea of the level-set method is to represent the curve implicitly as the zero level set
of a function defined over a regular grid, which is then evolved according to the specified speed
function. Two different approaches to evolving the zero-level set have been taken. The first
approach updates the level-set function globally over the entire grid. Perhaps the most well
known example in this category is the Chan–Vese (CV) image segmentation model [8], which
is associated with a particular choice of curve evolution speed function. The second approach
to efficient level-set updates focuses on the local evolution of the curve provided at
initialization, and only solves the level-set PDE around a narrow band in the neighborhood of
the zero level set to evolve the curve according to its speed [18]. When the zero level set comes
too close to the edge of the tube, both the tube and the level-set function generally have to be
reinitialized, which is typically done using the fast marching method [19]–[21]. The fast
algorithm that we propose in this paper falls into the category of narrow band methods.

Considerable research has been done with the aim of reducing the computational cost for both
types of level-set methods. Techniques to approximate and speed up the CV model and its
associated speed function include [22]–[26]. In the category of narrow-band level-set methods,
many efficient algorithms have also been developed, which we focus on next. In [27], the level-
set function is reinitialized by solving a Hamilton–Jacobi PDE for a fixed number of steps at
every iteration of the evolving level-set function. In the sparse-field algorithm proposed in
[28], the reinitialization is achieved by computing the signed distance function only
approximately. Recently, a hardware implementation [29] of this algorithm using a graphics
processor (GPU) is reported to achieve 10 to 15 times speed improvement over its software
implementation in the Insight Toolkit (ITK) software package [30]. For both methods, a
bandwidth of at least five pixels has to be selected to allow numerical evaluation of all the
required gradients.

In [12], the Hermes algorithm is also proposed to speed up the evolution of the level-set function
in a narrow band. In this algorithm, all points on the zero level set are sorted according to their
speed and the point with the highest magnitude is picked. The fast marching method is then
used to propagate the curve locally within a circular window centered at this point. This
algorithm achieves speedups similar to the sparse-field algorithm in [28].

In [31], a fast algorithm for the geodesic active contour model [5], [6] is proposed using the
additive operator splitting (AOS) scheme, which was first proposed in [32] and [33] and later
discovered independently and popularized by [34] in the image processing community. This
algorithm also restricts the computation in a narrow band and enables bigger time steps for the
level-set implementation of the geodesic model. The limitation of this algorithm is that it is
restricted to a specific model and it needs to maintain the level-set function as a signed distance
function, which is computationally expensive.

Compared with the original level-set method for curve evolution [1], narrow banding
techniques restrict the solution of the level-set PDE to a much smaller region than the whole
grid, and significantly speed up the curve evolution process. However, to maintain numerical
stability in the PDE solution process, small time steps must be chosen, the level-set function
must be reinitialized from time to time, and the narrow band must also be updated as the curve
evolves over time. In addition, many applications require the calculation of, e.g., level set
curvature, which is costly. Such factors make the computational cost of these narrow banding
algorithms still too high for real-time performance. To address these limitations, in this paper,
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we propose a novel segmentation algorithm that retains key advantages of the level-set
approach in a practical and highly efficient method. We start by using a novel element switching
mechanism between two linked lists to realize a general class of curve evolutions efficiently
with only integer operations. The two linked lists represent a narrow band of width one that
defines the evolving contour implicitly. Over this narrow band, we approximate the level-set
function with a limited set of integer values. In addition, we separate the evolution process into
two different cycles. In the first cycle we evolve the curve according to data-dependent terms,
while in the second cycle we introduce smoothness regularization. Motivated by the diffusion
generated curvature motion in [35]–[37], we implement the smoothness cycle by evolving the
curve according to a smoothing speed derived from a Gaussian filtering process. Using our
element-switching mechanism, we can replace real-valued and PDE-based calculations by
inexpensive integer-based ones coupled with simple sign checks to realize efficient curve
evolution in both of the cycles.

Thus, to achieve speed, we make certain approximations, reduce the domain of computation,
and are careful to focus on integer operations, yet, as we show, the approach is both applicable
to a broad class of problems of engineering interest and obtains results that are practically
desirable and in excellent agreement with the corresponding exact PDE-based solutions. The
integer-based nature of our algorithm is well matched for hardware implementation. As we
will demonstrate in our experiments, real-time performance can be achieved easily with our
algorithm. The approach is applicable to a broad range of evolution speeds that are composed
of a data term and a smoothness regularization term. Among fast algorithms [22]–[26] that
solve the CV model, our algorithm is most closely related to the work in [22] since both
algorithms separate the evolution process into two different cycles. However, the element
switching mechanism we use in both cycles to realize curve evolution is novel. Further, existing
fast algorithms solving the CV model update the level-set function over the whole grid, while
in our algorithm all computations are limited to a narrow band of width one. In addition, our
algorithm is not limited to a single specific speed function, being applicable to a broader class
of speeds that can be derived from both region-based and edge-based models.

Similar to the narrow band sparse field algorithm [28], we represent the evolving curve through
a narrow-banded linked list structure. However, our narrow band is only of width one, our
structure only requires a limited set of integer values, and we use the diffusion generated
curvature motion ideas from [35] and [36] to incorporate curve smoothing. Similar to the work
in [23], we will only use the sign of the level-set function to determine the location of the object
boundary; thus, the accuracy of our method is also at the pixel level. To achieve sub-pixel
accuracy, one can always use a solution with pixel level accuracy as initialization of a PDE-
based algorithm. Before proceeding, it is worth pointing out that real-time curve evolution
results have been reported in [38]–[41] for parametric contour representations, but these
methods are not level-set based and have difficulties in handling complicated topological
changes and 3-D surface evolution. Fast segmentation can also be achieved with efficient graph
cut techniques [42], [43], but they are not as flexible as level-set methods in controlling
geometric properties of the object boundary. Our goal in this paper is to reduce the computation
time of level-set-based curve evolution to achieve real-time results.

II. Analysis of Implicit Curve Evolution
In this section, we review and analyze the motion of an implicitly represented curve on a
discrete grid. Based on this analysis, we propose our strategy for the realization of level-set-
based curve evolution. Our analysis also applies to the evolution of implicitly represented
surfaces in ℝK (K ≥ 2), but we will use the 2-D terminology “curve” in our description for
simplicity.
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In the level-set method, a curve C is represented implicitly as the zero level set of a function
φ defined over a regular grid D of size M1 × M2 × · · · × MK. Without loss of generality, we
assume the grid is sampled uniformly and the sampling interval is one. The coordinates of a
point in the grid are given as x = (x1, x2, …, xK). We denote the set of grid points enclosed by
C as the object region Ω and the set of points D\Ω as the background region. For many image
analysis problems, the goal in using curve evolution is to classify each point in the grid into
either the object or the background region. With the level-set representation, this classification
is determined by the sign of φ.

Given the implicit representation, we can define the list of inside neighboring grid points Lin
and outside neighboring grid points Lout for the object region Ω as follows:

(1)

where  is a discrete neighborhood of x. Various choices of
discrete neighborhoods exist from the theory of digital topology [44], and the fast algorithm
we propose in this paper can be easily generalized to other discrete neighborhoods.

We illustrate in Fig. 1(a) an example of an implicitly represented curve and the two lists of
neighboring grid points for the region enclosed by the curve. For a fixed curve C, the definition
of φ can be arbitrary, but the two lists of neighboring grid points Lin and Lout are fixed once
we choose a definition of neighborhoods for the object and background region. Conversely,
given the two lists Lin and Lout, the location of the curve can be determined up to the accuracy
of the sampling grid as the boundary between the sets of pixels defined by Lin and Lout. This
motivates us to analyze the relation between the motion of this implicitly represented curve
and the two lists Lin and Lout.

Consider the following curve evolution equation:

(2)

which evolves the curve C according to the speed field F in the normal direction N⃗. In the
classical level-set method [1] this evolution is achieved by numerically solving the following
PDE on the regular grid

(3)

where φ is the level-set function. As the function φ evolves continuously, so does the implicitly
represented curve C. We illustrate in Fig. 1(b) the result of an evolution process of the curve
C shown in Fig. 1(a). At the location of grid point A, the curve moves outward as the value of
φ at point A changes from positive to negative. At the location of grid point B, the curve moves
inward and splits into two curves as the value of φ at point B changes from negative to positive.
This all happens nicely in the level-set method except that it is computationally intensive to
solve the PDE in (3) and difficult to meet real-time requirements. However, if we only care
about the object and background region on the discrete grid determined by the final location
of the curve C, the same result can be achieved easily if we use the relation between C and
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Lin and Lout. To move the curve outward at the grid point A, we just need to switch the grid
point A from Lout to Lin. Similarly, we only need to switch the grid point B from Lin to Lout to
move the curve inward. By applying such procedures to all points in Lin and Lout, we can move
C inward or outward one grid point everywhere along the curve with minimal computation.
By repeating the switching operations, we can achieve arbitrary object boundaries defined on
the sample grid. Note that this switching process always moves the curve at least one pixel,
while the exact level-set method generates sub-pixel movement. The pixel-based switching
process, while approximating the sub-pixel level-set-based curve evolution process, results in
the same classification for the object and background region. This observation forms the
foundation of our fast implementation, which combines grid-level switch-based evolution with
integer computation and level-set representation.

III. Fast Algorithm for Geometry Independent Speeds
In this section, we present a basic version of our fast algorithm for level-set-based curve
evolution to illustrate the main points. We assume the evolution speed is independent of the
geometric properties of the curve (i.e., depends only on the data term). Convergence results of
the algorithm for this simpler special case are presented.

A. Basic Algorithm
The basic elements of our representation and curve evolution scheme are presented here. The
data structure for our fast algorithm is quite simple and consists of:

• an integer array φ ̂ for the level-set function;

• an integer array F̂ for the speed function;

• two lists of grid points adjacent to the evolving curve C: Lin and Lout.

We call those grid points inside C but not in Lin interior points and those points outside C but
not in Lout exterior points. For faster computation, we choose the value of the level-set function
from a limited set of integers {−3, −1, 1, 3}. This function locally approximates the signed
distance function and is defined as follows:

(4)

Only the sign of the evolution speed F is used in our algorithm and we represent it as an integer-
valued array F̂ with values +1, 0 or −1. Since, in this section, we assume the speed is
independent of the geometric properties of the curve, our selection of an integer-valued level-
set function will not affect the accuracy in the evaluation of F. The two lists Lin and Lout are
bidirectionally linked such that insertion and deletion can be done easily.

Before we present the details of the basic algorithm, let us first define two basic procedures on
our data structure. The procedure switch_in() effectively moves the boundary outward by one
pixel. For a point x ∈ Lout, it is defined as follows.

The first step in the switch_in() procedure switches x from Lout to Lin. With x ∈ Lin now, all
its neighbors that were exterior points become neighboring grid points and are added to Lout
in the second step. By applying a switch_in() procedure to any point in Lout, the boundary is
moved outward by one grid point at that location.
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Similarly, the procedure switch_out() effectively moves the boundary inward by one pixel. For
a point x ∈ Lin, it is defined as follows.

By applying a switch_out() procedure to an inside neighboring grid point, we move the
boundary inward by one grid point at that location.

With the basic steps of moving neighboring grid points defined, we propose the basic version
of our fast algorithm. At every iteration, we first compute the speed at each point in Lout and
Lin and store the sign of the speed in the array F̂. After that, we scan through the two lists
sequentially to evolve the curve. More specifically, we first scan through the list Lout and apply
a switch_in() procedure at a point if F̂ > 0. This scan takes care of those parts of the curve with
positive speed and moves them outward by one grid point. After this scan, some of the points
in Lin become interior points due to the newly added inside neighboring grid points, so they
are deleted from Lin. We then scan through the list Lin and apply a switch_out() procedure for
a point with F̂ < 0. This scan moves those parts of the curve with negative speed inward by
one grid point. Similarly, points that have become exterior points are deleted from Lout after
this scan. After a scan through both lists, a stopping condition is checked. If it is satisfied, we
stop the evolution; otherwise, we continue this iterative process. In our implementation, the
following stopping condition is used.

The Stopping Condition—The curve evolution algorithm stops if either of the following
conditions is satisfied.

a. The speed at all the neighboring grid points satisfies

(5)

b. A prespecified maximum number of iterations is reached.

The first condition is from the convergence result of Theorem 1 which we present next. We
use the second condition as a simple way to avoid limiting pixel-level oscillation that is possible
in engineering practice due to the pixel-oriented nature of our evolution. This kind of limiting
oscillation is generally not important in most applications with a real-time requirement. The
final object boundary is always localized very accurately in our experience.

As a summary, the complete algorithm for our implementation is listed in Table I.

B. Convergence Analysis
Since our goal is to localize the object region in imaging applications, it is interesting to analyze
under what condition the above algorithm will converge to the true object region. We present
a theorem that ensures that the algorithm in Table I will localize the true object region on the
fixed grid with no error as long as certain conditions on the speed F̂ and the initial level-set
function φ ̂ are satisfied.

Let  denote a set of points in the grid D. Using the concepts from digital topology, we call
 a connected region if for any two points x and y in , there exist a sequence of points

xm(m = 0,1,…, M) in  such that x = x0, y = xM and xm ∈ N(xm+1), where N(·) is the discrete
neighborhood defined in Section II. Let the true object region Ω* in D be composed of P

connected regions , i.e., . The two lists of boundary grid points for
Ω* according to the definition in (1) are denoted as  and . We then define two
neighborhoods for Ω*. The interior neighborhood  is a set of points inside the object region
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that satisfies . Similarly, the exterior neighborhood  is a set of grid points
outside the object region that satisfies . For a level-set function φ ̂ defined
over D, the set of grid points inside its zero level set, i.e., with φ ̂ < 0, is denoted as Ω. The
symmetric difference between Ω and Ω* is denoted as π(Ω, Ω*). With this notation, we have
the following convergence result, whose proof is in the Appendix.

Theorem 1—Let the object region Ω* be composed of P connected regions 
and the background region D\Ω* be composed of Q connected regions . Assume
that the evolution speed satisfies: F̂ > 0 in  and F̂ < 0 in . At initialization, the level-set
function φ ̂ is chosen such that the region Ω inside its zero level set satisfies the following two
conditions: 1)  for all 1 ≤ p ≤ P, and  for all 1 ≤ q ≤ Q; 2)

, where Lin and Lout are the two boundary point lists of Ω.
Then the algorithm in Table I will converge to the true object region Ω* in a finite number of
iterations.

This theorem ensures that the algorithm in Table I will localize the true object region on the
fixed grid with no error as long as conditions on the speed F̂ and the initial level-set function
φ ̂ are satisfied. The condition on the speed F̂ in the interior and exterior region makes the union
of these two regions form an attraction region for the initial level-set function. There are two
conditions on the initial level-set function to guarantee convergence. The first condition
intuitively requires the region enclosed by the initial curve C to “touch” every object and
background region. The second condition essentially requires the initial curve to be in the
attraction region formed by the union of  and , so that it will be driven by the evolution
speed to localize the true object region. Note that there is no topological constraints on the
initial curve in Theorem 1 and topological changes are automatically taken care of in our
algorithm.

Theorem 1 also provides us with an estimate of the computational complexity of the algorithm
in Table I. If the speed field and the initial curve satisfy the condition in Theorem 1, we know
that either a switch_in or switch_out procedure will be applied to each point in the region π
(Ω*, Ω) once and only once as the initial curve converges to the true object boundary. Let 
denote the number of points in π(Ω, Ω*), and  denote the maximum number of operations
for a switch_in or switch_out procedure, the overall computational cost of the algorithm is then
O ( ).

To illustrate the improvement of our algorithm to previous PDE-based narrow band algorithms,
we compare results with the sparse-field algorithm proposed in [28], a very efficient narrow
band algorithm. An open source implementation of the sparse-field algorithm for imaging
applications is available in ITK [30], which facilitates comparison. Our aim is to compare to
a readily available standard that others can also reference to. Specialized implementations of
this or any algorithm can perform better than general purpose versions.

In [28], a simple example that shrinks a circle with constant speed was implemented with both
the global level-set method [1] and the sparse-field algorithm. Using the running times in
[28] for different domain sizes, we compute the speedup factor of the sparse-field algorithm
over the global level-set method and plot it as a function of the domain size in Fig. 2. We also
perform this calculation for our algorithm in Table I for a similar example. In particular, for a
domain of size M × M, we shrink a circle of radius M/3 with constant speed toward a ball of
radius M/12. The speed is chosen as 1 inside the small ball and −1 everywhere else. For the
global level-set method, we start with the real valued level-set function φ as the signed distance
function of the initial circle. Driven by the same speed field, both our fast algorithm and the
global level-set method successfully locate the small ball of interest. Since the speed field is
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very simple here, no reinitialization is necessary for the global level-set method. We have
plotted the speedup factor of our algorithm over the global level-set method in Fig. 2. We can
see that our algorithm has achieved significantly better speedups than the sparse-field algorithm
and the advantage of our algorithm grows as the domain size increases.

Compared with previous narrow band methods, there are several reasons that our algorithm is
computationally more efficient. First, our algorithm evolves the curve with no need of solving
PDEs, while the major advantages of the level-set method are kept, such as the automatic
handling of topological changes, and the generality of the numerical scheme for arbitrary
dimensions. Second, there is no step-size control or reinitialization of the level-set function in
our algorithm. This leads to faster convergence towards object boundaries with far fewer
iterations needed. Third, the size of our computational domain is smaller since we only perform
calculations on two lists of neighboring grid points. In addition, all our computations are on
integers and this further increases the efficiency of our algorithm.

IV. Fast Two-Cycle Algorithm With Smoothness Regularization
In this section, we propose a fast two-cycle (FTC) algorithm to extend the fast algorithm in
Table I to include curvature-dependent smoothness regularization. Here we assume the
evolution speed F can be viewed as composed of a data-dependent speed Fd, which is a function
of the image data and depends on up to the first order geometric properties of the curve (for
example, the normal vector) and a smoothness regularization speed Fint, which is typically
chosen proportional to the mean curvature, so that F = Fd + Fint. This assumption covers a
quite general class of variational curve evolution models of engineering interest. The addition
of curvature-based speeds poses some challenges. For efficiency, our proposed approach
approximates the level-set function in a narrow band using an integer valued array. Curvature
calculations performed directly on such discrete valued level-set functions are not good
reflections of the true curvature of the underlying curve and can lead to spurious results if used
directly [45]. Curvature calculations are possible through multistep approaches which basically
interpolate or smooth the approximate level-set function and subsequently calculate the
curvature [45]–[47]. However, such calculations remove us from the realm of integer
calculations and are computationally expensive, so we want to avoid them.

Instead, we propose a two-cycle algorithm to approximate the curve evolution process
according to the general speed F = Fd + Fint. In the first cycle, we evolve the curve using the
sign of the data-dependent speed Fd, which we denote as F̂d, using the algorithm in Table I. In
the second cycle, we introduce smoothness regularization by evolving the curve according to
a smoothing speed F̂int derived from a simple Gaussian filtering process. This second cycles
approximates curvature-based evolution, but avoids the need for expensive computations. One
can view this as applying an approximation F̂int to Fint. These two cycles are then repeated to
evolve the curve towards the object boundary.

The idea of using convolution operations to generate mean curvature motion was originally
proposed by Merriman, Bence, and Osher (MBO) in their work on diffusion generated mean
curvature motion [35], [36]. Let the indication function of the region Ω inside the curve C be
χΩ, then the MBO algorithm for mean curvature motion is as follows.

1. Initialize χ(x, 0) = χΩ(x).

2. Apply heat diffusion to χ for some time T by solving
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3. “Sharpen” the diffused function χ by setting

The above steps are then repeated to continue the curvature evolution process. The heat
diffusion process in step 2 of the MBO algorithm is equivalent to convolving the region
indication function χ with a Gaussian filter. In 2-D, the Gaussian filter is of the form

(6)

where the variance σ2 = 2T. As the diffusion time T goes to zero the motion generated by the
above “diffusion + thresholding” process converges to the true motion by mean curvature
[48]–[51].

Motivated by the MBO algorithm, we propose to evolve the curve according to a smoothing
speed F̂int to introduce curvature-dependent smoothing regularization. This smoothing speed
is defined as follows for all the boundary points in Lout:

(7)

where H is the Heaviside function and H(−φ ̂) = χ, which is the indication function of the object
region enclosed by the zero level set of φ ̂, and ⊗ is the convolution operation. Since χ(x) = 0
for a point x ∈ Lout, it will be a member of the object region if the result of the convolution is
greater than 1/2. Thus, we define its speed as +1 so that a switch_in procedure will be applied
to it as we evolve the curve with F̂int. Otherwise, if the convolution result is less than or equal
to 1/2, the point x will remain outside the object region; thus, we define the speed F̂int = 0.
Following the same principle, the speed F̂int at all the boundary points in Lin is defined as
follows:

(8)

Once the smoothing speed F̂int is computed, we can then apply the same algorithm in Table I
to realize the evolution of the curve according to the smoothness regularization. Note that there
is a difference between our smoothing cycle and the MBO algorithm. In the MBO algorithm,
the diffusion process is solved over the whole grid and the distance each point on the curve
moves after one iteration is dependent on the curvature at that point, so it may move across
multiple grid points. In our smoothing cycle, all operations are performed only on the two
boundary point lists and the curve can at most move by one grid point. Even though the distance
the curve moves in our algorithm may differ from the MBO algorithm, the direction of the
motion is the same, so our motion still introduces smoothness regularization.

The Gaussian filter G makes the smoothness regularization process dependent on the curvature
of the underlying curve C. To resolve the mean curvature motion on a discretized grid with
diffusion, it was pointed out in [36] that we need to choose the grid interval Δx ≪|κ|T, where
κ is the curvature, such that the curve will move at least one grid point after one iteration of
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the MBO algorithm. However, we usually cannot afford to choose an infinitesimal grid interval
due to computational resource constraints. For a fixed grid, then, the diffusion time (i.e., the
width of the Gaussian kernel) will decide to what extent we can resolve the curvature motion.
If both the Gaussian kernel and grid interval are fixed, only those parts of the curve with
curvature |κ| > Δx/T will be moved after one iteration of the MBO algorithm. Once we fix the
grid resolution in our two-cycle algorithm, the width of the Gaussian filter G will then control
the smoothness by smoothing out corners or concavities on the object boundary with their
curvature above a certain magnitude. As we increase the width of G, more corners or
concavities will be eliminated and the final shape becomes smoother. As an extreme, the whole
shape will disappear as the width of the Gaussian filter tends to infinity. This is because in this
case the smoothing speed F̂int(x) = 0 for all x ∈ Lout and F̂int (x) = −1 for all x ∈ Lin according
to the definition in (7) and (8). Thus, the width of the Gaussian filter should be proportional to
the scale of the structure we want to keep on the final object boundary.

To maintain efficiency in our numerical implementation of the smoothing cycle, we
approximate the Gaussian filter G of variance σ2 with an array of size Ng × ··· × Ng. This will
not change the curvature-dependent property of the evolution in our smoothing cycle since, as
pointed out in [35] and proved in [52], any positive, and radially symmetric kernel can be used
to replace the Gaussian filter to convolve with the indicator function and generate mean
curvature motion. Further, because the result of the filtering process is used only for a
thresholding process, we can implement it with integer operations after scaling both the filter
coefficients and the threshold. As a consequence, the entire smoothing cycle can be performed
with integer operations.

As a demonstration of the smoothing cycle, we show in Fig. 3 the evolution of a synthetic
shape with the speed F̂int using only the smoothing cycle of our two-cycle algorithm. This
shape is formed by adding a small circle protrusion to a big circle. The Gaussian filter is of
size 9×9 with σ = 3. As we can see from Fig. 3, only those parts close to the small circle move
during the evolution process, while the rest of the big circle stays static. This type of curvature
thresholded smoothing evolution is consistent with our previous analysis.

Note that this smoothing behavior, arising from approximations performed for computational
efficiency, is different than what one obtains from standard level-set-based curvature motion
(which, for example, would eventually eliminate both circles). However, we may argue that
this thresholded type of smoothing regularization is actually more desirable in many practical
image processing applications because it only eliminates small structures with high curvature
while leaving coarse scale structures intact.

Finally, we can obtain our overall algorithm by combining the curve evolution driven by the
two speeds F̂d and F̂int. Our overall fast two-cycle (FTC) algorithm is given in Table II. In the
first cycle, we evolve the curve with F̂d for Na iterations, and then in the second cycle, we
introduce smoothness regularization by evolving the curve according to F̂int for Ns iterations.
The strength of smoothness regularization is controlled by the Gaussian filter G and the number
of iterations Na and Ns for each cycle. The relation between Na and Ns is easy to understand.
The bigger Ns is relative to Na, the stronger the regularization. Overall, since each cycle of the
two-cycle algorithm is simply an application of the algorithm in Table I to the speeds F̂d and
F̂int, the two-cycle algorithm maintains the same level of computational efficiency as the
algorithm in Table I. In particular, all computations in our two-cycle algorithm are on integers
and evolution involves simple list updates. As already pointed out, the price for this efficiency
is pixel-level accuracy and approximate curvature-based motion. Even so, excellent agreement
can be obtained with PDE-based level-set algorithms for problems of practical interest.
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V. Experimental Results
In this section, we present experimental results from image segmentation and real-time video
tracking problems to demonstrate the practical utility and performance of our FTC algorithm.
For the problem of image segmentation, we first compare the FTC algorithm with the PDE-
based narrow band algorithm in ITK [30] in Section V-A. We consider both edge-based and
region-based level set-based segmentation approaches to demonstrate the flexibility of our
approach. Robustness of the FTC algorithm with respect to perturbations of parameters is then
discussed in Section V-B. After that, we demonstrate in Section V-C the application of the
FTC algorithm in real-time video tracking. All experiments in this section were run on a 1.6-
GHz Intel PC.

A. Image Segmentation
In our image segmentation experiments, we compare the FTC algorithm with the PDE-based
narrow band algorithm in ITK [30], described earlier. We have chosen evolution speeds in this
section that are implemented in ITK because they are openly available and, thus, can be used
as references by other researchers. Even though these speeds are fairly simple in terms of
segmentation, they serve well in measuring the computational efficiency of level-set-based
curve evolution algorithms. Table III collects the parameters of the FTC algorithm for all the
experimental results shown in this section. Quantitatively, we use a popular measure called the
Dice coefficient [53]-[56] to compare the final segmentation results obtained by the two
methods. Given two segmented object regions Ω1 and Ω2 from two different algorithms, the
Dice coefficient is defined as

(9)

The Dice coefficient varies from 0 to 1 and it measures the degree of agreement between the
two segmented regions. It is 1 when the two regions are identical and 0 when they are
completely different.

First, we consider an edge-based segmentation problem based on the geodesic active contour
model. The curve evolution equation of the geodesic active contour model is

(10)

where f is the image to be segmented, g is an edge potential function, and c is a balloon force
[5]. To approximate the geodesic model using our FTC approach, we define Fd = g(f)c − (∇g
· N⃗) in our two-cycle algorithm. We use the second, smoothing cycle of our algorithm to capture
the remaining, curvature-based term κN⃗. Specific parameters are given in Table III. The same
edge potential function as described in the manual of ITK [30] is used for both our algorithm
and ITK.

In Fig. 4, we present the segmentation results of a plane image with our algorithm and ITK.
We can see that the final segmentation results with our FTC method and the ITK method show
excellent qualitative agreement. The numerical measure dv in Table IV confirms this. With our
FTC method, a speedup factor of approximately 100 is obtained, as shown in Table IV. For a
more detailed analysis of the various factors contributing to the efficiency of the FTC algorithm,
we compute at each iteration of the FTC algorithm and ITK the Dice coefficient between the
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current segmentation and the final segmentation result of the ITK algorithm in Fig. 4(c). As
shown in Fig. 5, the FTC algorithm converges in less than 200 iterations, while ITK needs
almost 800 iterations to reach the final segmentation. This demonstrates our algorithm is able
to achieve faster convergence than the PDE-based method in ITK. Because overall a speedup
factor of 106 is achieved, it also shows in this case the computational cost per iteration in the
FTC algorithm is around 25 times lower than ITK.

Next, we consider a region-based segmentation problem. We use an intensity-threshold-based
data term for simplicity. The curve evolution equation for the threshold-based speed is as
follows:

(11)

where is Fd the data-dependent speed defined as

(12)

Here, f denotes the image to be segmented, and [I1, I2] is the range of intensities for the region
to be segmented. To approximate this evolution using our FTC approach we use Fd in (12) in
the first cycle and use the second smoothing cycle to capture the curvature-based component
of the speed κN⃗.

The image to be segmented is a simulated 3-D MRI brain image from the BrainWeb [57] as
shown in Fig. 6(a). The size of the image is 181 × 217 × 181. In Fig. 6(b) and (c), we show the
segmentation results from our FTC algorithm and ITK. The intensity range used is [I1, I2] =
[120, 160] and the regularization parameter for ITK is λ = 0.75. Parameters for our FTC method
are given in Table III.

In this example, we again obtain excellent qualitative agreement between the results obtained
with our FTC method and the PDE-based ITK method. The numerical measure dv in Table IV
confirms this agreement. A speedup of around two orders of magnitude is also obtained as
illustrated in Table IV.

B. Robustness of the FTC Algorithm
In this section, we demonstrate the robustness of the FTC algorithm with respect to
regularization parameters. Overall, there are four parameters controlling the result: Ng, σ, Na,
and Ns. The parameters Ng and σ decide the approximated Gaussian filter G and control how
much smoothness regularization is imposed in each iteration. The parameters Na and Ns control
the relative weight between evolution using the data-dependent speed F̂d and the smoothing
speed F̂int. In the following experiments, we test the sensitivity of the FTC algorithm by
applying different sets of parameters to the segmentation of the plane image in Fig. 4.

In our experiments, we first perturb the parameter Na while fixing the other three parameters
Ns, Ng, and σ. Three different values of Na are used as listed in the first three rows of Table V.
For each set of parameters, the time to perform the segmentation and the Dice coefficient
between the FTC result and the ITK segmentation shown in Fig. 4(c) are listed in Table V. The
results show that less time is used with the increase of Na as a reduced number of smoothing
iterations are applied. We can also see from the Dice coefficients that the segmentation results
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do not have significant changes and are very robust to perturbations of Na. Similar to the results
in Fig. 5, we also compute the Dice coefficient at each iteration with respect to the segmentation
result of ITK. The maximal difference of the Dice coefficient at each iteration is less than 0.001
for the three different values of Na used, which shows that the convergence process of the FTC
algorithm is also fairly robust to perturbations of Na.

We next fix the parameter Na as in Table III and apply the FTC algorithm with three sets of
parameters for Ns, Ng and σ with increasing smoothness regularization as listed in the last three
rows of Table V. Not surprisingly, with the increase of Ns, Ng and σ, the computational cost
in evaluating the smoothing speed F̂int will increase and this affects the overall computation
time of the FTC algorithm as listed in Table V. As more smoothness regularization is
incorporated, more details are removed from the final segmentation and this is reflected in the
corresponding Dice coefficients in Table V.

In summary, the above experiments demonstrate the impact of regularization parameters on
the performance of the FTC algorithm in terms of its execution time and segmentation result.
These results suggest that the FTC algorithm is quite stable with respect to the perturbation of
parameters.

C. Real-Time Video Tracking
The application of the level-set method for video tracking has attracted significant interest and
much work has been done in this direction, such as [7] and [12]–[17], but it is difficult to
achieve real-time video-based performance with PDE-based approaches. In this section, we
will demonstrate how our FTC method can perform such tasks by implementing a region-based
video tracking system.

For simplicity, we assume there is an object region Ωobj and a background region Ωbg in the
scene, but extension to the tracking of multiple objects is straightforward [58]. The data-
dependent speed Fd used in our FTC tracking system is based on the region competition model
[59] and is defined as follows:

(13)

where v is a feature vector used for tracking (for example the intensity difference with respect
to a reference frame or the color vector [60]–[63]), and p(v|Ωobj)and p(v|Ωbg) are the probability
distribution of this feature vector for the object and background region. Since the purpose here
is to demonstrate real-time performance for level-set-based video tracking, we use a simple
tracking strategy with the tracking results from the previous frame providing the initial curve
for the current frame. The parameters of our FTC algorithm used in the tracking examples
below are listed in Table VI. Again, our aim here is not to design or demonstrate the best
tracking strategy, but to demonstrate that level-set-based tracking strategies of engineering
interest can be efficiently implemented with our FTC method.

First, we will perform some offline analysis to demonstrate how the computational
requirements of typical tracking problems relate to the constraints of typical video sensors. To
start, in Fig. 7, we show tracking results for the Hall monitor test sequence. The underlying
video is in CIF format. The absolute intensity difference with respect to a reference frame is
used as the feature and a Gaussian distribution is assumed for the feature of both the object
and background region. For the tracking of the object region, the mean and standard deviation
used in the Gaussian distribution are 50 and 25, and for the background region, the Gaussian
distribution has mean 6 and standard deviation 3. The person is successfully tracked from frame
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41 to 65. The tracking time for each frame may vary due to the difference of interframe motions.
For this sequence, the maximum time used by the FTC algorithm for a frame is 0.0049 s.
Overall, the average time needed by the FTC algorithm to perform tracking is 0.0044s/frame,
which corresponds to a tracking rate of 227 frames/s.

For a second offline example, we show the tracking results of 65 frames from the SIF format
Tennis test sequence. The feature vector used here consists of the Y and V components of the
YUV color at each pixel. A 32 × 32 histogram is estimated at initialization to approximate the
feature distribution used in (13). This is done for both the object and background region
separately. As shown in Fig. 8, the player is successfully tracked as he moves into the scene.
Note that the background also changes over time. For this sequence, the maximum time used
by the FTC algorithm for the tracking of a frame is 0.0048 s and the average tracking time is
0.0022 s/frame, corresponding to a tracking rate of 464 frames/s.

From the offline examples shown above, we can see that our FTC algorithm is able to track
objects in video sequences at a rate much higher than real-time on a regular PC. As we have
shown, PDE-based level-set algorithms are typically two orders of magnitude slower than our
FTC algorithm, making them unsuitable for real-time video use. For practical tracking systems,
the FTC algorithm might be even more desirable since only a small faction of CPU time can
be allocated for tracking. As a demonstration, we have implemented a real-time tracking system
using Matlab on our PC. We use the image acquisition toolbox in Matlab to capture the current
frame of video in CIF format from an inexpensive USB-based camera, then this data is sent to
our tracking algorithm implemented in C++. Once the tracking result is available, it is sent
back to Matlab for display along with the video frame. Then the next frame from the video
camera is captured to continue the tracking process. In our nonoptimized implementation most
of the time is spent in getting frames in and out of Matlab, yet even here the system runs
comfortably at more than 20 frames per second. In Fig. 9, we show an example of the tracking
results from our system where two moving hands are tracked based on color. Various
topological changes are handled automatically during the tracking process, demonstrating the
advantages of the level-set framework on which our FTC algorithm is based.

VI. Conclusion
In this paper, we have proposed a fast two-cycle algorithm for the approximation of level-set-
based curve evolution. The computational core of our algorithm is a novel element switching
mechanism between two linked lists that realizes implicit curve evolution using only integer
operations. This results in computational efficiency, yet excellent agreement with PDE-based
implementations. By design, the approach is applicable to a very broad class of speeds,
including speeds derived from both region-based and edge-based models, that can be viewed
as composed of a data-dependent term and a smoothness regularization term. Considerable
speedups have been demonstrated as compared to PDE-based narrow band level-set
implementations. With our algorithm, real-time level-set-based video tracking can be realized.
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Appendix
The proof of Theorem 1 is as follows.

Proof

At initialization, let  with . These sets are fixed once defined
and will not change as Ω evolves over time. Let  be the inside neighboring grid point list of
Ωa. Because at initialization , we have . Since

, we also have . During the evolution process, no
switch_out operation can be applied to  because its speed F̂(xk) > 0, which ensures
that Ωa ⊆ Ω as Ω is updated with our alogrithm and, thus, .

Assume Ω* ∩ (D\Ω) ≠ ∅ at initialization, then . Because  is a connected
region and  that is connected to x, so we can find a sequence of points x1 =
x, x2, …, xK = y in  such that xk ∈ N(xk −1). Since x1 ∈ (D\Ω) and xK ∈ Ω, there must exist
a point xk ∈ Lout in this sequence. Since its speed F̂(xk) > 0, a switch_in operation will be
applied to it, so xk will become inside Ω after one iteration. This shows the set Ω* ∩ (D\Ω)will
lose at least one point at each iteration if the set is nonempty. Because this is a finite set, it will
converge to an empty set after a finite number of iterations.

Following similar arguments, we can also show Ω ∩ (D\Ω)will converge to an empty set after
a finite number of steps. This completes the proof of Theorem 1.
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Fig. 1.
(a) Implicit representation of a curve C in the level-set method. Two lists of neighboring grid
points Lin and Lout can be defined uniquely on this grid. (b) Motion of the implicitly represented
curve can be achieved by switching points between Lin and Lout.
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Fig. 2.
Comparison of the speedup factor to the global level-set method between our algorithm in
Table I and the sparse-field algorithm versus problem size.
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Fig. 3.
Evolution process of a shape with the smoothing cycle of our two-cycle algorithm. The
Gaussian filter is of size 9×9 with σ = 3. (a) Initial object region; (b)–(d) shows the object
region at iteration 18, 36, and 54.
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Fig. 4.
Edge-based segmentation of a plane image. (a) Initial curve as a white circle plotted over the
original image. (b) Segmentation results from our FTC algorithm. (c) Segmentation results
from ITK.
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Fig. 5.
Comparison of the convergence speed between the FTC algorithm and ITK.
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Fig. 6.
Segmentation of a 3-D MRI brain image. (a) Snapshot of the 3-D image on three orthogonal
slices. (b) Segmented surface from our FTC algorithm. (c) Segmented surface from ITK.
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Fig. 7.
Hall sequence tracking results. Frame 41, 49, 57, and 65 are shown.
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Fig. 8.
Tennis sequence tracking results. Frame 1, 38, 45, and 65 are shown.
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Fig. 9.
Hand tracking results. Frames 1, 40, 81, 130, 150, and 200 of a sequence are shown.
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TABLE I

Basic Fast Algorithm for Geometry Independent Speeds

• Step 1: Initialize arrays φ ̂ and F̂, and the lists Lout and Lin.

• Step 2: Compute speed F for all points in Lout and Lin and store sign in F̂.

• Step 3: Scan through the two lists Lout and Lin and update:

– Outward evolution. Scan through Lout. For each point x ∈ Lout, switch_in(x) if F̂(x) > 0.

– Eliminate redundant points in Lin. Scan through Lin. For each point x ∈ Lin, if ∀y ∈ N(x), φ ̂(y) < 0, delete x from Lin,
and set φ ̂(x) = −3.

– Inward evolution. Scan through Lin. For each point x ∈ Lin, switch_out(x) if F̂(x) < 0.

– Eliminate redundant points in Lout. Scan through Lout. For each point x ∈ Lout, if ∀y ∈ N(x), φ ̂(y) > 0, delete x from
Lout, and set φ ̂(x) = 3.

• Step 4: If the stopping condition is not satisfied, go to Step 2.
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TABLE II

Fast Two-Cycle (FTC) Algorithm

• Step 1: Initialize arrays φ ̂, F̂d, F̂int, and lists Lout and Lin.

• Step 2 (cycle one: data dependent evolution):

For i=1:Na do

– Compute the data dependent speed Fd for each point in Lout and Lin and store its sign in F̂d.

– Outward evolution. For each point x ∈ Lout, switch_in(x) if F̂d(x) > 0.

– Eliminate redundant points in Lin. For each point x ∈ Lin, if ∀y ∈ N(x), φ ̂(y) < 0, delete x from Lin, and set φ ̂(x) = −3.

– Inward evolution. For each point x ∈ Lin, switch_ out(x) if F̂d(x) < 0.

– Eliminate redundant points in Lout. For each point x ∈ Lout, if ∀y ∈ N(x), φ ̂(y) > 0, delete x from Lout, and set φ ̂ (x) =
3.

– Check the stopping condition. If it is satisfied, go to Step 3; otherwise continue this cycle.

• Step 3 (cycle two: smoothing via Gaussian filtering):

For i=1:Ns do

– Compute the smoothing speed F̂int for each point in Lout and Lin.

– Outward evolution. For each point x ∈ Lout, switch_in(x) if F̂int(x) > 0.

– Eliminate redundant points in Lin. For each point x ∈ Lin, if ∀y ∈ N(x), φ ̂(y) < 0, delete x from Lin, and set φ ̂(x) = −3.

– Inward evolution. For each point x ∈ Lin, switch_out(x) if F̂int (x) < 0.

– Eliminate redundant points in Lout. For each point x ∈ Lout, if ∀y ∈ N(x), φ ̂(y) > 0, delete x from Lout, and set φ ̂(x) = 3.

• Step 4: If stopping condition not satisfied in cycle one, go to Step 2.
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TABLE IV

Comparison Of Segmentation Results

Image FTC Time ITK Time SF dv

Plane 0.0249s 2.629s 106 0.983

MRI brain 4.407s 723.641s 164 0.956

SF: speed up factor of our FTC algorithm with respect to ITK.

IEEE Trans Image Process. Author manuscript; available in PMC 2010 November 2.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shi and Karl Page 33

TA
B

LE
 V

Im
pa

ct
 o

f P
ar

am
et

er
s i

n 
th

e 
FT

C
 A

lg
or

ith
m

 o
n 

th
e 

Se
gm

en
ta

tio
n 

of
 th

e 
Pl

an
e 

Im
ag

e

N
a

N
s

N
g

σ
T

im
e

d v

20
3

3
1.

0
0.

02
75

s
0.

98
3

30
3

3
1.

0
0.

02
49

s
0.

98
3

40
3

3
1.

0
0.

02
34

s
0.

98
3

30
6

3
1.

0
0.

02
99

s
0.

98
3

30
5

5
2.

0
0.

03
51

s
0.

96
8

30
10

5
2.

0
0.

05
15

s
0.

95
6

IEEE Trans Image Process. Author manuscript; available in PMC 2010 November 2.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shi and Karl Page 34

TA
B

LE
 V

I

Pa
ra

m
et

er
s o

f O
ur

 F
TC

 A
lg

or
ith

m
 U

se
d 

in
 V

id
eo

 T
ra

ck
in

g

V
id

eo
N

a
N

s
N

g
σ

m
ax

 it
er

H
al

l m
on

ito
r

12
3

7
2

20

Te
nn

is
12

3
5

2
40

H
an

ds
10

5
5

2
50

IEEE Trans Image Process. Author manuscript; available in PMC 2010 November 2.


