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Abstract
Neuropeptide S (NPS) is known to produce anxiolytic-like effects and facilitate extinction of
conditioned fear. Catecholaminergic neurotransmission in the medial prefrontal cortex (mPFC)
has been suggested to be crucially involved in these brain functions. In the current study we
investigated the effect of NPS on the release of dopamine and serotonin in the mPFC by in vivo
microdialysis in rats. Central administration of NPS dose-dependently enhanced extracellular
levels of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), with
maximal effects lasting up to 120 min. In contrast, no effect on serotonergic neurotransmission
was detected. Dopamine release in the mPFC has been previously linked to modulation of anxiety
states and fear extinction. The present results may thus provide a physiological and anatomical
basis for the reported effects of NPS on these behaviors.
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Introduction
The medial prefrontal cortex (mPFC) is a major integrating structure of emotion-related
learning and memory. Extensive evidence shows that the mPFC plays an important role in
extinction of fear memory that requires plasticity in the mPFC (Morgan and LeDoux, 1995;
Quirk et al., 2000). Lesions or inhibition of protein synthesis in the mPFC result in impaired
retention of fear extinction (Morgan et al., 1993; Morgan and LeDoux, 1995; Quirk et al.,
2000; Santini et al., 2004). Conversely, mPFC stimulation reduces conditioned fear and
stimulation of the mediodorsal thalamic inputs to the mPFC is associated with extinction
maintenance (Herry and Garcia, 2002, 2003). Furthermore, electrophysiological recording
studies indicate that the ventromedial PFC neurons respond to a tone conditioned stimulus
only during a delayed test of extinction, rather than fear acquisition (Milad and Quirk,
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2002). Moreover, increased tone responsiveness in the prelimbic cortex has been correlated
with failure to recall extinction (Burgos-Robles et al., 2009). Recently, extinction learning
studies in humans using brain imaging were also suggestive of a role for the PFC in fear
inhibition (Oschner et al., 2002; Phelps et al., 2004). Patients with posttraumatic stress
disorder (PTSD) showed reduced mPFC activity during exposure to traumatic pictures and
sounds (Bremner et al., 1999).

Catecholamine neurotransmitters in the mPFC are prominently involved in the regulation of
anxiety-like behaviors and emotional memory. Within the mPFC, cognitive and emotional
processes are strongly modulated by dopaminergic neurotransmission (Pezze et al., 2003;
Laviolette et al., 2005; Lauzon et al., 2009). Prefrontal serotonin (5-HT) has been suggested
to play an important role in the regulation of anxiety and stress (Pum et al., 2009; Savitz et
al., 2009; Maki, 2001).

Neuropeptide S (NPS) is a recently identified peptide transmitter in the brain (Xu et al.,
2004) that appears to modulate emotional and cognitive functions. Previous studies
indicated that central administration of NPS reduces stress related anxiety behavior in mice
(Xu et al, 2004; Okamura and Reinscheid, 2007; Leonard et al., 2008; Rizzi et al., 2008)
while NPSR knockout mice display increased anxiety-like behaviors when compared to their
wildtype littermates (Duangdao et al., 2009). Consistent with these results, intra-amygdala
administration of NPS produces anxiolytic effects (Jüngling et al., 2008), blocks the
expression of conditioned fear (Fendt et al., 2010), and facilitates extinction of conditioned
fear responses (Jüngling et al., 2008), while animals treated with SHA 68, a selective NPSR
antagonist (Okamura et al., 2008), showed anxiety-like behavior and attenuated fear
extinction (Jüngling et al., 2008). Also, SHA 68 has been reported to antagonize NPS-
induced anxiolytic effects (Ruzza et al., 2010). Additionally, local injections of NPS in the
endopiriform nucleus attenuated expression of contextual fear (Meis et al., 2008). To date,
however, the cellular mechanisms and substrates through which NPS modulates emotional
responses and fear memory remain unclear.

In rat, NPS precursor mRNA is expressed discretely in a few brainstem areas (Xu et al.,
2007). Particularly strong expression of NPS precursor mRNA is detected in a previously
uncharacterized nucleus ventromedial to the noradrenergic locus coeruleus (LC), an
important neural center for anxiety, stress, and arousal, but LC function has also been
implicated in attention and learning and memory (Aston-Jones, 2005; Weiss et al., 1994;
Tanaka et al., 2000). In contrast to the restricted distribution of NPS-producing neurons,
NPSR mRNA is widely expressed throughout the brain, including cortex, thalamus,
subiculum, multiple hypothalamic nuclei, amygdala, ventral tegmental area and olfactory
nuclei (Xu et al., 2007). NPSR transcripts are, however, not detected in the mPFC, but
multiple in- and output regions of the mPFC express NPSR mRNA, including subiculum,
medial and cortical amygdaloid nuclei, paraventricular hypothalamic nucleus, posterior,
dorsomedial and lateral hypothalamic area.

We speculated that the mPFC might be involved in the mechanisms by which NPS regulates
anxiety-like behaviors and fear memory. Therefore, the aim of the present study was to
determine whether NPS could affect release of dopamine and 5-HT in the mPFC in vivo.
Indeed, a recent study reported NPS-dependent inhibition of 5-HT and noradrenaline release
from synaptosomes isolated from mouse frontal cortex tissue (Raiteri et al., 2009). We used
microdialysis followed by high-performance liquid chromatography (HPLC) with
electrochemical detection to analyze NPS-induced changes in extracellular dopamine and
serotonin, including their metabolites.
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Materials and Methods
Chemicals

All chemicals were of analytical grade or higher quality. NPS was synthesized by the
Peptide Proteomic Centre, Brain Research Centre, University of British Columbia
(Vancouver, BC, Canada) or Bachem (Torrance, CA) and stock solutions were dissolved in
water.

Animals
Male Sprague-Dawley rats (Charles River, Wilmington, MA), weighing ~300 g, were used
for in vivo microdialysis experiments. Animals were kept in a temperature and humidity
controlled animal care facility on a 12-hour light/dark cycle (lights on at 7 AM (DOPAC/5-
HIAA experiments) and 6 AM (dopamine and 5-HT experiments) with water and chow
freely available. Animals had a minimum of 1 week adaptation in the animal care facility
before experimental procedures. All animal care and experiments were according to the NIH
Animal Care Guidelines and all experimental methods were approved by the NIAAA
Animal Care and Use Committee or the local Institutional Animal Care and Use Committee
of the University of California Irvine.

Microdialysis
Experiments for dopamine and 5-HT release were performed as previously described
(Bonaventure et al., 2007) using dual guide cannulation (Eicom, Kyoto, Japan) with one
cannula (used for dialysis) in the prefrontal cortex and the other cannula (used for injections)
in the lateral ventricle (incisor bar, −3.5 mm; PFC: +3.2 mm anterior, 0.8 mm lateral and 1
mm ventral to bregma, LV: −1.08 mm posterior, 4.0 mm lateral, 2.2 mm ventral at an angle
of 28.8° to bregma) (Paxinos and Watson, 1997). Animals received a single
intracerebroventricular (i.c.v.) injection of NPS at 10, 1, 0.1 nmol or saline. Samples were
collected every 15 minutes into a 96-well plate (Sarstedt, 96 well multiply PCR) maintained
at 4°C containing 3.75 μl of stabilizer (0.1 M acetic acid, 1 mM oxalic acid and 3 mM L-
cysteine in sterile water). Dialysis experiments were conducted between 8:00 AM and 2:00
PM in a controlled environment with the animals remaining in their home cage throughout
experimentation. Dialysis probes (Eicom, 4 mm active membrane length) were perfused
with artificial cerebrospinal fluid at a flow rate of 1 μl/min as described (Bonaventure et al.,
2007) and implanted the afternoon prior to sample collection.

Experiments for DOPAC and 5-HIAA detection were performed as follows: On the surgery
day, rats were anesthetized with ketamine (100 mg/kg, Phoenix Pharmaceuticals, St. Joseph,
MO) and xylazine (10 mg/kg, Lloyd Laboratories, Shenandoah, IA) and placed in a
stereotaxic frame. Holes were drilled in the skull for implantation of microdialysis guide
cannula (CMA/Microdialysis AB, North Chelmsford, MA) and a second cannula (Plastics
One, Roanoke, VA) for NPS injection. The guide cannula was stereotaxically implanted into
the brain to position the microdialysis probe tip in the medial prefrontal cortex (coordinates:
3.2 mm anterior to bregma; 0.8 mm lateral; 2.0 mm ventral to dura). The cannula for i.c.v.
injection was implanted into the lateral ventricle (coordinates: 0.9 mm posterior to bregma;
1.4 mm lateral; 3.3 mm ventral to dura). After surgery, animals were allowed to recover for
2 days before microdialysis. Rats were slightly anesthetized with isoflurane (Sigma, St.
Louis, MO) and the microdialysis probe (CMA 11 MD probe with membrane length 4 mm)
was inserted into the guide cannula. Rats were allowed to move freely in the chamber during
microdialysis. To collect dialysate for 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-
hydroxyindoleacetic acid (5-HIAA) detection, the probes were perfused with artificial
cerebrospinal fluid (aCSF; 125 mM NaCl, 2.5 mM KCl, 0.5 mM NaH2PO4, 5 mM
Na2HPO4, 1 mM MgCl2 * 6 H2O, 1.2 mM CaCl2 * 2 H2O, 20 mM ascorbic acid) at a flow
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rate of 2 μl/min during the experiment. Samples were collected into vials (Sigma, 250 μl
polypropylene insert) at 4°C every 20 minutes over 3 hours before and 4 hours after NPS (1
nmol) or saline i.c.v. administration. Sample tubes contained 1 μl of stabilizer (0.1 mM
perchloric acid, 0.4 mM Na2S2O5) to protect the dialysate from oxidative degradation.

After all samples were collected, 0.1 nmol angiotensin II was i.c.v. injected and animals
were expected to show immediate water intake, which indicated that the cannula was
implanted correctly to target the lateral ventricle. Methyleneblue was injected into the guide
cannula to test for correct positioning of the microdialysis probe. Rats were euthanized and
brains were removed and sectioned to confirm cannula positioning. Animals with misplaced
microdialysis probes or i.c.v. cannula were excluded from data analysis.

HPLC analysis
Dialysis samples were analyzed for dopamine and 5-HT by HPLC coupled with
electrochemical detection (Eicom, San Diego, CA) as previously described (Bonaventure et
al., 2007). Dialysis samples for DOPAC and 5-HIAA detection were analyzed by HPLC
with electrochemical detection (Coularray System; ESA, Chelmsford, MA). Using an
autosampler, 20μl of the dialysate were injected and loaded onto a C18 reversed-phase
column (ESA HPLC column MD150 × 2 mm). Catecholamines and their metabolites were
separated by isocratic elution with MD-TM mobile phase (ESA; 75 mM NaH2PO4, 1.7 mM
1-octanesulfonic acid sodium salt, 100μl/L triethylamine, 25μM EDTA, 10% acetonitrile,
pH 3.0) followed by electrochemical detection (detector electrode at 120 mV). A series of
catecholamine calibration standards were run under the same conditions before and after
each set of microdialysis samples. Peak retention times were used to identify individual
compounds and peak area served as a quantitative measure.

Statistical analysis
Peak areas of recovered catecholamines and their metabolites were quantified according to
calibration standards. Baseline catecholamine output was determined from the average of
the last four samples preceding drug injections and set as 100%. Data were then normalized
as % of baseline, uncorrected for probe recovery. Two-way analysis of variance (ANOVA)
with dose and time as variables was used to determine significant effects. When appropriate,
data were further analyzed using post-hoc tests. The area under the curve (AUC) for each
catecholamine was also determined following drug administration and analyzed by one-way
ANOVA followed by Dunnett’s post-hoc test. GraphPad Prism 4.0 (GraphPad, San Diego,
CA) was used for all statistical calculations. Results were considered significant when p <
0.05.

Results
Effect of NPS on dopamine and serotonin release in the mPFC

Basal levels of extracellular dopamine in the mPFC were 0.170 ± 0.006 pg/μl (not corrected
for in vitro dialysis probe recovery). NPS dose-dependently increased extracellular
dopamine concentrations in the mPFC (Fig 1a). Two-way ANOVA showed a significant
effect of NPS dose [FDose(3,352) = 6.91; p = 0.0019] and time [FTime(16,352) = 35.86; p <
0.0001] with significant interaction [FDose × Time(48,352) = 3.51; p < 0.0001]. Bonferroni
post-tests showed significant increases in dopamine release between 30 – 90 min after 1
nmol NPS administration and slightly stronger effects between 15 – 105 min after 10 nmol
NPS administration, compared with saline-treated animals. One-way ANOVA showed a
significant dose-dependent increase of extracellular dopamine in the area under the curve
between 0 and 120 min after NPS administration (AUC) [F(3,24) = 9.626, p = 0.0002], with

Si et al. Page 4

J Neurochem. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Dunnett’s post-hoc test demonstrating significant increases at 1.0 nmol and 10 nmol NPS
compared to saline-injected animals (Fig 1b).

In a separate experiment, we also determined extracellular levels of 3,4-
dihydroxyphenylacetic acid (DOPAC), a major metabolite of dopamine, in the mPFC before
and after NPS administration. Two-way ANOVA indicated that 1 nmol NPS significantly
increased DOPAC release [FTreatment(1,107) = 4.81, p = 0.0304; FTime(11,107) = 2.25, p =
0.0168, FTreatment × Time(11,107) = 0.88, p > 0.5] in the mPFC. DOPAC levels at 40 and 60
min after NPS administration were significantly higher [t-test; 40 min: t(8) = 2.844, p =
0.0217; 60 min: t(9) = 2.512, p = 0.0332] than in saline-treated animals (Fig. 2a) and the
AUC of extracellular DOPAC was also significantly larger in NPS-treated rats compared to
saline-treated controls [t-test, t(7) = 2.426, p = 0.0457; Fig. 2b].

Average serotonin (5-HT) concentrations in the mPFC in all groups of animals before drug
administration were 0.045 ±0.002 pg/μl. NPS showed little effect on 5-HT release during 3
hr after i.c.v. injection (Fig. 3) [FDose(3, 368) = 0.38, p = 0.7668]. However, extracellular 5-
HT levels in the mPFC increased significantly in both saline and NPS- treated animals.
[FTime(16,368) = 25.74, p < 0.0001; FDose × Time(48,368) = 0.79, p = 0.8378]. The
significant increase of 5-HT release was possibly due to stress produced by the i.c.v.
injections. Cumulative 5-HT release in the mPFC was very similar between NPS and saline-
treated groups [F(3,23) = 0.3921, p = 0.7598].

Similarly, extracellular levels of 5-hydroxyindoleacetic acid (5-HIAA), a primary metabolite
of 5-HT, were not affected by NPS administration and cumulative 5-HIAA levels did not
differ between NPS and saline-treated animals (Fig. 4). Although NPS administration
appeared to reduce 5-HIAA levels within the first 20 min following administration, data did
not reach significance. The reason for the acute reduction of 5-HIAA at 20 min after NPS
administration might be a transient change in turnover rate of 5-HT or enzymatic activity of
monoamine oxidase (MAO, EC 1.4.3.4), which cannot be determined in the present study.

Discussion
Our study aimed at investigating the effect of NPS on catecholamine neurotransmission in
the mPFC. As dopaminergic and serotonergic neurotransmission in the mPFC is crucial for
extinction of fear memory and anxiety modulation, and NPS appears to regulate these
behaviors, our hypothesis was that NPS might affect release of dopamine or 5-HT in the
mPFC. Our results show that NPS administration dose-dependently and significantly
increased release of dopamine in the mPFC and the extracellular levels of its metabolite,
DOPAC. The stimulatory effect of NPS on dopamine release in the mPFC lasted as long as
120 min and extracellular levels of DOPAC reached a peak at 60 min. However, NPS
seemed to have little effects on 5-HT and 5-HIAA release. DOPAC is a major metabolite of
dopamine, converted from dopamine by monoamine oxidase (MAO) and aldehyde
dehydrogenase (AD, EC 1.2.1.3). As both MAO and AD are intracellular enzymes,
extracellular levels of DOPAC are dependent on the amount of cytoplasmic dopamine.
Therefore, extracellular DOPAC is closely related to the amount of dopamine synthesized
and stored in the presynaptic neuron while extracellular dopamine levels are closely related
to the rate of dopamine release. The stimulatory effect of NPS on extracellular DOPAC
levels suggests that NPS might increase dopamine synthesis in the presynaptic neurons, or
simply increase dopamine turnover including the release and reuptake of dopamine.

Our results seem to be contrary to the inhibitory effects of NPS on 5-HT release, as reported
recently (Raiteri et al., 2009). In this in vitro study, purified cortical synaptosomes were
used to determine NPS effects on 5-HT release, which is a highly artificial model compared
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to in vivo microdialysis in freely moving animals. The effects of NPS on dopamine and 5-
HT release in the mPFC reported in this study are very likely caused by NPS-mediated
stimulation of afferent inputs into the mPCF, since there is currently no evidence for NPSR
expression within the rat mPFC (Xu et al., 2007). It is possible that the synaptosomal
preparation used by Raiteri et al (2009) contained significant parts of orbitofrontal cortex
tissue where NPSR transcripts are expressed. However, we cannot rule out extremely low
levels of NPSR expression in these cortical areas that evaded detection in our previous in
situ hybridization studies (Xu et al., 2007). Additional in vivo microdialysis studies in other
cortical areas may be able to explain the discrepancies.

Based on the findings that expression of NPSR has been detected in VTA (Xu et al., 2007)
and VTA dopamine neurons project to the mPFC, it is possible that the NPS-induced
enhanced dopaminergic neurotransmission in the mPFC might be caused by activation of the
mesolimbic dopaminergic pathways via NPSR expressed in the VTA. In support of this
hypothesis, Mochizuki et al (2010) recently reported that local injection of NPS into the
VTA significantly elevated extracellular levels of dopamine metabolites in the nucleus
accumbens shell, another important area which receives projections from the VTA.
Obviously, further microdialysis studies are required to verify this hypothesis.

Extensive evidence shows that the mesocortical dopamine system, originating in the ventral
tegmental area (VTA), plays an important role in fear extinction learning. Depletion of
dopaminergic innervation in the mPFC has been found to impair extinction learning without
affecting the acquisition of conditioned fear (Morrow et al., 1999; Fernandez Espejo, 2003)
and dopamine D4 receptors in the mPFC are thought to be involved in encoding fear
extinction (Pfeiffer and Fendt, 2006). The role of prefrontocortical dopamine in the
expression of conditioned fear has also received much attention. Pezze et al. (2003, 2004)
reported that either stimulation or blockade of dopaminergic neurotransmission in the mPFC
reduces the expression of conditioned fear, suggesting an inverted U-shaped relation
between expression of conditioned fear and dopaminergic activity in the mPFC. As stated
earlier, NPS has been reported to enhance fear extinction and reduce fear expression,
therefore, we hypothesized that the stimulatory effect of NPS on dopamine release in the
mPFC might be functionally connected to these effects. As improper processing of fear
memory may result in anxiety disorders, prefrontocortical dopamine has been considered to
produce anxiolytic and protective effects by modulating mPFC activity in times of stress
(Thierry et al., 1976; Deutch and Roth, 1990; Finlay et al., 1995; Sullivan, 2004). For
instance, in the elevated plus maze depletion of dopamine within the mPFC induces
anxiogenic-like effects in rats (Espejo, 1997; Fernandez Espejo, 2003). In contrast, in vivo
microdialysis and voltametric recording studies showed increased extracellular levels of
prefrontocortical dopamine in response to stress, suggesting a facilitating role of dopamine
for processing of anxiety-like behaviors in the mPFC (Abercrombie et al, 1989; Doherty and
Gratton, 1996; Sorg and Kalivas, 1993; Feenstra, 2000). Additionally, other studies that
examined the effects of anti-anxiety treatments on dopaminergic activity in the mPFC,
demonstrated that attenuation of dopaminergic activation contributes to the anxiolytic
effects of the drugs (Dazzi et al., 2001a,b; Deutch and Roth, 1990; Feenstra et al., 1995;
Petty et al., 1997; Matsumoto et al., 1998; Wedzony et al., 1996; Beaufour et al., 2001). A
plausible explanation for these controversial roles of dopamine in the mPFC could be that
dopamine might have adaptive and protective effects to dampen excessive stress reactivity
after stress-induced activation of the VTA dopaminergic system. When anti-anxiety
treatments act to reduce the activity of several central stress circuits, the general stress
perception is reduced, hence resulting in a reduced need for compensatory dopaminergic
modulation in the mPFC. An emerging consensus to interpret these apparently contradictory
findings postulates that dopaminergic activity in the mPFC is necessary to maintain response
adaptability to stressful events and may itself signal subjective intensities of perceived stress
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(Sullivan, 2004). Our results indicate that NPS enhances basal levels of dopamine in the
mPFC, although it is unknown how NPS may affect levels of dopamine in presence of a
stressor. Additionally, previous studies indicated that intra-amygdala injection of NPS
reduce anxiety-like behaviors, suggesting that the amygdala might be a substrate for NPS-
induced anxiolytic effects. Our current results of NPS-mediated enhancement of dopamine
release in the mPFC suggest that, in addition to the amygdala, the anxiolytic-like effects of
NPS might be also mediated through modulation of dopaminergic activity in the mPFC. .

In conclusion, the current study provides evidence for a stimulatory effect of NPS on
dopamine release in the mPFC, without affecting serotonergic neurotransmission. The
adaptive and protective role of NPS in extinction of conditioned fear and stress-induced
anxiety, as well as its antipsychotic profile, might be related to the NPS-mediated
enhancement of dopamine release in the mPFC.
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Abbreviations used

NPS neuropeptide S

NPSR neuropeptide S receptor

mPFC medial prefrontal cortex

aCSF artificial cerebrospinal fluid

AUC area under the curve

DA dopamine

DOPAC 3,4-dihydroxyphenylacetic acid

5-HT serotonin

5-HIAA 5-hydroxyindoleacetic acid

MAO monoamine oxidase

LC locus coeruleus

VTA ventral tegmental area
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Fig. 1.
Dose-dependent effects of i.c.v. NPS on extracellular levels of dopamine in the mPFC. NPS
significantly increased extracellular dopamine levels. (a) Time course of extracellular
dopamine levels following central administration of saline or increasing doses of NPS.
Dopamine levels were normalized to the average of four baseline samples. * p < 0.05, ** p <
0.01, *** p < 0.001, 1 nmol NPS versus saline; # p < 0.05, ## p < 0.01, ### p < 0.001, 10
nmol NPS versus saline; Bonferroni post-hoc test after significant treatment effect in two-
way ANOVA. (b) Cumulative dopamine levels between 0 and 120 min post injection,
calculated as area under the curve (AUC), ** p < 0.01, *** p < 0.001 versus saline;
Dunnett’s post-hoc test after significant one-way ANOVA.
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Fig. 2.
Central administration of 1 nmol NPS significantly increased extracellular levels of DOPAC
in the mPFC. (a) Time course of extracellular DOPAC as a percentage of basal levels. * p <
0.05 versus saline, t-test after significant treatment effect in two-way ANOVA. (b)
Cumulative DOPAC levels between 0 and 120 min post injection, calculated as area under
the curve (AUC), * p < 0.05 versus saline, t-test.
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Fig. 3.
NPS administration had no significant effects on extracellular levels of 5-HT. (a) 5-HT
percentage of basal levels in the mPFC after saline or NPS i.c.v. administration. (b)
Cumulative 5-HT levels between 0 and 120 min post injection, calculated as area under the
curve (AUC).
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Fig. 4.
NPS administration had no effect on extracellular levels of 5-HIAA. (a) 5-HIAA percentage
of basal levels in the mPFC after saline or NPS i.c.v. administration. (b) Cumulative 5-
HIAA levels between 0 and 120 min post injection, calculated as area under the curve
(AUC).
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