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Abstract
Study objectives—(a) Develop a new statistical approach to describe the microarchitecture of
wakefulness and sleep in mice; (b) evaluate differences among inbred strains in this
microarchitecture; (c) compare results when data are scored in 4-s versus 10-s epochs.

Design—Studies in male mice of four inbred strains: AJ, C57BL/6, DBA and PWD. EEG/EMG
were recorded for 24 h and scored independently in 4-s and 10-s epochs.

Measurements and results—Distribution of bout durations of wakefulness, NREM and REM
sleep in mice has two distinct components, i.e., short and longer bouts. This is described as a spike
(short bouts) and slab (longer bouts) distribution, a particular type of mixture model. The
distribution in any state depends on the state the mouse is transitioning from and can be
characterized by three parameters: the number of such bouts conditional on the previous state, the
size of the spike, and the average length of the slab. While conventional statistics such as time
spent in state, average bout duration, and number of bouts show some differences between inbred
strains, this new statistical approach reveals more major differences. The major difference between
strains is their ability to sustain long bouts of NREM sleep or wakefulness. Scoring mouse sleep/
wake in 4-s epochs offered little new information when using conventional metrics but did when
evaluating the microarchitecture based on this new approach.

Conclusions—Standard statistical approaches do not adequately characterize the
microarchitecture of mouse behavioral state. Approaches based on a spike-and-slab provide a
quantitative description.
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1. Introduction
Mice are increasingly becoming the animal model for studying sleep. The advantages of
using mice are the accessibility to many inbred strains as well as recombinant inbreds to
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facilitate identification of quantitative trait loci. Other advantages are the availability of
congenics and consomics to facilitate gene identification and large-scale ENU mutagenesis
projects that have been, and are being, conducted in mice. All of these strategies are being
undertaken to identify genes regulating biological processes such as sleep.

These strategies all require quantitative analysis of the phenotypes of interest. One aspect of
the sleep phenotype that has received recent attention is the flip-flop control of sleep and
wakefulness (Saper et al., 2005). It is argued that interaction between sleep and wake-active
neurons controls whether the animal exhibits sleep or wakefulness. Within sleep there is a
flip-flop switch that controls states, i.e., NREM and REM sleep (NREM is non-rapid eye
movement sleep during which synchronized slow waves are recorded from the
electroencephalogram. REM is rapid eye movement sleep during this stage there are flurries
of eye movements and atonia of skeletal muscles). It is further argued that molecules such as
orexin (hypocretin) help to stabilize this flip-flop switch (Saper et al., 2005). Loss of orexin
in mice with a knockout of this gene leads to fragmentation of sleep, i.e., shorter sleep bouts
(Chemelli et al., 1999). Thus, specific molecules may control not only the amount of sleep
and wakefulness but also the maintenance of sleep and hence the bout length of different
states.

Studies in different inbred mouse strains have shown that there are both short and long bouts
of sleep and wakefulness and that these bout durations are not normally distributed (Franken
et al., 1999). The number of bouts of different length varies between inbred strains (Franken
et al., 1999). This basic feature of sleep/wake control is found in other mammals (Lo et al.,
2004). The nature of these distributions is in part determined by voltage gated potassium
channels as is revealed by studies in relevant transgenic mice (Joho et al., 2006). These
different durations of bouts of sleep and wake have been analyzed using survival curve
analysis (Behn et al., 2007; Blumberg et al., 2005, 2007; Diniz Behn et al., 2008; Joho et al.,
2006; Lo et al., 2002, 2004; Simasko and Mukherjee, 2009). In general, survival curve
analysis, plotting the percentage of a state as a function of different bout length, finds that
for wakefulness a log–log plot leads to a linear description, i.e., a power-law distribution,
while for sleep a semi-log plot, i.e., an exponential distribution, is best (Blumberg et al.,
2005; Lo et al., 2002, 2004; Simasko and Mukherjee, 2009).

While these analyses have been helpful to describe the general nature of the distributions of
sleep and wake bout lengths, they do not lend themselves to providing summary statistics to
describe bout length distributions of individual mice or mouse strains. In order to provide
such numerical summaries, we have utilized a different statistical approach. We use a
special case of a mixture distribution termed a spike-and-slab (see Fig. 1; for further
discussion of mixture distributions, see electronic supplement and Fig. S1). The spike is
made up of the short bouts of a particular state while the slab is the long bouts.

Thus, in this study, we report a strategy to provide novel statistical measures of wake,
NREM, and REM bout length distribution based on a spike-and-slab distribution (see Fig.
1). Graphical examination of bout durations indicates a large number of very short bouts
(spike) in addition to a long right tail (slab). We further analyzed the data with respect to
behavioral history, i.e., does the distribution of bout durations of NREM sleep, for example,
depend on whether the mouse entered NREM sleep from wakefulness or REM sleep. We
have applied this strategy to data from four inbred mouse strains, i.e., C57BL/6, AJ, DBA
and PWD. We selected these inbred strains because they are on different branches of the
mouse genealogical tree. We show that the new statistics that characterize the mixed
distribution of bouts of short and long length bring out clear differences between these
inbred strains. We argue that using these new statistics will benefit future studies evaluating
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sleep architecture in mice and help identify mice that have alterations in the flip-flop control
of wake and sleep due to altered genetic control.

2. Methods
2.1. Animal studies

2.1.1. Mouse—Four inbred strains of male mice were used in this study: AJ (n = 10),
C57BL/6J (n = 10), DBA/2J (n = 8), and PWD (n = 7), age: 10–12 weeks, weight: 18–23 g,
purchased from Jackson Laboratory (Bar Harbor, ME). Mice were individually housed in
Plexiglas cages (4 in. wide × 8 in. long × 12 in. high) and maintained on 12 h light/dark
cycle (lights on 0700; 80 Lux at the floor of the cage) in a sound attenuated recording room,
temperature 22–24 °C. Food and water were available ad libitum. Animals were acclimated
to these conditions for 10–14 days before beginning any studies. All animal experiments
were performed in accordance with the guidelines published in the NIH Guide for the Care
and Use of Laboratory Animals and were approved by the University of Pennsylvania
Animal Care and Use Committee.

2.2. EEG/EMG recording of sleep
Mice were implanted with EEG/EMG electrodes under deep anesthesia (i.p. injection of
Ketamine (100 mg/kg)/Xylazine (10 mg/kg)). For EEG recordings, three stainless steel
miniature screws (0–80 × 1/16, Plastics One, Inc., VA) were placed epidurally in the
following locations: (1) right frontal cortex (1.7 mm lateral to midline and 1.5 mm anterior
to bregma), (2) right parietal cortex (1.7 mm lateral to midline and 1 mm anterior to
lambda), and (3) a reference electrode over the cerebellum (1 mm posterior lambda on the
midline). Two EMG electrodes were sutured onto the dorsal surface of the nuchal muscles
immediately posterior to the skull. All leads from the electrodes were connected to an 8-pin
plastic connector/pedestal (Plastics One, Inc., VA) and then bonded to the skull with dental
acrylic. After the bonding agent cured, the animals were connected to our signal amplifier
system using a connecting cable and swivel-contact (Plastics One, Inc., VA) mounted above
each cage. All mice had a 10–14 days post-surgery recovery and habituation period before
beginning any recording.

EEG and EMG signals were amplified using the Neurodata amplifier system (Models M15,
Astro-Med, Inc., West Warwick, RI). Signals were amplified (2000×) and conditioned using
the following settings for EEG signals: low cut-off frequency (−6 dB), 0.3 Hz and high cut-
off frequency (−6 dB), 30 Hz; for EMG signals: low cut-off frequency (−6 dB), 10 Hz and
high cut-off frequency (−6 dB), 100 Hz. Signals were digitized at 100 Hz. All data were
acquired and analyzed using Gamma software (Astro-Med, Inc., West Warwick, RI) and
converted to European Data Format (EDF) for manual scoring and analysis in the
Somnologica science software (Medcare).

2.3. Scoring of sleep/wake and substages of sleep
Wake, NREM and REM sleep were manually scored in both 4-s and 10-s epochs during 24-
h baseline recordings. Stages were determined as follows: epochs were scored as wake when
the EMG amplitude ranged from activity slightly higher than baseline during quiet
wakefulness to higher amplitude activity during exploratory behavior. EEG amplitude was
low with frequencies mostly above 10 Hz. NREM was characterized by high amplitude delta
(1–4 Hz). EMG was constant with low amplitude activity. REM was characterized by low
amplitude rhythmic theta waves (6–9 Hz) with the EMG remaining at baseline levels. We
obtained complete sets of data for each mouse scoring using both 4-s and 10-s epochs, i.e.,
we had two sets of data for each mouse (Fig. S2 shows original EEG/EMG data in a single
mouse for wake, NREM and REM sleep).
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2.4. Statistical methodology
2.4.1. Modeling spike-and-slab bout durations—For this study we used statistical
methods that take into account both the “spike-and-slab” nature of sleep durations that we
found and the fact that bout durations are dependent on the previous state. In particular, we
model the sequence of states as a generalized Markov model. The model is conceived
simply as a vehicle for compressing a long sequence of sleep data into a few numerical
summaries (or “sufficient statistics”) which describe the sequence and vary by strain. Hence,
our main focus is on these statistics themselves rather than on the model.

For any sequence of states (X1, X2, X3, …, XT), we can decompose it into pairs of “unique
states” and “durations” ((Y1, Z1), (Y2, Z2), …, (YN, ZN)) where, informally, Y is the set of
unique states and Z is the set of durations. Formally, we define the Yi and Zi inductively as
follows: Y1 = X1, Z1 = {max(τ)|X1 = X2 = … = Xτ ≠ Xτ+1,} and

. For example, we
can decompose the sequence (NREM, NREM, WAKE, WAKE, WAKE, NREM, NREM,
REM, REM, REM, WAKE) into pairs ((NREM, 2), (WAKE, 3), (NREM, 2), (REM, 4),
(WAKE, 1)).

Using this decomposition, we assume a mouse transitions from state Yi to Yi+1 according to a
transition probability matrix A. Since there are three sleep/wake states, A is a 3 × 3 matrix;
furthermore, due to the decomposition above, A has zeroes on the diagonal. We further
assume Zi~g|θYi–1,Y1 where g is a probability distribution discussed below and θYi–1,Y1 are
parameters which depend on current and previous state label. Hence, the likelihood of any
given state sequence X =(X1, X2, X3, …, XT) can be expressed as

where .2 Since the transition probability matrix A is ancillary to the discussion
of bout duration modeling, we now focus on g, the duration distribution. We model g as a
mixture distribution with two components: discrete point masses to accommodate the
“short” durations in the spike and a probability density function (pdf) to accommodate the
“long” durations in the slab. That is, we assume:

In this case, we need to specify k, the number of point masses, as well as the functional form
of the pdf for f. Our parameters are θ = (π1, …, πk, φ) where φ parameterizes the long
durations in the slab (and is potentially a vector) and the πi are point masses which give the
“spike” probability that a bout lasts exactly i epochs (i = 1 to k, where k is the upper
threshold for the spike segment of distribution of durations). In this paper, we fixed k at 10
epochs (i.e., 40 s where EEG/EMG data are scored in 4-s epochs3), since this eases
interpretability across mice and across strains of different mice.4

2The likelihood equation assumes X1 begins a new bout (i.e., X1 is not equal to X0) and XT ends a bout (i.e., XT is not equal to XT+1).
This condition can be guaranteed by dropping epochs from the front and back of the scored sequence in order to make it hold.
3For the 10-s data, we fixed k at 4 thereby keeping the length of the short segment constant at 40 s.
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The long segment of the “slab” duration distribution f(z∣φ), is nicely fit by a gamma
distribution (see Fig. 2). The gamma distribution is a probability distribution which is good
for modeling values which are positive, particularly when the probability begins to decay
after some point. It is determined by two parameters and has a density function given by the
following formula:

It has expected value (mean) α/β and variance α/β2. Since we found that the mouse’s bout
duration depends on the previous state, we estimate the spike-and-slab distribution
conditional on the previous state. That is, we estimate a separate distribution for five sets of
bouts (e.g., WAKE from NREM, NREM from WAKE, NREM from REM, REM from
NREM, and WAKE from REM).

The choice of the gamma distribution to model the long segment of the distribution was not
arbitrary. In fact, there were several other candidate distributions to model the long, slab
segment which we considered including the exponential, geometric, negative binomial, and
pareto. We used various model selection criteria such as Chi-square likelihood-ratio tests
(for nested models), the Akaike Information Criterion, the Bayesian Information Criterion,
and bootstrapped Q–Q plots. The gamma distribution performed best on these tests though
the negative binomial performed comparably, suggesting the choice of the underlying
distribution is not so important provided it is sufficiently flexible and the spike component is
included.5 Thus, though there is some degree of choice in the slab distribution, we found on
the contrary that the spike was a sine qua non: it was strongly selected for inclusion in the
model by the various criteria, regardless of the slab distribution used (see Model Selection
section in the electronic supplement, Table S1, and Figs. S3 and S4 for more details).

As mentioned above, the purpose of our probability model is to generate an interpretable set
of descriptive summary statistics. Taken together, our spike–slab formulation gives 12
parameters θ = (π1, …, π10, α, β) which can be further distilled into an even smaller set of
three key measures:

n The number of bouts of the sleep state conditional on the previous state.

π The “spike” size, .

μ The average “slab” size, α/β.

It is important to note that, for each mouse, we obtain a set of these three measures for each
of the five transitions listed above. That is, each of the above three metrics is calculated for
each of the three states conditional upon the value of the previous state. Hence, we have 15
total parameters in five sets (one set of three for each of the five transitions
WAKE→NREM, NREM→REM, NREM→WAKE, REM→NREM, and REM→WAKE).

These summary statistics, in addition to the ones usually reported (percent of time spent in
each bout, mean bout duration, and number of bouts), were used to compare mouse strains.

4On purely statistical considerations, k set to one or two (i.e., 4 or 8 s) might suffice. However, we sought a k which would set the
same time in seconds for both 4 s and 10 s data. This would only happen on even multiples of 10 s (i.e., k=20s, 40s, ……). Setting k to
10 (i.e., 40 s) thus made sense for scientific reasons and also corresponds to the 40 s rule in the literature (Pack et al., 2007).
Furthermore, there was a sufficient amount of data for estimation at k = 10.
5That the gamma and the negative binomial performed similarly is not surprising since they are intimately related: the gamma is a
generalization of the exponential (it is a sum of exponentials) and the negative binomial is a generalization of the geometric (it is a
sum of geometrics) and, finally, the geometric is a discrete version of the exponential distribution.
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An identical approach was used for mouse EEG/EMG data scored in 10-s epochs. For these
data, k was set at 4 epochs, i.e., the maximal duration of the bouts in the spike was retained
at 40 s.

2.5. Comparison of measures between strains
To compare data from the four strains, we used various statistical tests for each state–
measure combination. For the conventional measures, there are nine possible combinations
[three measures (amount, average bout duration, number of bouts) times three states (REM,
NREM, and WAKE)]; for the new measures, introduced here, there are fifteen [three
measures times five possible transitions].

To be consistent with the prior literature, we report the ANOVA F-test p-values. However,
this test lacks power to truly differentiate among the strains because the ANOVA null
hypothesis assumes equal means across all strains, an inappropriate benchmark when we
know the strains have different underlying behavior (varied behavior implies an equal means
null hypothesis is almost guaranteed to be rejected). Moreover, an F-test actually conveys
little information. For example, one can have a significant F-statistic for strains while none
of the individual strains show a statistically significant difference from one another.
Conversely, one can have an insignificant F-statistic when several of the strains exhibit
pairwise differences that are statistically significant. Moreover, the ANOVA framework
requires an assumption of normality that is not appropriate in this setting. Hence, the p-
values produced by F-tests are sensitive to outliers. That is, one data point (for example if
one particular bout of one mouse of one strain is an outlier) can cause the p-value to shift by
a large amount even if the underlying means are similar or the same.

For these reasons, we also used non-parametric pairwise tests with adjustment for multiple
comparisons. In particular, we used the Wilcoxon Rank Sum Test. A non-parametric test
does not rely on assumptions of normality and is far less sensitive to one or two aberrant
data points. Furthermore, because they are pairwise, they assess which particular strains
differ from one another.

2.6. Comparison of measures when we used a 4-s or 10-s epoch to score sleep
We also compared measures within a given strain when we scored sleep in 4-s or 10-s
epochs. Again, we first used the standard ANOVA tests but also the non-parametric pairwise
tests for both the standard summary statistics as well as the summary statistics arising from
our new approach. Our model was fit in exactly the same way as described above. We
compared the results using pairwise plots and correlation coefficient significance tests.

3. Results
3.1. Comparison of inbred strains using conventional measures

We compared each of the strains using the nine conventional measures. As can be seen in
Fig. 3, the only strain that appears consistently different on these metrics is AJ. These
metrics fail to show how, if at all, the other three strains differ from one another. That is, the
conventional statistics lack the power to discriminate among the strains. We refer the reader
to the electronic supplement for a more detailed treatment of these results, which contains
statistical tests (see Tables S3 and S4) to formalize the intuition gleaned from Fig. 3.

3.2. Examination of distribution of bout durations of behavioral states
In light of the failure of the standard statistics to provide differentiation among strains, we
graphically examined the distribution of bout lengths of wake, NREM and REM sleep in
each of the four mouse strains studied. We first examined the overall distribution of each
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state for each strain (see Fig. 4). The histograms in Fig. 4 give the state durations (scored by
EEG and EMG over 4-s epochs) for mice of all strains. The histograms do not follow a nice
smooth distribution that can be summarized by simple statistics. Rather, as discussed, the
distributions more closely resemble a “spike-and-slab” distribution: a large “spike” near zero
containing a large number of bouts whose durations are very short, along with a long “slab”
corresponding to long bouts. This is illustrated by examining data for C57BL/6 (row 1 in
Fig. 4).

The first plot (left panel) in the first row of Fig. 4, which gives the bout durations for REM
sleep for C57BL/6, shows a large number of bouts of length 1 and 2 epochs, i.e., 4–8 s.
Beyond that, there is a long tail extending out to about 60 epochs (240 s), hence explaining
the mass at 30 or more epochs. This tail decays slowly and, though it is smooth when
aggregating across all mice, it is rather under populated contributing to a “jagged” decay
when examined for an individual mouse. Similarly, the second plot for NREM sleep (middle
of first row of Fig. 4), also has a large spike at 1 epoch. However, NREM has a “slab” which
decays rather smoothly out to about 200 epochs (800 s ≈ 13 min). On the contrary, the third
plot for WAKE (right panel of first row of Fig. 4), features a very prominent spike plus a
rather long, flat, slab extending to over 1900 epochs (7600 s ≈ 2 h). Hence, both NREM and
WAKE have extremely long right tails leading to a large mass at greater than 30 epochs in
Fig. 4.

Since there are 3 sleep/wake states recognized in mice, a mouse can enter any given state
(e.g., NREM sleep) from either of the other two states (in this case wake or REM sleep). We
thus examined the distributions based on the recent history of specific state transitions:
separate distributions of WAKE bout durations following a transition to wakefulness from
NREM sleep or from REM sleep; separate distributions of bout durations of NREM sleep
following transition from WAKE or REM sleep; a distribution of bout durations of REM
sleep on transition from NREM sleep. We did not analyze the occasional episodes of direct
transitions from wakefulness to REM (DREM) that occur occasionally in wildtype mice.
These episodes occur almost exclusively during the lights on period and are the result of
brief awakenings interrupting a sustained period of REM sleep (Fujiki et al., 2009). Separate
conditional distributions are shown for C57BL/6 mice in Fig. 5 (the distributions for other
inbred mouse strains are shown in Figs. S5–S7 in the electronic supplement). Thus, the basic
nature of these distributions requires new strategies to properly characterize similarities and
differences in the sleep/wake behavior of mice.

The histograms in Fig. 5 illustrate that the state bout duration variability is highly dependent
on the state the mouse was in previously. For instance, a transition from REM to NREM in
C57BL/6 is rarely more than about 4 epochs in length (Fig. 5(c)), whereas a transition from
WAKE into NREM is “spike-and-slab” as can be seen by examining (Fig. 5(d)). That is,
there is a modest probability that the bout will be short (i.e., on the spike); if it is not short
(i.e., on the slab), its duration is not only much longer but it is also much more variable.
Likewise, Fig. 5(e) and (f) shows that a transition into WAKE from either REM or NREM
produces a “spike-and-slab”. However, much longer WAKE bouts tend to follow NREM
rather than REM.

These histograms suggest that a methodology which takes into account both the conditional
and spike-and-slab nature of bout duration distribution will be more successful at capturing
the dynamics of sleep/wake durations. A better model will be more likely to capture nuances
of various strains and thus discriminate among them. We now apply the methods outlined
for our analysis of the spike-and-slab distribution to the four strains.
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3.3. Comparison of inbred strains using new methodology
In Table 1, we present the mean of each of the new measures by strain and state again with
ANOVA F-test statistics conducted on the strains for each of the new measures of sleep/
wake state (see Figs. 6, 7, and 8 for plots). The only differences that are not statistically
significant are those for the number of bouts n of REM→WAKE and the average slab size μ
when the mouse transitions from REM→NREM. However, all the others are highly
significant.

We gain much more insight from pairwise comparisons using the non-parametric Wilcoxon
Rank Sum Test controlling for multiple comparisons using Bonferonni correction factors.
Again, we show these tests graphically (Figs. 6-8) and provide test statistics and p-values in
the electronic supplement (Tables S5 and S6 reports the test statistics and p-values
respectively for total number of bouts n, Tables S7 and S8 for the size of the spike π, and
Tables S9 and S10 for the mean bout duration of the slab μ).

The key result is to contrast Fig. 3 with Figs. 6-8. Whereas the strains overlapped
considerably using the standard metrics (Fig. 3), we observe a large number of statistically
significant differences between all the strains using the newly proposed metrics (Figs. 6-8).
For the AJ strain, Fig. 6(d) and (f) reveals a much larger number of WAKE→NREM and
NREM→WAKE bouts compared to the other strains (here and below, see Tables S5–S10
for test statistics and p-values to validate the claim). This is consistent with what we found
from the statistics of the standard measures, but the differences are larger. Moreover, Fig.
8(a), (c), and (d) indicates that AJ has a smaller average slab size μ for several states such as
NREM→REM, REM→NREM, and WAKE→NREM. This suggests that when an AJ mouse
goes into a “long” bout (i.e., one greater than 10 epochs), it is likely to have shorter “long”
bouts (of REM and NREM) as compared to mice from the other three strains. This also is
consistent with the greater number of observed bouts of NREM→WAKE and
WAKE→NREM.

Study of the standard measures described above did not allow us to say anything about C57
other than that there is a lower within-strain variation. Lower strain variation holds also for
the new measures, suggesting C57 is an ideal strain for conducting studies, since C57 mice
are more consistent with each other in their sleep/wake behaviors. Our proposed measures,
however, also give a much richer view of the differences in C57 behavior as compared to
other strains. Fig. 7(a) and (f) shows that C57 has a low π for NREM→REM as well as
NREM→WAKE. Thus, when a C57 wakes up from NREM sleep, the mouse is more likely
to enter a long bout of wakefulness rather than immediately going back to sleep. In addition,
Fig. 8(c) and (d) shows that μ is higher for C57 for both REM→NREM and
WAKE→NREM. That is, when C57 enters a long bout of sleep, the mouse remains asleep
longer than other strains.

While with the previous simple summary statistics, there was not much we could say about
the DBA strain, our new measures reveal interesting results. We see in Fig. 7(a) a lower π
for NREM→REM, indicating that, when DBA goes into REM from NREM, it tends to stay
in REM for longer periods of time than other strains. Fig. 8(f) also reveals that DBA (along
with PWD) has a larger π for NREM→WAKE, meaning that once these strains enter wake
from NREM sleep, they are likely to have longer long bouts than the other two strains.

Looking at PWD, our new measures allow us to shed more light on the oddities we observed
with the previous simple statistics for the REM state. First of all, Fig. 6(a) and (c) shows that
there are more bouts of NREM→REM and REM→NREM compared to the other mice. The
larger numbers of bouts for these states suggests the durations must be shorter. This in turn
implies a larger π, a smaller μ, or both. Indeed, this is what we observe. In Fig. 7(c) and (e),
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we see a smaller π for REM→NREM and REM→WAKE. This means, when PWD comes
out of REM, it is not likely to stay in the state in ends up in (either wake or NREM) for very
long. In addition, Fig. 8(e) reveals a higher μ for REM→WAKE compared to all other
strains and Fig. 8(f) shows that PWD and DBA have a higher μ for NREM→WAKE.
Together, these data indicate that when PWD stays awake for more than 10 epochs (40 s), it
stays awake comparatively longer than the other mice.

3.4. Comparison of inbred strains using conventional measures conditionally
One might wonder whether the conventional measures, when computed on a conditional
basis as the proposed measures are, are able to detect differences among inbred strains. We
examined the conventional measures computed conditionally, and, in fact, while there are
more significant differences when computed conditionally, they nonetheless lack the power
to discriminate among the strains. We refer the reader to the electronic supplement and in
particular to Figs. S8 and S9 and Tables S11–S15 for a more detailed treatment of these
results.

3.5. Comparisons between data obtained from analysis of sleep/wakefulness in 4-s and 10-
s epochs

We have reported data from scoring the stages of sleep and wakefulness in 4-s epochs across
the day. This is done in several studies of sleep/wakefulness in mice based on the notion that
very short bouts of each stage may exist (Franken et al., 1999,2001,2006). However, in the
majority of studies in mice, sleep and its substages and wakefulness are scored in 10-s
epochs (see discussion in Pack et al., 2007). We therefore compared results obtained from
data based on scoring using these two different epoch lengths.

Rather that repeating all of the above tables and graphs for the 10-s data, we first note that
the qualitative conclusions one would make using 10-s data are very similar to those using
4-s data. The reason for this is that the measures for a given mouse measured using 10-s data
are very similar to the measures for that same mouse using 4-s data.

To demonstrate this, we first compared the standard measures of percent of REM, NREM
and wakefulness, number of bouts, and average bout durations. The correlation between
each of the measures is presented in Table 2 (pairwise plots can be found in Fig. S10). The
correlation between the two sets of measurements is high, on the order of 0.6–0.9 (all
correlation p-values are less than .001). This indicates that the standard metrics – and
therefore any comparisons made between strains using these metrics – are more or less
consistent whether one uses data scored in 10-s or 4-s epochs.

We next compared results from the new methodology for characterizing the distribution of
bouts of different durations for each of the three states. The correlation coefficients can be
found in Table 3 (pairwise plots and p-values can be found in Figs. S11–S13 and Table S16,
respectively). The majority of correlation coefficients are positive and statistically
significant. An exception to this is the average slab size for REM→NREM and
REM→WAKE. As noted in the description of Fig. 5, the transitions from REM tend to have
a larger spike component and a shorter slab component. This shorter slab component will be
sensitive to scoring differences which arise between 4-s and 10-s scoring. (For instance, if
there were a transition into a state and then another transition immediately following back to
the original state, this could be caught with 4-s data but not 10-s data.) In addition, many of
the correlation coefficients for the proposed metrics are smaller in magnitude as compared to
those of the conventional metrics. Furthermore, some even have the wrong sign. Hence, the
relationship between the new metrics for 4-s and 10-s data is substantially attenuated vis-à-
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vis the conventional metrics. Hence, for analysis of sleep/wake microarchitecture using our
new methodology, data obtained from 4-s epochs should be used.

4. Discussion
In this study we introduce a new methodology to analyze sleep and its stages and
wakefulness in mice. This new analytical approach is based on the concept that the different
states consist of short bouts of that state and long bouts. This is not a new observation (Behn
et al., 2007; Blumberg et al., 2005, 2007; Diniz Behn et al., 2008; Franken et al., 1999; Joho
et al., 2006; Lo et al., 2004, 2002; Simasko and Mukherjee, 2009), but current approaches to
analyzing and developing statistics for describing these states in mice are not generally
performed. We show that the distributions of bouts of the different states follow what we
have termed a spike-and-slab distribution. This is found in all four inbred mice we studied
and for all states. We further show that the nature of the bouts of a particular state (wake,
NREM, or REM sleep) depends on the history of behavioral state, i.e., what state the mouse
is transitioning from. This new methodology leads to insights into the control of states that is
not revealed by the conventional summary statistics of average bout duration and number of
bouts and identifies important differences between inbred strains.

Our studies reveal that the standard statistics that are used to characterize state, i.e., total
time (%) in state, average bout duration, and number of bouts, are inadequate for a number
of reasons. First, they poorly characterize the durations in each state given the
unconventional “spike-and-slab” nature of the state duration distributions. Moreover, this
“spike-and-slab” nature makes these standard statistics highly variable and therefore very
difficult to estimate. The long right tails of spike-and-slab distributions mean one data point
can have a substantial impact on the parameter estimates. In addition to these weaknesses,
the three standard measures are correlated with one another and therefore do not give three
independent views of state behavior. Finally, as we have shown, state durations depend on
the previous state, i.e., what state the mouse is transitioning from, and these statistics ignore
this dependence. As a consequence, these measures largely fail to discriminate the real
differences in the sleep/wake behavior of different inbred strains of mice.

This new methodology permits quantification of the different substages of wakefulness,
NREM and REM sleep of short and long bouts in individual mice. This is an advance over
previous analytical strategies by allowing characterization of an individual mouse. The
different substages of wakefulness and sleep not only have relevance to studies of sleep
microarchitecture but also to other behavioral tests such as memory since the degree of
attention will likely be different in short as compared to longer consolidated bouts of
wakefulness. Our data show that the major difference between inbred strains is in their
ability to sustain long bouts of the different states. Thus, the major genetic influences on
sleep and wakefulness are to affect the ability to sustain a particular state. Current models of
sleep/wake control (Saper et al., 2005) emphasize the mechanisms of transitions between
sleep and wake—the flip-flop. Our data indicate that this model needs to be extended so that
it differentiates between transitions to a given state that are brief in nature versus transitions
that are sustained for long periods of time. It is likely that new molecular mechanisms will
be identified that underlie the differences we have observed between inbred strains, and
these will need to be incorporated into an extended model.

Other analytical strategies have been applied to describe the microarchitecture of sleep and
wake bouts in rodents (Behn et al., 2007; Blumberg et al., 2005, 2007; Diniz Behn et al.,
2008; Joho et al., 2006; Lo et al., 2004, 2002; Simasko and Mukherjee, 2009). These
strategies have used survival curve analyses plotting the distribution of % of time at a
particular bout duration (y-axis) against increasing bout duration (x-axis). The resulting plots

McShane et al. Page 10

J Neurosci Methods. Author manuscript; available in PMC 2011 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



are nonlinear. However, they become linear when a semi-log plot is used for sleep bouts and
a log–log plot for wake bouts. By using log transformation, the role of the short bouts in the
cumulative survival curves is minimized.

Behn et al. (2007) propose a mathematical model for sleep–wake transitions which matches
some characteristics of sleep–wake bout durations that have been observed experimentally.
Lo et al. (2004, 2002) observe, through analysis of survival curves, that durations of brief
wake episodes follow a power law (log–log) and that durations of sleep episodes followed
an exponential distribution (semi-log). In a given animal, the sequence of bout durations are,
however, strongly dependent random variables; survival curves can only suggest (not prove)
a similarity in distribution. Furthermore, sleep bout durations are not memoryless, which
implies if a sleep bout exceeds an arbitrary long duration, the animal is no more likely to
wake up than if the bout had just begun. This implies that the distribution of sleep durations
can at best be approximately exponential over a limited range, since the exponential
distribution is memoryless.

Diniz Behn et al. (2008) have applied the analysis of survival curves to compare the
distribution of wake and sleep bout durations between strains of mice. They also observe,
through the analysis of survival curves, that the distribution for wake bouts follows a power
law. In their paper, they also apply statistical analysis to differentiate strains. We have less
confidence in their approach. The main problem is assessing the relevant sample size. Their
approach is to apply non-parametric tests to compare the distributions between the wildtype
and the orexin knockout for the pooled bout durations. Since the bout durations within a
single mouse are highly correlated, the correct sample size is the number of pooled mice (7
or 8), not the number of bouts (thousands). Finally, they also calculate the R2 statistic to
measure similarity of survival curves. While the R2 value is often a reasonable measure of
relation, it is not in this context due to the correlation among observations and the
monotonicity of the survival curves.

Our augmented set of statistics recognizes the dependence of bout duration of a given state
on the previous behavioral history. Moreover, it “breaks” the spike-and-slab distribution into
two pieces and allows for a better fit. It allows us in particular to examine the nature of the
distribution of long bouts. Consequently, we identify differences in sleep/wake behavior that
are masked by the standard measures. We see that the major differences between inbred
strains are in their ability to sustain long bouts of a particular state. Some strains, such as AJ,
have shorter durations of the long bouts of sleep than other strains. These differences also
extend to wakefulness such that, for example, when the DBA or PWD enter wakefulness,
they sustain longer bouts of wakefulness than the other two strains. The history of the
transition also plays a role. For example, when PWD mice come out of REM they have short
bouts of the next state whether this is NREM or wakefulness.

Our model is general enough to fit all of the inbred strains we studied. One potential
extension of our model would be to allow k, the number of epochs that defines the short
duration of bouts, to vary by strain. This would allow a state/strain-specific definition of
what constitutes a short bout. The problem with this approach is the same problem that
occurs when we allow k to be estimated for each mouse individually. When the number of
epochs varies by individual mouse or by strain, then, by definition, the length of a “short”
bout and a “long” bout changes; as a result, the value of k is confounded with π and μ. For
example, if we estimate one strain to have a k of 4 epochs and another to have a k of 10
epochs, how would one compare the probability of time spent in short bouts across strains
when the definition of short for the first strain is 16 s and 40 s for the second strain? By
construction, the mouse with a higher k (i.e., longer definition of short) will likely have a
larger probability of time spent in short.

McShane et al. Page 11

J Neurosci Methods. Author manuscript; available in PMC 2011 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



When we allow k to vary by strain, only one of the five state transitions has statistically
significant ANOVA F-ratios (and only marginally with a p-value of .049). Moreover, none
of these differences are statistically significant when using non-parametric pairwise tests.
This is because the between strain differences are now largely reflected in the different
values of k. Our strategy of fixing k based on the data we obtained provides a strategy to
examine differences in short and long bout durations between strains that leads to
interpretable results and permit characterization of individual mice.

We examined both the standard and augmented statistics separately for 12 h of light and 12
h of dark as well as for eight 3-h blocks. There is a great deal of within-strain difference in
both sets of statistics for these mice when comparing the different time periods. However,
for across strain comparisons, which are our primary interest here, this analysis does not
provide additional benefit beyond that provided by the plots on the 24-h aggregate data
shown above. We thus do not provide the results of these complementary analyses.

Analyses of sleep/wake state are not based on a continuous assessment. Rather, one needs a
small period of data to assess what state the mouse is in. Hence, our assessments of state are,
by definition, truncated. Our primary analyses were based on the minimum epoch length that
is used to score behavioral state, i.e., 4 s. However, since some groups analyze wake/sleep
and its stages in 4-s epochs (Franken et al., 1999,2001,2006) while the majority use 10-s
epochs (see Pack et al., 2007), we questioned whether this made a difference to the summary
statistics. For the conventional strategies, e.g., percent of time in a state, average bout
duration, and number of bouts, results for the two methods of scoring epochs are highly
correlated and the differences are small. This is true for all four inbred strains studied. For
the new proposed metrics, however, there were some considerable differences between data
obtained in 4-s or 10-s epochs. Furthermore, some of the correlation coefficients,
particularly in the estimation of π and μ, were quite attenuated and sometimes even of the
wrong sign. Thus, we conclude that for applications involving evaluations of wakefulness
and substages of sleep in mice, e.g., assessing total duration of different states, scoring of
records in 4-s epochs offers little additional gain while increasing time and expense. For 24
h of data one has to score 8640 epochs using a 10-s epoch while for 4-s there are 21,600
epochs, i.e., 2.5 times more epochs to score. However, for studies of microarchitecture of
sleep, description of bout length etc., scoring in 4-s epochs is required.

In conclusion, we report here a new strategy to describe the microarchitecture of
wakefulness, sleep and its stages in mice. While conventional statistics, such as time spent in
different stages, are adequate for studies of certain types, this new approach is, we propose,
required if one of the goals of the study is to examine the microarchitecture of behavioral
states.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
An example of a spike-and-slab mixture distribution. On the upper panel, we see an
unwieldy distribution composed of a large mass near one and a long, flat tail extending out
to about ten. On the bottom panel, this distribution is decomposed into a “spike” component
and a “slab” component. Often such distributions result from a latent factor (for an example,
see Fig. S1).
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Fig. 2.
A demonstration of how a spike-and-slab distribution fits better than traditional
distributions. We show C57 bout durations for NREM following from WAKE. The
exponential distribution fails to capture the large spike at 1 epoch as well as the long right
tail which causes a mass at thirty or more epochs. On the other hand, a spike-and-slab
approach can accommodate both of these features.
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Fig. 3.
Conventional measures for each mouse by strain. (a)–(c) Give the fraction of time for REM,
NREM, and WAKE; (d)–(f) give the number of bouts; and (g)–(i) give the average bout
duration in number of 4-s epochs. Means for each strain are indicated by the horizontal
black line and standard errors by the vertical bars.
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Fig. 4.
Histograms of bout durations of each state in units of number of 4-s epochs. Duration is
given on the x-axis and probability on the y-axis. (a)–(c) Give the bout durations for C57 for
REM, NREM, and WAKE; (d)–(f) give the bout durations for AJ; (g)–(i) give the bout
durations for DBA; (j)–(l) give the bout durations for PWD.

McShane et al. Page 17

J Neurosci Methods. Author manuscript; available in PMC 2011 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Histograms of state bout durations in units of 4-s epochs conditional on the previous state
for C57. Duration is given on the x-axis and probability on the y-axis. (a) Gives the bout
durations for REM followed from NREM; (b) is deliberately left empty, i.e., REM following
WAKE; (c) gives the bout durations for NREM followed from REM; (d) gives the bout
durations for NREM followed from WAKE; (e) gives the bout durations for WAKE
followed from REM; (f) gives the bout durations for WAKE followed from NREM.
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Fig. 6.
On y-axis proposed measure n, the number of bouts of a state conditional on the previous
state, for each mouse by strain. (a) Gives n for REM followed from NREM; (b) is left
empty, i.e., REM following from WAKE; (c) gives n for NREM followed from REM; (d)
gives n for NREM followed from WAKE; (e) gives n for WAKE followed from REM; (f)
gives n for WAKE followed from NREM. Means for each strain are indicated by the
horizontal black line and standard errors by the vertical bars.
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Fig. 7.
On y-axis proposed measure π, the spike size, for each mouse by strain. (a) Gives π for REM
followed from NREM; (b) is left empty, i.e., REM following from WAKE; (c) gives π for
NREM followed from REM; (d) gives π for NREM followed from WAKE; (e) gives π for
WAKE followed from REM; (f) gives π for WAKE followed from NREM. Means for each
strain are indicated by the horizontal black line and standard errors by the vertical bars.
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Fig. 8.
On y-axis proposed measure μ, the average slab size in units of 4-s epochs, for each mouse
by strain. (a) Gives μ for REM followed from NREM; (b) is left empty, i.e., REM following
from WAKE; (c) gives μ for NREM followed from REM; (d) gives μ for NREM followed
from WAKE; (e) gives μ for WAKE followed from REM; (f) gives μ for WAKE followed
from NREM. Means for each strain are indicated by the horizontal black line and standard
errors by the vertical bars.
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Table 2

Correlation coefficient between 4-s data and 10-s data for each of the nine conventional measures. For all
correlations, p < .001.

Correlation coefficients REM NREM Wake

Percent of time 0.881 0.827 0.850

Number of bouts 0.854 0.679 0.689

Average duration 0.612 0.643 0.788
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