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Regulatory T cells (Tregs) play an essential role in maintaining the
homeostatic balance of immune responses. Asthma is an inflamma-
tory condition of the airways that is driven by dysregulated immune
responses toward normally innocuous antigens. Individuals with
asthma have fewer and less functional Tregs, which may lead to
uncontrolled effector cell responses and promote proasthmatic
responses of T helper type 2, T helper 17, natural killer T, antigen-
presenting, and B cells. Tregs have the capacity to either directly or
indirectly suppress these responses. Hence, the induced expansion
of functional Tregs in predisposed or individuals with asthma is
a potential approach for the prevention and treatment of asthma.
Infection by a number of micro-organisms has been associated with
reduced prevalence of asthma, and many infectious agents have
been shown to induce Tregs and reduce allergic airways disease in
mouse models. The translation of the regulatory and therapeutic
properties of infectious agents for use in asthma requires the
identification of key modulatory components and the development
and trial of effective immunoregulatory therapies. Further trans-
lational and clinical research is required for the induction of Tregs to
be harnessed as a therapeutic strategy for asthma.
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Asthma has dramatically increased in developed countries over
the past 3 decades. It is a common chronic inflammatory disease
of the airways characterized by episodes of breathlessness,
coughing, wheezing and airway hyperresponsiveness (AHR).
The causes are complex and multifactorial, and are therefore
difficult to target therapeutically. Current treatment strategies
only suppress the symptoms, rather than inhibiting the under-
lying mechanisms, and fail to control the disease in a significant
proportion of individuals with asthma.

A variety of different cell types are involved in promoting
the inflammatory component of asthma. The prevailing para-
digm is that T helper (Th) type 2 lymphocytes drive inflamma-
tion through the secretion of cytokines, such as IL-4, IL-5, and
IL-13, which induce the recruitment and activation of eosino-
phils, pulmonary inflammation, mucus hypersecretion, B cell
isotype switching, and AHR. Over time, lung function declines

as a result of airway remodeling, which leads to increased sus-
ceptibility to exacerbations of disease.

Th17 cells are a recently recognized member of the T cell
family, and are important in modifying immune responses in
the airways. Bronchial biopsies from patients during acute
episodes of severe asthma are infiltrated with Th17 cells (1).
Furthermore, studies using animal models have established that
Th17 cells and their cytokines are major inducers of neutro-
philic, eosinophilic, and steroid-resistant airway inflammation
(2, 3).

Natural killer T (NKT) cells are another unique subset of T
cells, which respond to glycolipids and secrete large amounts
of Th2 cytokines (4). NKT cells have been detected at higher
levels in the sinus mucosa and sputum of individuals with asthma
compared with healthy individuals (5, 6). Furthermore, animal
studies have identified a potential requirement for NKT cells in
asthma, particularly in the induction of AHR that is indepen-
dent of Th2 cell responses (7).

Antigen-presenting cells (APCs), such as dendritic cells (DCs),
have crucial roles in antigen presentation, initiation, and main-
tenance of allergic disease. Both myeloid and plasmacytoid
DCs are increased in the airways of patients with asthma after
allergen challenge, highlighting their role in allergic inflamma-
tion (8).

Th2 cell–driven B cell secretion of IgE, subsequent cross-
linking on mast cells, and release of inflammatory mediators
also contributes substantially to the allergic response. Anti-IgE
therapy (Omalizumab) has proven effective for allergic disease
when administered in conjunction with steroids (9).

Together, the dysregulation of these cellular aspects in asthma
highlights the multifactorial processes that contribute to the de-
velopment and maintenance of disease. Although there have
been many attempts, the targeting of individual factors by direct
therapeutic intervention has not led to effective therapies to
date. This highlights the need for the development of thera-
peutic strategies that have multifactorial suppressive effects on
the causes of asthma.

ASTHMA: THE REGULATORY T CELL DEFICIENCY

In healthy individuals, regulatory T cells (Tregs) play an es-
sential role in modulating and regulating immune responses by
promoting tolerance, counterbalancing aggressive inflammatory

CLINICAL RELEVANCE

This review highlights a central role for regulatory T cells
(Tregs) in suppressing the dysregulated immune responses
involved in the pathogenesis of asthma. The development
of an immunoregulatory therapy that induces Tregs offers
a novel therapeutic strategy for asthma.
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reactions, and maintaining homeostasis. Several independent
studies have shown that the number and function of Tregs is
impaired or altered in allergic patients compared with healthy
individuals.

Reduced numbers of Tregs are observed in blood and/or
induced sputum from patients with severe eczema, elevated IgE
levels, eosinophilia, food allergy, and asthma, and, during ex-
acerbations, individuals with asthma have an even greater de-
ficiency of Tregs (10, 11). By contrast, some studies have
detected an increase in the number of Tregs in severe disease
(12, 13). It is likely that, in severe cases, Tregs are induced to
moderate inflammation; however, they are not induced to a
sufficient extent to overcome the aggressive inflammatory re-
sponses involved. However, the interpretation of these studies
may be confounded by the characterization of Tregs with CD4
and CD25 positivity alone, as some of these cells may represent
activated effector T cells. Furthermore, the assessment of Treg
number in blood does not account for Tregs that may have
migrated to the site of inflammation.

As well as reductions in numbers, Tregs from individual
atopy have a significantly reduced capacity to suppress effector
T cells and Th2 cytokines (14, 15). This may be due to dif-
ferences in the proportions of Treg subsets in healthy and
allergic individuals (16). Chemotactic signals for Tregs, such as
those in the CCL-1 pathway, may also be defective in indivi-
duals with asthma (17). Furthermore, the forkhead box (Fox) p3
locus is subject to epigenetic modification, which may result in
alterations in the suppressive capacity of Tregs (18). The role of
epigenetic modifications in Treg function in individuals with
asthma requires further investigation.

Evidence that supports the requirement for Tregs in the
control of asthma has been provided by the use of mouse models
of allergic airways disease. Adoptive transfer of CD41CD251

Tregs into sensitized mice before antigen challenge suppresses
the development of allergic disease (19, 20). In addition, adoptive
transfer of Tregs after the onset of disease attenuates established
inflammation (21).

Glucocorticoid treatment of asthma is effective in suppress-
ing inflammation and symptoms. These agents induce a short-
term up-regulation of Foxp3 expression and Tregs in patients
with asthma (22). However, animal models suggest that, in the
long term, corticosteroids may also prevent the development of
Tregs and exacerbate Th2 immune responses (23).

Together, these observations provide strong evidence that an
effective regulatory response, which is controlled by Tregs, is
required to prevent the development and progression of asthma.

TREG CHARACTERIZATION

Tregs are characterized by many phenotypic and functional
markers that distinguish them from conventional T cells. CD4,
CD25, and Foxp3 are the three markers that have been
classically used to characterize Tregs. The transcription factor,
Foxp3, is essential for the suppressive activity, survival, and
stability of Tregs, and CD25 is found on the vast majority of
Foxp31 T cells.

Tregs may develop as two distinct populations, termed natural
or induced Tregs. Lineage commitment into natural Tregs is
instructed by self-antigens in the thymus. Induced Tregs have
a more ‘‘plastic’’ phenotype. They are derived from the naive
CD4 precursor pool in peripheral lymphoid tissue after foreign
antigen encounter and are generated under the influence of IL-2
and transforming growth factor (TGF)–b (24). Notably, induced
Tregs comprise both Foxp31 and Foxp32 populations (25).

Two subtypes of Tregs that release soluble factors have also
been identified, which are Treg type (Tr) 1 cells that secrete

high levels of IL-10 with or without TGF-b production, and Tr3
cells that release TGF-b (26). However, the continual reporting
of additional suppressive mechanisms and markers, which are
associated with Tregs, indicates that numerous other subtypes
are likely to exist.

TREG-SUPPRESSIVE MECHANISMS

The mechanisms of suppression of immune responses that are
employed by Tregs remain controversial, which largely stems
from discrepancies between in vivo and in vitro studies. The
widely recognized mechanisms of suppression include the
secretion of suppressive soluble factors, cell contact–mediated
suppression, and competition for growth factors (Figure 1). The
regulatory effects of Tregs on effector cell responses include:
cell cycle arrest and inhibition of proliferation; induction of
apoptosis; and suppression of cytokine release, DC maturation,
or antigen presentation and costimulation.

Soluble Factors

The immunosuppressive cytokines, IL-10 and TGF-b, were the
first factors considered to be involved in mediating suppression
by Tregs, and the roles of these cytokines in suppression have
been discussed extensively elsewhere (27, 28). In summary,
IL-10 release from Tregs prevents the synthesis of proinflam-
matory cytokines, and down-regulates the expression of effector
T cell cytokines and antigen presentation and costimulatory
properties of APCs. TGF-b directly prevents T cell prolifera-
tion and differentiation by inhibiting the release of many
cytokines, including IL-1 and IL-2, and their receptors. TGF-b
also inhibits B cell proliferation and apoptosis, and macrophage
proliferation and function, including the release of reactive
oxygen species. Furthermore, TGF-b maintains Treg function
and promotes the differentiation of adaptive Tregs. Neverthe-
less, the roles and contribution of IL-10 and TGF-b to Treg-
mediated immunosuppression are controversial. In vivo studies
have demonstrated that both IL-10– and TGF-b–dependent
mechanisms exist (29–31). By contrast, neutralizing antibodies
against IL-10 and TGF-b fail to abrogate suppression in vitro
and in vivo, and supernatants from cell-suppression assays do
not attenuate effector T cell responses (19, 32, 33). In addition,
the suppressive function of Tregs from mice deficient in these
cytokines is not affected (34, 35).

More recently, IL-35 has been identified as an important
cytokine released by Tregs to target effector cells directly (36).
Epstein-Barr virus–induced gene 3 and IL-12a form the hetero-
dimeric structure of IL-35, which is highly expressed by Foxp31

cells, but not resting CD41 cells. Furthermore, Epstein-Barr
virus–induced gene 32/2 and IL-12a2/2 mice have Tregs with
reduced suppressive capacity, which confirms the importance of
IL-35 in Treg-mediated suppression.

Fibrinogen-like protein 2 (FGL2) is also highly expressed by
Tregs (37). FGL2 down-regulates DC function, limits activation
of naive T cells, and induces apoptosis of B cells. Subsequently,
a role for this suppressive factor has been confirmed, because
anti-FGL2 blocks the suppressive activity of Tregs, and Tregs
from Fgl22/2 mice are less effective.

The release of cytotoxic molecules, in close proximity of
target cells to induce their apoptosis, has also been implicated
as a mechanism of suppression. Tregs can express granzyme A
and/or granzyme B and apoptosis may be mediated in a perforin-
dependent or -independent manner (38–40). In addition, granzyme
B–deficient Tregs have reduced suppressive function.

Tregs preferentially express CD39 and CD73, which convert
ADP and ATP to AMP, which is rapidly degraded to adeno-
sine. Adenosine binds the A2A receptor on effector cells to
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suppress their function, and may reduce DC function and the
expression of costimulatory markers (41). Indeed, CD39-
deficient Tregs are dysfunctional and less effective at suppress-
ing effector T cell responses.

Cell Contact–Mediated Suppression

The existence and importance of cell contact–mediated sup-
pression is controversial. Transwell experiments have shown
that, in some instances, Tregs require cell contact to suppress
target cells, and, in others, cell contact is not required (42, 43).

Galectin-1 is a b-galactoside–binding protein that is pre-
ferentially expressed on Tregs, and binds glycoproteins (44).
Galactin-1 binding to effector cells leads to cell cycle arrest or
apoptosis. Furthermore, blocking of Galactin-1 reduces the
inhibitory effects of Treg cells and Galactin-12/2 mice have
reduced Treg function.

To inhibit the priming and differentiation of effector T cells,
Tregs are known to target APCs. Tregs are the only lympho-
cytes that express cytotoxic T-lymphocyte–associated protein
(CTLA)–4, which closely resembles the T cell costimulatory
molecule, CD28, but has higher ligand-binding affinity. CD28
ligation with CD80/86 on DCs is essential for T cell activation,
and CTLA-4 ligation inhibits CD28 ligation and results in
a higher proportion of anergic T cells. CTLA-4 may also block
or down-regulate the expression of CD80/86, resulting in re-
duced priming of naive T cells. Furthermore, Treg CTLA-4–
mediated ligation of CD80/CD86 can stimulate the production
of indoleamine 2,3-dioxygenase and therefore condition DCs
to become more immuno-suppressive (45). Indoleamine 2,3-
dioxygenase is the rate-limiting enzyme for the degradation of
tryptophan. Tryptophan depletion results in APC immunosup-
pressive activity by inducing the production of proapoptotic

factors. Anti–CTLA-4 treatment reverses Treg suppression of
effector T cell responses, and CTLA-4–deficient mice have de-
fective Tregs (46, 47).

Tregs may also express lymphocyte-activation gene (LAG)-3
(CD223), a homolog of the major histocompatibility complex
(MHC) II coreceptor, CD4, but with higher binding affinity.
The direct interaction of LAG-3 with MHCII maintains the
immaturity of DCs by reducing MHCII–peptide presentation to
naive T cells (48). The control of APCs by Tregs at different
stages of the immune response provides fine modulatory
control.

Neuropilin-1 (Nrp-1) is also expressed by Tregs, and pro-
longs the interaction with DCs and reduces antigen presenta-
tion to naive T cells. The role of murine Nrp-1 in suppression
was confirmed when anti–Nrp-1 was used to abrogate Treg-
mediated suppressive activity (49). However, Nrp-1 cannot be
used as a marker of human Foxp31 Tregs, because Nrp-1 is not
only expressed on human Foxp31 Tregs, and occurs on other
CD41 cells (50). This study also demonstrated that Nrp-1 ex-
pression can be induced by stimulation of peripheral blood T
cells, and may, in fact, be a novel marker of T cell activation.
This suggests that anti–Nrp-1 may abrogate Treg-mediated
suppression by interfering with cell activation rather than Treg
function. The identification of factors that are important in
initiating Treg suppression and are separate from contact-
dependent suppression events requires further study.

Recently, Collison and colleagues (51) showed that Treg/
effector cell contact increased the expression of IL-35. They
also found that conventional T cell activation was required for
heightened Treg function. They proposed that the function of
Tregs is not contact dependent; however, the induction of sup-
pression by T cell receptor (TCR) activation is. Elucidation of
the requirements for the initiation of suppression will further

Figure 1. Regulatory T cell
(Treg)–mediated suppression

of immune responses may

occur through soluble factors

(IL-10, transforming growth
factor [TGF]–b, IL-35, fibrinogen-

like protein (FGL) 2,

granzyme1/2 perforin, andaden-
osine), cell contact–dependent

mechanisms (galectin-1, cyto-

toxic T-lymphocyte–associated

protein [CTLA]–4, lymphocyte-
activation gene (LAG)-3,

neuropilin [Nrp]-1), or compe-

tition for growth factors (IL-2).

Suppression may be the result
of cell cycle arrest, apoptosis,

prevention of dendritic cell

(DC) maturation or antigen

presentation, or reduced costi-
mulation of effector cells (E: T

or B cells).
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the understanding of the contextual importance of each mech-
anism.

Deprivation of Growth Factors

Tregs may also attenuate effector responses by competing with
effector cells for essential growth factors. IL-2 is essential for
both Treg and effector cell function (52). Tregs compete with
effector T cells for secreted IL-2; subsequently, effector T cells
are deprived of stimulation, and this leads to B cell lymphoma-
2-interacting mediator (Bim)-mediated apoptosis (53).

Other Mechanisms of Suppression

Immune modulation by Tregs may also occur via nonspecific
‘‘bystander suppression’’ or outgrowth of a new population of
Tregs, known as ‘‘infectious tolerance.’’ This is supported by
data showing that Tregs do not require TCR recognition to
suppress effector T cells (54). In this study, Tregs were shown to
require activation via their TCR to become suppressive; how-
ever, their function was antigen nonspecific. This was demon-
strated in vitro by culture of transgenic Tregs, which have TCRs
specific for one antigen, with transgenic T cells in the presence
of either specific or nonspecific antigen. Transgenic Tregs
suppressed proliferation of transgenic T cells, regardless of
the antigen used. Hence, Tregs possess constitutive activity,
and suppression can occur in the absence of MHC–peptide
recognition and in the absence of APCs.

It is possible that, depending on the nature of immune
response, eliciting agent, immunological make-up of the host,
and site of suppression, certain mechanisms of Treg-mediated
suppression prevail. Furthermore, in the absence of one sup-
pressive mechanism, Tregs may employ alternative suppressor
functions. Therefore, multiple Treg cell functions may act alone
or synergistically, directly or indirectly, at the site of antigen
presentation to suppress immune responses.

OTHER MARKERS OF TREGS

A number of additional markers have been associated with Tregs
(Table 1). These markers have enabled the further delineation of
the subtypes, activation, and function of Tregs that may be
important in different disease states.

TREG SUPPRESSION OF EFFECTOR TARGETS IN ASTHMA

Defective Treg responses may play central roles in mediating
dysregulated cellular responses and have been implicated at
different stages in the development, progression and exacerba-
tion of asthma (Figure 2). Both natural and induced Tregs are
key players in the maintenance of immune homeostasis.

Recently, antigen presentation by alveolar epithelial cells
has been shown to promote TGF-b–dependent induction of
Foxp3 expression (73). In addition, alveolar macrophages may
direct the induction of Treg differentiation, and a role for these
cells in the suppression of allergic airways disease has been
proposed (74). These observations highlight the important in-
terplay between Tregs and APCs in mediating the control of
immune responses in allergic airways disease.

During the initiation stage of an immune response, Tregs
may attenuate the establishment of stable contacts between
APCs and naive T cells, inhibit APC activity, or promote sup-
pressive factors that prevent effector T cell development.

Emerging evidence suggests that there is also an important
interplay between Tregs and Th17 cells during the early stage
of naive T cell differentiation, which is currently the subject
of intense research (75). Differentiation of naive T cells in the
presence of IL-6 and TGF-b results in the development of Th17

cells. However, in the absence of IL-6, Tregs arise. IL-21 is also
known to contribute to the induction of Th17 differentiation
and suppresses Foxp3. Given their role in asthma, the pre-
vention or suppression of Th17 cells by Tregs facilitates the
maintenance of immune homeostasis.

In addition to modulating the priming of immune responses,
Tregs also directly suppress fully differentiated effector cells.
Indeed, the investigation of the suppressive effects of Tregs on
Th2 cells has identified an array of suppressive mechanisms.
Direct suppression of Th2 cells results in attenuated Th2 cytokine
release, leading to reduced cellular inflammation, B cell isotype
switching, and hallmark features of asthma.

The emerging involvement of multiple effector cell types in
asthma pathogenesis, in addition to Th2 cells, indicates a much
broader role for Tregs in counteracting dysregulated immune
response in asthma.

Human Tregs suppress the proliferation, cytokine release,
and cytotoxic effects of NKT cells in a cell contact–dependent
manner (76). Interestingly, however, NKT cells from individuals
with asthma, but not healthy control subjects, have the ability to
be cytotoxic toward Tregs (39). This supports studies that show
a reduced number of Tregs in individuals with asthma, and
suggests that Tregs in individuals with asthma may be more
vulnerable to destruction. Conversely, NKT cells may also pro-
vide proliferative help to Tregs through the secretion of IL-2
(77). This interplay highlights an important relationship be-
tween Tregs and NKT cells in individuals with asthma, which is
not completely understood.

Effector B cells may also be directly suppressed by Tregs,
which provides a secondary mechanism of immune attenuation
after the suppression of Th2 function. Activated CD41CD251

T cells selectively kill B lymphocytes through close contact–
mediated release of granzyme and perforin, in the absence of
suppression of Th2 cells (78, 79). Hence, Tregs can specifically
prevent IgE release and subsequent mast cell–mediated in-
flammation. Recently, immunosuppressive IL-10–producing B
regulatory cells have been identified, and these cells may also
control T cell–mediated inflammation (80). Furthermore, IL-10
induces IgG4 isotypes that are protective against the develop-
ment of IgE and allergic disease in healthy individuals (81).

TABLE 1. ADDITIONAL MARKERS AND THEIR ASSOCIATION
WITH REGULATORY T CELLS

Marker Associated with: Ref. No.

CD69 A unique subset (55)

CD103 Increased activation status (56)

TNFR2 Increased activation status (57)

CD101 Increased activation status (58)

CD45RB Increased activation status (59)

GITR Clonal expansion (60)

ICOS Clonal expansion (61)

Activin A Clonal expansion (62)

IL-9 Enhanced suppressive function (63)

HO-1 Generation of Tregs (64)

GPR83 Generation of Tregs (65)

Retinoic acid Homing and differentiation (66)

CD62L Homing state (67)

LFA-1 Induction and function (68)

OX40/CD134 Inhibition of suppression (69)

PD-1 Inhibition of suppression (70)

CD127 Low expression on Tregs (71)

CD137/4-1BB Survival (72)

Definition of abbreviations: GITR, glucocorticoid-induced TNFR-related protein;

GPR, G-protein coupled receptor; HO, heme oxygenase; ICOS, inducible T-cell

co-stimulator; LFA, lymphocyte function-associated antigen; PD, programmed

death; TNFR, tumour necrosis factor receptor; Tregs, regulatory T cells.
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Interestingly, B cells may contribute to the control of peripheral
development of CD41CD251 cells, possibly by inducing the
expansion or prolonging the survival of these cells (82).

Innate inflammatory cells in the lung are also potential
targets for Tregs. Neutrophil function and survival are inhibited
by Tregs in response to LPS exposure in vitro (83). Macrophage
function and proinflammatory cytokine release are also atten-
uated in vitro and in vivo (84). These and other studies suggest
that Tregs have the capacity to target innate immune responses
directly. The potential for Tregs to suppress neutrophil, mac-
rophage, and eosinophil responses directly, in the context of
asthma, has not been assessed.

The capacity of Tregs to suppress the initial priming of an
allergic response, and the multiple effector cells involved in the
pathogenesis of asthma, indicates the potential for the induction
of Tregs as a multifactorial immunoregulatory therapeutic ap-
proach for asthma.

INDUCTION OF TREGS BY INFECTIOUS AGENTS
AND THEIR COMPONENTS

It has been widely proposed that a lack of infection-induced
tolerance promotes the development of asthma, and may be
responsible for the current asthma epidemic. This lack of tol-

Figure 2. Treg-mediated immunoregulation is crucial in
preventing the dysregulated immune responses that drive

the initiation, progression, and exacerbation of asthma. By

regulating Th2, Th17, and natural killer T (NKT) cells,
antigen-presenting cells (APCs), B cells, and inflammatory

cells, Tregs prevent the development of allergic inflam-

mation, IgE release, mucus hypersecretion, and airway

hyperresponsiveness (AHR).

TABLE 2. INFECTIOUS MICRO-ORGANISMS THAT MAY INDUCE REGULATORY T CELLS–MEDIATED SUPPRESSION OF ALLERGIC
AIRWAYS DISEASE

Organism Suppressive Mechanism Ref. No.

Bifidobacterium lactis Associated increase in TGF-b (85)

Heligmosomoides polygyrus Involves/dependent on IL-10 (86, 87)

Lactobacillus reuteri Unknown, conflicting results; no change or increased IL-10 (88)

Lactobacilus rhamnosus Associated increase in TGF-b (85)

Litomosoides sigmodontis Associated increase in TGF-b, however, blocking had no effect suppression of IL-10 (89)

Mycobacterium vaccae Dependent on IL-10 and TGF-b (90)

Nippostrongylus brasiliensis products Independent of TLR-2, TLR-4, IFN-g, and IL-10 (91)

Nippostrongylus brasiliensis Involved IL-10 (92)

Schistosoma japonicum Associated increase in IL-10 (93)

Schistosoma mansoni Independent of IL-10, likely to be cell contact mediated (94)

Streptococcus pneumoniae Unknown, not IL-10 or TGF-b mediated, likely to be cell contact mediated (95) and unpublished data

Toxiplasma gondii Associated increase in IL-10 (96)

Definition of abbreviations: TGF, transforming growth factor; TLR, Toll-like receptor.
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erance may be mediated by reductions in infection-induced
Tregs, which results in maladaptive immune responses that
drive the development of allergy and asthma. This indicates the
potential of harnessing the induction of Tregs by infectious
agents or their components to target the development and
effector-phase responses of allergic disease, including those that
occur at the site of inflammation.

An inverse association between a number of infectious agents
and the prevalence of asthma has been reported. These obser-
vations have initiated the elucidation of the mechanisms of
induction and protection against asthma with animal models.
As a result, a number of infections have been shown to induce
Tregs and suppress allergic responses in mouse models of
allergic airways disease (Table 2). The majority of infections
appear to promote IL-10 or TGF-b–mediated suppression of
effector responses; however, additional mechanisms of suppres-
sion have not been widely explored. Identification of the micro-
bial components that are involved in the induction of Tregs and
subsequent suppression of allergic airways disease is necessary
before these effects can be harnessed for therapeutic application.

FUTURE DIRECTIONS

Numerous therapeutic strategies for asthma have been devel-
oped (97); however, their specificity toward particular factors
limits their success. This is not surprising, because asthma is a
multifactorial disease, and allergic airways disease continues to
develop in the absence of Th2 cells, IgE, or eosinophilic in-
flammation in mouse models (98, 99). Immunoregulatory ther-
apies that initiate a shift from Th2 to Th1 responses have also
been explored; however, these approaches have had limited
success in clinical trials (100, 101).

The multitargeting nature of Tregs allows for the regulation
of a number of different effector arms of the immune response
involved in asthma. The induction of Tregs to target effector
responses may be the most holistic approach to modulate the
underlying cause of disease. Although this would seem a
straightforward approach, there are numerous issues that need
to be addressed. Key components of infectious agents need to
be identified and developed into immunoregulatory therapies,
and administration regimes (dose, timing route) would need to
be optimized (Figure 3). Furthermore, a successful immunoreg-
ulatory therapy needs to overcome the existing Treg pool within
an individual with asthma, and the expansion of Tregs with
normal function and chemotactic properties is required. Never-
theless, this approach of inducing Tregs to suppress the numerous
allergic inflammatory responses in asthma would seem to be the
most logical approach for the development of effective therapies.

Current and ongoing studies of harnessing the induction of
Tregs by infectious agents for application to allergic disease
have been based on the conversion of empirical data into
effective therapies. Helminth infection with Litomosoides sig-
modontis, Nippostrongylus brasiliensis, Schistosoma japonicum,
and Schistosoma mansoni has been shown to induce Tregs and
suppress allergic airways disease (89, 92–94). One study has
extended these observations and identified helminth-derived
products that inhibit allergic responses (91). However, these
helminth products have not yet been extensively tested in

animal models of allergic disease or in clinical trials. Treatment
with probiotic bacteria has been shown to prevent the de-
velopment of allergic airways disease in both adult and neonatal
mouse models (85, 88). Numerous studies have investigated the
potential of probiotic treatment for asthma and allergic rhinitis
in humans, but have produced conflicting results, and are incon-
clusive at this stage. These studies have been recently reviewed
(102). Mycobacterium vaccae administration has protective
effects on allergic airways disease in mouse models, and there
have been several attempts to translate these observations in
clinical trials. Early studies showed that treatment with heat-
killed M. vaccae reduced allergen-induced responses in atopic
dermatitis; however, more recent studies that assessed the effect
on asthma and atopic dermatitis showed a lack of efficacy (100,
103–105). The full potential of M. vaccae–based therapy for
allergic disease remains to be determined, and is the subject of
ongoing clinical trials.

Other promising therapeutic strategies for allergic disease,
which involve increasing the numbers or function of Tregs, have
been recently reviewed (106). Allergen immunotherapy is par-
ticularly effective, and involves the administration of increasing
doses of a specific allergen. Therapy promotes the development
of antigen-specific Tregs that release IL-10 or TGF-b and
inhibit allergen-specific Th2 responses (107, 108). However, this
strategy requires treatment that is tailored to the specific allergen,
constant patient monitoring, and has been associated with serious
side effects, including anaphylaxis. Further investigations are
underway to improve safety and efficacy of this approach (109).
Glucocorticoid administration in conjunction with the active
form of vitamin D (1a,25-dihydroxyvitamin D3 or calcitrol) has
also been shown to promote the induction of Tregs that release
IL-10 (110). Importantly, this strategy is effective in patients
that are refractory to steroid treatment, and further studies are
refining this strategy (111).

In addition to the development of an immunoregulatory
therapy for asthma, in vivo models that involve the induction of
Tregs and suppression of allergic airways disease may provide
valuable tools to further our understanding of the characteris-
tics, mechanisms, and function of Tregs. These models may
facilitate the delineation of ‘‘real–time’’ events that are important
in the induction and enhanced suppressive function of Tregs.

New therapeutics, based on our understanding of Treg func-
tion and the pathophysiology of asthma, could have profound
benefits for the care of individuals with asthma. Hence, it is not
surprising that the potential to harness the power of Tregs as
an immunoregulatory therapeutic is of great interest. Through
Tregs, we have a multifactorial approach to a multifactorial
disease, if only we can develop their potential into therapy.
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