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The identification of quantitative trait loci (QTL) for plant metabolites requires the quantitation of

these metabolites across a large range of progeny. We developed a rapid metabolic profiling method

using both untargeted and targeted direct infusion tandem mass spectrometry (DIMSMS) with a

linear ion trapmass spectrometer yielding sufficient precision and accuracy for the quantification of a

large number of metabolites in a high-throughput environment. The untargeted DIMSMS method

uses top-down data-dependent fragmentation yielding MS2 and MS3 spectra. We have developed

software tools to assess the structural homogeneity of theMS2 andMS3 spectra hence their utility for

phenotyping and genetical metabolomics. In addition we used a targeted DIMS(MS) method for

rapid quantitation of specific compounds. This method was compared with targeted LC/MS/MS

methods for these compounds. The DIMSMS methods showed sufficient precision and accuracy for

QTL discovery.We phenotyped 200 individual Lolium perenne genotypes from amapping population

harvested in two consecutive years. Computational and statistical analyses identified 246 nominal

m/z bins with sufficient precision and homogeneity for QTL discovery. Comparison of the data for

specific metabolites obtained by DIMSMS with the results from targeted LC/MS/MS analysis

showed that quantitation by this metabolic profiling method is reasonably accurate. Of the top

100 MS1 bins, 22 ions gave one or more reproducible QTL across the 2 years. Copyright # 2009 John

Wiley & Sons, Ltd.
Rapid phenotyping of a large number of traits is gaining

interest now that genotyping methodologies are becoming

quick and relatively inexpensive. Genetic data are of limited

use without a correlation to a particular phenotype, and

genotyping has so far been primarily related to readily

observable phenotypes, such as morphological traits. To

exploit genotyping data further correlations need to be

established with higher resolution phenotypic data. One of

the practical applications of this research area is marker-

assisted selection (MAS), which is one of the main

biotechnological advancements in plant breeding. Most

traits of interest in plant improvement are quantitative in

nature, that is, they are influenced by multiple genes and by

environmental factors. Regions of the genome that contain

genes with measurable effects on a quantitative trait are
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known as quantitative trait loci (QTL). Molecular markers

linked to QTL are identified on genetic maps byQTL analysis

andmay subsequently be applied in aMAS strategy to screen

for individuals in populations that are genetically disposed

to producing the desired phenotype, reducing dependence

on measurement of the trait itself. This is especially useful

when the determination of that specific trait is laborious,

prone to error, expensive or the trait is of low heritability. The

application of MAS strategies is being used successfully to

accelerate the breeding for key economic traits in a number of

major crops.1,2 An area where MAS can be of major

importance is in selection for metabolic traits. The measure-

ment of specific levels of metabolites in breeding populations

is expensive and time consuming andMAS could potentially

speed up breeding for these traits. The use of metabolomic

approaches in the identification of QTL can be regarded as a

new and promising area in plant breeding.3 The combination

of genotype and metabolic phenotype opens up the

prospects of forward genetics and is a powerful way for

establishing relationships between genes and metabolites,

the study of which has become known as genetical

metabolomics.4–7

The utility of a metabolic profiling method for phenotyp-

ing depends on its speed, cost and coverage, and the
Copyright # 2009 John Wiley & Sons, Ltd.
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precision, accuracy and qualitative information content of

the data acquired. Speed is important because of the large

sample throughput necessary to provide the scale of data

required to establish statistical links between metabolic and

genotypic data. Adequate precision and accuracy are

essential to make valid observations. The three different

strategies that are followed in metabolomics each have their

merits and short-comings for metabolic phenotyping.

Nuclear magnetic resonance (NMR)-based metabolic profil-

ing can be very reproducible and compatible to large sample

sets but only covers a very limited number of major

metabolites.8 Other scientist have successfully used gas

chromatography/mass spectrometry (GC/MS)-based meta-

bolic phenotyping approaches on large sample sets.9

However, this method is targeted towards the polar

compounds of the primary metabolism and will not provide

information on many metabolic traits likely to be of interest.

Liquid chromatography/mass spectrometry (LC/MS)- and

direct infusion mass spectrometry (DIMS)-based methods

are able to measure a wider range of different metabolites.

However, the robustness and stability of these methods

beyond 100 to 200 runs can be questionable. Metabolic

phenotyping using metabolomics techniques is only of

interest if it can deliver reproducible data over 1000 or more

analyses.6

Some metabolic phenotyping strategies assume that each

measured signal originates from one single metabolic

species.7 When low-resolution mass spectrometers with

only one unit mass resolution are used several different

metabolites can deliver the same signal and even with high-

resolution mass spectrometry in DIMS a signal may derive

from multiple isomers. The structural homogeneity under-

lying the measured signals thus needs to be assessed as

different metabolites with similar features can generate the

same signal. Moreover, limited prior knowledge of metab-

olite identities in biological samples demands sufficient

spectral information to identify or at least classify the

observed metabolites.

Methods that perform well in these areas can be applied to

metabolic phenotyping of populations for which genotypic

data are available, including progenies of specific crosses. In

this report, we demonstrate how direct infusion ion trap

mass spectrometry (DIMSMS) metabolic profiling identifies

structural and quantitative metabolic features that can be

used to determine QTL in a plant population. This non-

standard approach demanded new data-mining tools (which

we developed within R software), enabling the systematic

analysis of the data.

In this study we have focused on perennial ryegrass

(Lolium perenne L.), which is the major forage species in large

parts of Europe and Australasia. Like most other temperate

and cool grasses this species lives in symbiosis with fungal

endophytes,10 most commonly Neotyphodium lolii. Although

these endophytes do not in most cases cause any morpho-

logical changes to the plant they play a major role in the use

of perennial ryegrass as forage for livestock. Endophytic

N. lolii fungi produce a range of alkaloids that are crucial for

the persistence of the grass in the field, but other alkaloids

produced by the fungus can have toxic effects on livestock,

such as ryegrass staggers.11 It has been shown that host
Copyright # 2009 John Wiley & Sons, Ltd.
genetics can influence the performance of N. lolii, both in

terms of fungal biomass and the alkaloid profile.12 We were

therefore interested to determine QTL for these effects and to

determine if there are different QTL for the levels of the

different fungal metabolites. This could enable the develop-

ment of molecular markers for these traits, which would be

highly desirable as breeding of grasses for their effect on

endophytes is extremely complex and tedious.13 Recent

studies have shown that there are complex metabolic

interactions between the host plant and the endophytic

fungus.14,15 We therefore chose not to limit our analyses to

two or three specific fungal alkaloids but to use a rapid DIMS

method with an ion trap mass spectrometer enabling

both measurement of specific fungal alkaloids and unbiased

metabolic profiling of a range of known and unknown

metabolites.

A rapid analytical method was required to limit con-

straints on resources including instrument time. In the first

year we used the DIMSMS method as already published,

which provided an MS1 profile and MS/MS information on

ca. 200 major ions.16 This method required over 15min per

sample (including controls and blanks), and therefore only

two replicate plants were analysed. The extensive MS/MS

spectral information yielded by this method assisted

identification and the assessment of homogeneity of

metabolite composition.15 In the second year with extensive

MS fragmentation data on the metabolites already in hand

we developed an accelerated targeted DIMSMS approach,

which enabled three replicate analyses of the 200 plants to be

run while collecting fragmentation data on specific ions.

DIMS is not usually advocated as a quantitative method.

One of the aims of this study was to compare quantification

by DIMS with that by LC/MS/MS and to show that the

accuracy is sufficient to determine reproducible QTL across

2 years. We also describe a new method based on direct

infusion collecting MS1 profile data and targeted MS2 and

MS3 data for selected ions (peramine and ergovaline), which

we have designated DIMS(MS). This method yields quan-

titative information on specific endophyte alkaloids per-

amine and ergovaline, two well-known metabolites in the

symbiosis of ryegrass and endophytes.
EXPERIMENTAL

Instrumental
A linear ion trap mass spectrometer (LTQ) coupled to a

Surveyor high-performance liquid chromatography (HPLC)

system (both Thermo Finnigan, San Jose, CA, USA) was

used. Thermo Finnigan Xcalibur software (version 1.4) was

used for data acquisition and processing.

Biological materials
For this experiment an F1 mapping population (IxS) from a

pair cross between two heterozygous genotypes from two

commercial perennial ryegrass (Lolium perenne L.) cultivars

(‘Grasslands Impact’� ‘Grasslands Samson’) was used.17

The ‘Impact’ parent was infected with a naturally occurring

‘wild-type’ endophyte (Neotyphodium lolii) strain. IxS F1
mapping population progeny were maternally derived from

this parent and, therefore, due to the obligate vertical
Rapid Commun. Mass Spectrom. 2009; 23: 2253–2263
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transmission of endophyte through seed, shared the same

endophyte background. Three clonal replicates of 200 genotypes

(parents plus 198 F1 progeny)were grown outdoors in pots in

a randomised complete block at AgResearch Grasslands,

Palmerston North, New Zealand. Bulk herbage samples

were harvested from two replicates/genotype on 31 March

2005 and from three replicates/genotype on 3 April 2006 and

stored at �208C. Samples were freeze-dried and milled.

Chemicals
All solvents used for LC/MS were HPLC grade; solvents

used for other procedures were of HPLC or analytical grade.

A synthetic standard of peramine was supplied by B. Dent

(Lower Hutt, New Zealand). Synthetic ergovaline was

provided by Dr. F. Smith (Pharmacal Sciences Department,

Auburn University, Auburn, AL, USA).

Extraction
Around 200mg of each sample was weighed out exactly into

screw-topped vials and 1.0mL of isopropanol/water (1:1)

was added. The vials were rotated for 2 h at 30 rpm. After

extraction each vial was centrifuged at 13 000 rpm and 100mL

of the supernatant was added to 900mL of isopropanol/

water (1:1) in an HPLC vial. The vials were stored at �208C
until analysis. Aliquots of 100mL were taken from several

randomly selected extracts and combined to give control

samples for both years.

Direct infusion mass spectrometry
DIMSMS analysis was based on the previously described

method.16 The infusion solvent (0.1% formic acid in H2O and

0.1% formic acid in MeCN (1:1)) was pumped at

250mLmin�1 and split into a 12mLmin�1 flow to the

autosampler and a 238mLmin�1 flow to a T-junction just

in front of the electrospray ionisation (ESI) source. A 40mL

aliquot of each sample was injected in the low flow stream in

the autosampler. The sample flowed through the sample

loop at 12mLmin�1 and joined the T-junction just in front of

the ESI source. The flow rate was kept constant for 9min,

after which it was increased to 500mLmin�1 for 1min,

switching to 100% MeOH for 1min followed by 100%

isopropanol for 1min, and then switching back to the original

solvent mixture for 1min. The flow rate was then restored to

250mLmin�1 prior to injection of the next sample.

Samples were run in random order. After each 15 samples

the control sample was infused, followed by two blank

samples. Then the machine was switched to negative mode

and all samples were analysed in a comparable way using

negative ESI (to be reported elsewhere). During the complete

experiment the sample tray of the autosamplerwas held at 58C.
The mass spectrometer was set for ESI in positive mode.

The spray voltage was 5.0 kV and the capillary temperature

2758C. The ion optics were tuned using paxilline. The flow

rates of sheath gas, auxiliary gas, and sweep gas were set (in

arbitrary units/min) to 20, 5, and 12, respectively. For the

first 1min after injection no data were recorded; for the

period from 1.0 to 1.5min, MS1 spectra only were recorded;

from 1.5 to 9.0min the mass spectrometer was set up in data-

dependent mode to collect one MS1 spectrum, followed by

the isolation (2 mu (nominal mass units)) and fragmentation
Copyright # 2009 John Wiley & Sons, Ltd.
(35% CE (relative collision energy)) of the most intense ion

from the MS1 spectrum, followed by the isolation (2 mu) and

fragmentation (35% CE) of the most intense ion from theMS2

spectrum, and this was repeated in turn for the 25 most

intense ions in the MS1 spectrum. A new MS1 spectrum was

then recorded, followed by the repetitive isolation (2mu) and

fragmentation (35% CE) of the 25 most intense ions from that

MS1 spectrum and their most intense MS2 product ions.

When an ion with a specific mass was isolated and

fragmented for the third time, it was placed on an exclusion

list for the duration of the run. In total over 250MS2 spectra of

different ions were recorded in an average run.
DIMS(MS)

The method was similar to the DIMSMS method, using the

same setup and solvents but for these experiments a 5mL

aliquot of each sample was injected in the low flow stream in

the autosampler and flow rate was kept constant for 2min

after which the same washing steps were used.

The mass spectrometer was set up similarly. For the first

1min after injection no data were recorded; for the period

from 0.6 to 2min MS1 spectra were recorded (100–800m/z),

followed by a 4min section with a cycle of 23 MS1 combined

with targeted fragmentations for (i) peramine: MS2: 248.2m/z

(�2 @ 35% CE), MS3: 248.2m/z (�2 @ 35% CE); 206.2m/z (�2

@ 35% CE); (ii) ergovaline: MS2: 534.3m/z (�2 @ 35% CE),

MS3: 534.3m/z (�2 @ 35% CE); 516.2 (�2 @ 35% CE).

LC analysis
Peramine and thesinine-rhamnoside were analysed by

LC/MS/MS as previously described.18,19 Ergovaline was

analysed by HPLC-fluorescence.20

Data analysis
The datawere extracted and analysed using amodification of

the method described by Cao and co-workers.15 The ion

abundance values for nominal unit mass MS1 bins over the

range m/z 100 to 800 (hereafter referred to as m/z bins) were

determined for each sample to generate an MS1 data matrix

for statistical analysis. For the normalisation we used the

following strategies. The first step in normalisation was the

use of the median intensity for each m/z bin.15 The median

intensity for each bin was then divided by the sum of all the

median intensities for the particular sample (similarly to

Koulman et al.16). This largely eliminated the batch effect

across the experiment, and this normalisation procedure was

sufficient for all the MS1m/z bins.

The degree of homogeneity across the samples of the MS2

spectra from a given m/z bin obtained during the untargeted

DIMSMS analysis reveals quantitative or qualitative differ-

ences in the composition of the isobaric species within them/z

bin. The modified Manhattan distance was used to measure

the similarity of sparse MS2 spectra derived from a givenm/z

bin.15,16 Instead of visual inspection, we developed a method

to judge whether these MS2 spectra are homogeneous based

on the cophenetic correlation coefficient (CPCC).21 A higher

CPCC indicates a higher tendency towards multiple

clustering, i.e. the presence of qualitatively different MS2

spectra within the set indicating that the signal for a given
Rapid Commun. Mass Spectrom. 2009; 23: 2253–2263
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m/z bin is a measure of different metabolites in different

samples.

A different procedure was used for the specific measure-

ments of peramine and ergovaline. The MS3 intensities were

measured constantly during the infusion of the sample, over

the course of 2min. The intensity of the MS3 signal showed a

near Gaussian curve, whichwas suitable for integration like a

chromatographic peak. We used the LC-Quan option of the

Xcalibur software package to integrate the MS3 signals of

peramine (using the summed signals of the 149.1, 175.2m/z

product ions from 206.2m/z) and ergovaline (using the

summed signals of the 208.2, 223.2, 268.2, 320.2m/z product

ions from 516.2m/z). These data were then normalised

relative to the respective signals in the preceding and

subsequent control samples in the run. Longer-term

variation was then corrected by a second normalisation

strategy using the linear regression of the peramine or

ergovaline intensity against the run number. This function

was considered to describe the decline in the intensity during

the whole experiment. Using this function we adjusted the

intensity of each measurement to the fitted value.

QTL analysis
A genetic linkage map of the I� S population17 was

constructed for QTL analysis using EST-derived simple

sequence repeat (SSR)22 and sequence tagged site (STS)

markers. Briefly, a two-way pseudo-testcross analysis23 was

used to construct a genetic linkage map based on 188 IxS F1
progeny, using the CP (cross pollination) population module

in JoinMap1 3.0.24 A consensus map based on meioses in

both parental genotypes ‘I’ and ‘S’ was estimated, after first

checking for conservation of marker locus order between

individual parental maps. The final map identified seven

linkage groups (LG1–7), equivalent to chromosomes, and is

640 centimorgans (cM) in length with 160 marker loci at a

mean density of one locus every 4 cM. Linkage group

assignments are consistent with the International Lolium

Genome Initiative (ILGI) nomenclature.25

QTL analysis was performed using simple interval

mapping implemented in MapQTL1 4.0 software.26 For

each trait, the phenotypic mean value (n¼ 2 in 2005 and n¼ 3

in 2006) for each IxS progeny genotype was used for QTL

analysis. The software generates a LOD (logarithm-of-odds

ratio) score profile across linkage groups for each trait, the

LOD score being a statistical test for the presence of a QTL

controlling the trait. Peaks that penetrate a pre-assigned

minimum LOD threshold indicate the presence of a putative

QTL. A LOD threshold of 2.7 for QTL declaration (linkage

group-wide significance P< 0.05) was chosen based on

permutation testing (n¼ 1000) implemented in MapQTL1.

QTL position was described by LOD peak position and

1- and 2-LOD support intervals.
RESULTS AND DISCUSSION

The aim of this study was to develop and apply a method

that would rapidly acquire data on as many metabolites as

possible with sufficient precision and accuracy for repro-

ducible QTL determination. To handle the scale of the task

with available instrument resources we have applied DIMS
Copyright # 2009 John Wiley & Sons, Ltd.
techniques. As we were aware of the potential limitations of

these techniques such as ion suppression, adduct and cluster

formation, and the lack of qualitative resolution through

chromatography, we investigated the efficacy of themethods

in terms of the qualitative homogeneity of the signals and the

precision and accuracy of the measurements. We have found

these techniques allow for the rapid collection of data on a

sufficient scale and with an acceptable level of reproduci-

bility to be used for the detection of QTL.

The analysis was performed over 2 years with two

different methods. In the first year the untargeted DIMSMS

method was focused on obtaining both quantitative and

qualitative data through the collection of MS2 and MS3

spectra. These spectra facilitated the characterisation and

identification of themetabolites occupying them/z bins. They

also provided evidence of the homogeneity of a givenm/z bin

across all the samples, which is essential when the m/z bin

signal intensity is to be used in quantitative analysis. With

this information in hand we could focus on the quantitation

and we collected only MS1 data and MSn on specific ions in

the second year. Threshold values were set for precision and

accuracy was determined for selected metabolites. Data

of sufficient quality were used for QTL discovery across the

2 years.

Homogeneity
The large-scale collection of MS2 and MS3 spectra resulting

fromDIMSMS allows the qualitative interrogation of the data.

The method is based on the modifiedManhattan distance as a

measurement of the similarity of MS2 spectra from ions in a

given parent m/z bin as previously described in detail.15

Clustering was carried out based on the modified Manhattan

distance scores between the MS2 spectra and the cophenetic

correlation coefficient (CPCC) was used to estimate clustering

tendency. Multidimensional scaling was used for visual

inspection of the homogeneity of the MS2 spectra from an

m/z bin. Bins were considered homogeneous when the CPCC

was below 0.9. Of the 337 bins for which valid CPCC scores

could be calculated (requiring more than 3 samples with MS2

spectra from each bin), 87.2% had a CPCC score <0.9

indicatingmost bins tend to be homogeneous among samples.

Two examples of multidimensional scaling clustering dia-

grams are shown in Fig. 1. One example is the m/z bin 333,

with a CPCC of 0.56, which is clearly highly homogeneous

across all the samples, showing a very limited dispersion.

On the other hand the m/z bin 156 with a CPCC score of

0.93 shows a heterogeneous distribution pattern in the

multidimensional scaling. Manual inspection of the MS2

spectra from four samples that were distant in the multi-

dimensional scaling shows that most likely two sets of ions

were present in different relative concentrations. This can be

explained by the presence of two different metabolites with

the same nominal mass, but at different relative concen-

trations across the sample set. A CPCC score <0.9 does not

establish that an m/z bin provides a measure of a single

metabolite but it does indicate a consistent set of metabolites

across the samples.

We have shown thatMS2 andMS3 spectral information can

be used in targeted DIMSMS to quantify metabolites which

may be a minor component of an m/z bin, as for ergovaline.
Rapid Commun. Mass Spectrom. 2009; 23: 2253–2263
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Figure 1. (a) Multidimensional scaling clustering of MS2 spectra derived fromMS1 bins. The 333m/z bin with a CPCC of

0.56 is a homogeneous bin with a few dispersions due to the weak signal. (b) The 156m/z bin with a CPCC of 0.93 is a

heterogeneous bin with strong clustering tendency. FourMS2 spectra derived from the 156m/z bin are shown; data points

corresponding to the sample idx are highlighted as filled black circles in (a).

Copyright # 2009 John Wiley & Sons, Ltd. Rapid Commun. Mass Spectrom. 2009; 23: 2253–2263
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Figure 2. Intensity of peramine signal as measured by

DIMSMS before normalisation. Figure 3. Histogram of the distribution of coefficient of

variance values for m/z bins in the control sample used in

the first year (n¼ 59).
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Further development of both data-mining methods and

instrumental technology will be required for this approach to

be applied in an untargeted manner.

Precision
As previously discussed, the infusion of raw plant extracts

affects the overall performance of the mass spectrometer (see

Fig. 2). Normalisation of the data is essential to reduce batch

effects. In both years a control sample was used to monitor

the technical precision and facilitate the normalisation of the

data. A straightforward and simple normalisation method

was applied as described in the Experimental section. The

data on the control sample showed the required precision.

The precision of the method can be expressed by the

coefficient of variation (CV¼ 100� standard deviation/

mean) for each m/z bin in replicate measurements of a

sample. In the first year the DIMSMS method we used

focused on collection of MS2 and MS3 spectra and therefore

compromised the number ofMS1 spectra, which resulted in a

less precise method for MS1 with a median CV of 29.3% and

an average CV of 33.8%. The distribution of the CV values for

different m/z bins is shown in Fig. 3. In the second year the

number of MS1 spectra acquired per sample was much

higher which dramatically increased the precision yielding a

median CV of 18.3%.

For the precise and robust analysis of specific compounds

a clear path for method validation exists. However, the

development of validated untargeted metabolic profiling is

still an area of research and discussion.27 The most common

approach is the use of a control sample, which is

representative for all the samples in the experiment, as

discussed above. The decision on the cut-off point for what is

considered precise andwhat not is always arbitrary. For GC/

MS data <20% CV has been recommended for quality

assurance.27 DIMS data are inherently less precise than those

from GC/MS. We therefore suggest that initially m/z bins

with a CV <30% were of sufficient quality to be used in the

QTL analysis. For the first year this included over 53% of all

them/z bins (see Fig. 3), in the second year this included over

89% of all m/z bins. Sufficient precision (CV <30%) and

spectral homogeneity of specific m/z bins were used as
Copyright # 2009 John Wiley & Sons, Ltd.
selection criteria for the use of an m/z bin in QTL

determination.

Accuracy
A subset of 48 samples randomly chosen from the sample set

of the second year was analysed by targeted LC/MS/MS as

described previously18,19 and by HPLC-fluorescence (as

described by Spiering et al.20). This allowed us to determine

the accuracy of the semi-quantative data obtained by DIMS

with the quantitative data from LC/MS/MS or HPLC. The

DIMS values are plotted against the LC estimates for the four

compounds analysed: perloline (Fig. 4(a)), E/Z-thesinine-

rhamnoside (Fig. 4(b)), peramine (Fig. 4(c)) and ergovaline

(Fig. 4(d)). The DIMS data for the m/z 534 bin corresponding

to ergovaline did not show any relationship with quantative

data from HPLC-fluorescence. The DIMS data for E/Z-

thesinine-rhamnoside showed a linear relationship with the

LC/MS/MS data over a limited range (Fig. 4(b)). For the

other two compounds the correlation between the DIMS and

LCMSMS values was linear and considerable based on the R2

of the linear regression (see Figs. 4(a) and 4(c)).

In the case of peramine and ergovaline we had also

collected MS3 spectra by DIMS(MS) and used the summed

intensity of selected product ions (149.1, 175.2m/z for

peramine and 208.2, 223.2, 268.2, 320.2m/z for ergovaline)

to compare with the LC estimates in Fig. 5. For peramine

there was a limited improvement in linearity (R2 increased

from 0.70 to 0.73) but for ergovaline (Fig. 5(b)) the

improvement was dramatic (R2 increased from 0.00 to

0.49), showing a reasonable correlation between the DIMSMS

and LC analysis data.

The compound E/Z-thesinine-rhamnoside provided the

most abundant signal in a large number of the MS1 spectra.

This is a recently described alkaloid that is accumulated by

several grass species including perennial ryegrass.19 By LC/

MS/MS it was possible to analyse both the E- and the Z-

enantiomers separately while by DIMS these enantiomers

both occupy the 434m/z bin. The ratio between the two

enantiomers measured by LC/MS/MS was 1.2 (�0.4). There
Rapid Commun. Mass Spectrom. 2009; 23: 2253–2263
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Figure 4. (a) Normalised intensity of the 333m/z bin as

measured by DIMS vs. AUC of perloline measured by LC/

MS/MS (linear regression R2: 0.85). (b) Normalised intensity

of the 434m/z bin as measured by DIMS vs. AUC for E-

thesinine-rhamnoside and Z-thesinine-rhamnoside combined

measured by LC/MS/MS (linear regression R2: 0.86).

(c) Normalised intensity of the 248m/z bin as measured by

DIMS vs. AUC of peramine measured by LC/MS/MS (linear

regression R2: 0.70). (d) Normalised intensity of the 534m/z

bin as measured by DIMS vs. ergovaline measured by HPLC-

fluorescence (linear regression R2: 0.00).

Figure 5. (a) Normalised DIMSMS levels of peramine vs. LC/

MS/MS levels of peramine (R2: 0.73). (b) Normalised

DIMSMS levels of ergovaline vs. HPLC-fluoresence levels

of ergovaline (R2: 0.49).

Copyright # 2009 John Wiley & Sons, Ltd.
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was a very large difference in concentration between

different genotypes. One of the parent plants lacked the

ability to accumulate E/Z-thesinine-rhamnoside and this was

reflected in the progeny where about half of the genotypes

did not accumulate E/Z-thesinine-rhamnoside, while for

other genotypes the 434m/z ion was the highest intensity ion

in themass spectrum. Comparison of the DIMS and LC/MS/

MS data (Fig. 4(b)) showed that the dynamic range of the

DIMS method is restricted compared to that of the LC/MS/

MS method. There is a clear linear relationship between the

two data sets until the LC/MS/MS signal exceeds 1300 AUC

at which stage the DIMS remains at a plateau between 0.04

and 0.05 (arbitrary units).

For perloline (measured as the 333m/z bin) the linear

relationship between the DIMS data and the LC/MS/MS

data did not show any saturation as observed for the 434m/z

bin and remained linear over the whole scale. The same was

true for the peramine signal. Both of these metabolites exist

as stable cations, rather than in an acid-base equilibrium as

the thesinine-rhamnoside alkaloid. The linearity of the

relationship between the LC/MS/MS estimate of peramine

levels and those measured by specific DIMSMS was only

marginally better than with the 248m/z bin measured by

DIMS, which was contrary to what was observed in another

ryegrass endophyte association.15
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This was markedly different for the ergovaline measure-

ments. The levels of ergovaline were very low in these

samples, which compromised the precision of even the

dedicated HPLC-fluorescence method. Using untargeted

DIMSMS the 534m/z bin appeared to comprise largely ions

from compounds other than ergovaline. Only MS3 data from

targeted DIMSMS gave sufficiently ergovaline-specific ions

to be used to determine ergovaline levels.

Speed
An important feature of the method is speed and throughput

of the analysis. The actual analysis time per sample was

around 12min in the first year using untargeted DIMSMS

and around 5.6min in the second year using targeted

DIMSMS. Additionally, every 15 samples two blanks and

two control samples were used which added roughly 25%

extra analysis time per sample. The relative short analysis

time in the second year enabled us to analyse each genotype

in triplicate, which improved the precision.

Sample preparation, especially milling and weighing, are

highly time-consuming steps and remain a bottleneck to

larger-scale analyses. This step will be unavoidable for any

metabolic profiling either using MS, NMR or near-infrared

(NIR) spectroscopy, and, of these, MS currently delivers the

most information-dense results. An additional separation

step in front of MS that does not increase the total analysis

time is possible with current sub-2mm particle columns

based on ultra-high-performance liquid chromatography
Figure 6. Schematic plot showing the results of QTL interv

IxS genetic map consisting of linkage groups LG1–7 prese

along the y axis. Each QTL is represented by a pair of bar pl

bottom one for 2005 (the main block is the 1-LOD support in

coding of QTL bars indicates QTL magnitude: black¼ lo

white¼ LOD 2.7–3.9.

Copyright # 2009 John Wiley & Sons, Ltd.
(UHPLC) technology, but will demand sample cleanup to

deliver stable analysis able to cope with large sample sets.

Also retention time stability across large sample sets is an

issue with crude extracts on UHPLC columns (personal

observations).

Ion suppression
The main critique of quantitation by DIMS is that ion

suppression is likely to bias results.28 Ion suppression is a

phenomenonwhere co-eluting ions influence the ability of an

analyte to ionise and its mechanism is poorly under-

stood.29,30 However, ion suppression has only been studied

in detail for LC/MS, with only a very limited number of co-

eluting ions.When raw extracts are infused, many thousands

of different analytes enter the ESI source at one time, each of

which is theoretically capable of suppressing the ionisation

of other analytes. It has been argued that ion suppression

could render invalid the comparison of DIMS spectra from

very different sample types. However, in this study, with

samples that are very comparable (maternal sibling

perennial ryegrass plants grown together and harvested at

the same time), the amount of ion suppression might

be reasonably consistent throughout the experiment and

therefore not a major problem.

One of the parent plants unexpectedly did not accumulate

E/Z-thesinine-rhamnoside, and this is apparently a single-

gene trait as the progeny were divided into either E/Z-

thesinine-rhamnoside accumulators with the 434m/z bin as
al mapping of selectedm/z bins. The x axis shows the

nted in tandem. QTL for different ions are positioned

ots, with the top one for data collected in 2006 and the

terval, and the error bar is the 2-LOD interval). Colour-

garithm-of-odds ratio (LOD) >10, grey¼ LOD 4–10,
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the most intense or non-thesinine-rhamnoside accumulators

that usually had the 333m/z bin as the most intense.

Thesinine-rhamnoside is a tertiary amine base which ionises

extremely well and may therefore cause the suppression of

the ionisation of other ions. We estimated the amount of ion

suppression by E/Z-thesinine-rhamnoside through the

calculation of the correlation coefficients for ions that

showed negative correlation with the 434m/z bin. The

average correlation coefficient of all m/z bins (omitting those

that are directly (metabolically) related to thesinine-rhamno-

side) is �0.29. This can however be mainly attributed to the

normalisation, as the median intensity for each bin was then

divided by the sum of all the median intensities for the

particular sample. In samples with thesinine-rhamnoside

present the 434m/z bin attributes to around 5% of the total

sum of intensity. In the samples without thesinine-rhamno-

side all the other bins are therefore about 5% more intense

than in those samples with thesinine-rhamnoside. Therefore,

we conclude that thesinine-rhamnoside does not cause any

measurable ion suppression. In DIMS with very complex

mixtures the presence or absence of one major ion does not

necessarily influence the ionisation of other components,

which has also been reported in other studies.31 Therefore,

DIMS may be a more stable and more quantitative platform

than generally assumed. This may be further improved by

using chip-based nano-ESI, which should be even less

effected by ion suppression, but the application of this

technology to large sample sets as described in this study

has yet to be reported.
Table 1. The m/z bins that gave reproducible QTL in the 2 years

m/z
bin CVa CPCCb n(MS2)c Major MS2(MS3) fragment ions

Is
io

248 14 0.50 318 206(175,149), 231
249 11 0.61 315 207 (176, 150), 206(175,149),231,189 (129)
293 17 0.44 311 275(257),171
295 7.0 0.77 17 277, 237, 197
307 9.7 0.45 26 203(161)
333 19 0.56 319 318 (317),317 (315), 289 33
334 18 0.34 315 319,318 (316), 290, 289
339 5.5 0.69 16 321(303),303
402 8.1 0.66 23 141/142, 124
427 7.4 0.87 6 315, 345
429 5.6 0.60 24 165, 175, 411
434 29 0.83 217 288 (124), 142
435 25 0.74 177 289(125,124), 288(124)
554 23 0.74 23 517, 546
555 12 0.47 94
593 22 0.78 319 533 (461) 59
594 18 0.59 275 534 (462), 533 (461)
595 13 0.59 284 533(461/462)/534
596 18 0.80 188 288(124), 434, 535
597 17 0.43 39 288(124), 434, 535
609 20 0.81 223 591(531, 559), 548, 271
635 18 0.39 246 593, 575(533)
636 14 0.64 88 594, 593, 576 (533,534), 575(533)

a CV: coefficient of variance of the signal from quality control (QC) samp
bCPCC: cophenetic correlation coefficient based on MS2 spectra.
cNumber of MS2 spectra used for CPCC.
d The related isotopologues.
e The correlation coefficient of this m/z bin and the m/z bin of the isotopo
f The 554 and 555m/z bins are mainly occupied by doubly charged peptid

Copyright # 2009 John Wiley & Sons, Ltd.
QTL determination
All m/z bins were scrutinised for their precision (CV <30%)

and homogeneity (CPCC >0.9), which resulted in 246

candidate metabolites. Of these, the top 100 with the best

results across 2 years were selected and their QTL were

determined. Only QTL that were detected in both years,

determined by overlap of 1-LOD support intervals, are

reported. This yielded a list of 22m/z bins for which at least

one QTL was consistent across 2 years (Fig. 6, Table 2). As

indicated in Table 1, once isotopologue ions (and binning

variability) are taken account of these correspond to ca.

17 distinct metabolic traits. Our results show that this

DIMSMS strategy combining untargeted and targeted

methods is very promising for the detection of genetic loci

for detailed phenotypes at the metabolic level.

The QTL determined for peramine (248m/z), E/Z-thesi-

nine-rhamnoside (434m/z) and perloline (333m/z) using the

targeted DIMS(MS) method were consistent with the results

obtained using untargeted DIMSMS to analyse the same

progeny grown in the previous year (2005). Although further

careful analysis of data quality from MS-based high-

throughput experiments is warranted,32 the comparison of

LC/MS/MS with DIMSMS, preliminary statistical evalu-

ation and QTL analysis provided evidence of consistency of

the DIMSMS analysis and that the results were reproducible

with sufficient accuracy. The ability to reproduce the QTL for

E/Z-thesinine-rhamnoside (434m/z) shows that a CV of just

below 30 gives sufficient precision for reproducible QTL

discovery.
, with the information on the data quality and identity

otopic
n bind

Correlation
with isotopee Putative identification

249 0.62 peramine
peramine isotopologueþunknown

4,335 0.63, 0.74 perloline
perloline isotopologue

435 0.95 thesinine-rhamnoside
thesinine-rhamnoside isotopologue

f 0.98 peptide 554.5 2þ
peptide 554.5 2þ

3,594 0.84, 0.44 unknown
unknown isotopologue
unknown isotoplogueþunknown

597 0.88 thesinine-rhamnoside-hexoside
thesinine-rhamnoside-hexoside isotopologue

636 0.95 unknown
unknown isotoplogue

les.

logue.
e with 554.5m/z that spreads over both bins.
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Table 2. Details of QTL for 22 ions that were detected in both

2005 and 2006

Ion
(m/z) LGa

QTL peak position
(�1-LODb) (cM)

Peak LOD
score

PVEc

(%)

2005 2006 2005 2006 2005 2006

248 7 36.4 (33.2–43.1) 31.9 (6.1–40.4) 4.4 5.8 10.9 14.5
249 5 31.2 (28.5–38.3) 37.5 (28.9–57.4) 2.8 2.9 6.8 7.3
293 1 1.5 (0.1–9.0) 5.0 (0.7–12.1) 3.3 3.4 9.1 8.3
295 1 1.5 (0.4–8.0) 1.5 (0.2–16.7) 3.3 4.2 9.1 11.6
307 1 1.5 (0.4–8.0) 1.5 (1.0–4.6) 2.9 3.3 8.3 9.5

2 46.3 (34.5–68.3) 48.0 (45.0–51.5) 2.9 11.0 9.1 25.0
333 4 19.7 (7.0–42.6) 19.7 (2.0–45.6) 3.9 7.9 10.2 19.8

7 37.0 (20.7–45.2) 37.0 (25.7–53.0) 3.1 3.4 7.9 8.4
335 4 19.7 (7.0–39.4) 37.4 (7.1–54.3) 3.2 5.3 8.3 13.1

7 37.0 (12.2–49.8) 37.0 (12.2–53.0) 3.0 3.4 7.7 8.5
339 1 1.5 (0.0–10.0) 1.5 (0.0–4.3) 2.8 2.8 8.1 7.1

4 30.8 (19.3–45.6) 19.2 (0.0–25.6) 2.9 5.4 7.9 13.5
402 1 5.0 (0.7–6.5) 1.5 (0.4–5.5) 3.6 2.9 9.0 8.1

1 16.1 (13.2–22.2) 16.1 (12.2–19.0) 2.8 2.8 8.2 7.6
4 0.0 (0.0–30.8) 0.0 (0.0–9.7) 3.3 13.4 10.1 28.4

427 1 1.5 (0.2–9.1) 1.5 (0.6–7.3) 2.8 3.1 7.6 9.3
429 1 1.5 (0.0–9.0) 1.5 (0.5–13.2) 3.6 2.8 10.0 7.9
434 1 1.5 (0.0–5.1) 1.5 (0.0–10.2) 3.3 2.8 9.8 7.2

1 16.1 (14.0–20.8) 16.1 (13.6–19.5) 2.8 2.8 8.1 8.6
4 0.0 (0.0–5.1) 0.0 (0.0–7.0) 41.4 51.8 86.2 89.4

435 1 16.1 (11.8–21.0) 16.1 (14.0–20.4) 2.8 2.8 8.1 8.0
4 0.0 (0.0–5.1) 0.0 (0.0–7.0) 42.2 53.6 86.6 89.8

554 7 38.7 (27.0–41.8) 38.7 (17.2–46.2) 3.0 3.1 7.4 7.8
593 2 68.3 (64.6–78.9) 73.9 (69.5–78.0) 15.2 15.0 33.2 34.9
594 2 73.9 (65.5–78.9) 73.9 (71.7–78.0) 10.8 15.1 28.7 35.4
595 3 113.2 (99.2–113.2) 113.2 (103.9–113.2) 2.7 3.9 6.5 10.6

4 91.3 (84.8–95.0) 91.3 (87.1–91.9) 4.5 22.1 15.4 44.2
596 1 16.1 (20.0–23.0) 16.1 (20.5–23.8) 2.8 2.8 8.6 8.6

2 48.0 (30.3–48.5) 48.0 (28.6–49.7) 5.2 6.1 13.2 14.9
4 0.0 (0.0–10.9) 0.0 (0.0–5.2) 17.8 25.2 35.2 46.6

597 2 48.0 (30.3–48.5) 48.0 (28.6–49.7) 3.5 7.4 9.8 18.5
4 0.0 (0.0–19.3) 0.0 (0.0–7.6) 6.6 16.8 19.2 27.5

609 2 63.5 (45.0–92.9) 73.9 (73.0–75.7) 4.6 24.2 12.3 47.7
4 104.6 (101.3–106.2) 107.2 (104.6–123.7) 2.8 2.9 7.0 7.8

635 2 68.3 (62.9–82.7) 73.9 (73.1–79.4) 15.3 20.7 33.2 42.3
7 7.2 (0.0–26.1) 0.0 (0.0–20.5) 2.9 3.0 11.3 17.2

636 2 63.5 (61.8–78.9) 73.9 (72.5–77.2) 12.5 20.5 30.2 42.5
7 0.0 (0.0–19.9) 0.0 (0.0–30.0) 3.2 2.8 12.8 7.7

a LG¼ linkage group.
b LOD¼ logarithm-of-odds score.
c PVE¼proportion of the trait phenotypic variance explained by the
QTL.
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As noted in Table 1, several of the m/z bins for which QTL

are shown in Fig. 6 are clearly isotopologues. These can be

recognised by their 1 Da difference and identical QTL, and by

the observation of product ions differing by 1 Da in the MS2

and MS3 spectra. Well-defined QTL, one of which was in

common, were identified for two unidentified compounds

observed as monoisotopic and isotopologue pairs (593 and

594m/z; 635 and 636m/z). The 248, 333 and 434m/z bins are

discussed above and, in the cases of perloline and E/Z-

thesinine-rhamnoside, isotopologue ions also map to the

same QTL. E/Z-Thesinine-rhamnoside can also be further

glycosylated19 and the MS/MS data are consistent with the

assignment of the 596 and 597m/z bins to the corresponding

glycoside. The 554 and 555m/z bins have previously been

assigned to an unknown peptide (554.5m/z doubly

charged).15 By contrast, the 249m/z bin shows a reproducible

QTL quite distinct from the peramine QTL. The CPCC
Copyright # 2009 John Wiley & Sons, Ltd.
score suggests this bin is essentially homogenous across the

samples, but comparison of the MS/MS data for peramine

and the 249m/z bin (Table 1) indicates the 249m/z bin

includes a signal from the peramine isotopologue, and

another species (MS2 product ion 189m/z; MS3 > 129m/z).

Manual interrogation of the data showed the 249m/z bin is on

average more intense than the 248m/z bin indicating that the

othermetabolite detected in thism/z bin dominates the signal

of the peramine isotopologue of 249m/z (in theory 15% of the

peramine signal). The identities of this and the metabolites

detected in the other m/z bins shown in Table 1 and Fig. 6

have yet to be confirmed.
CONCLUSIONS

Direct infusion ion trap mass spectrometry is a rapid method

that can be used to profile large numbers of samples with

sufficient precision and accuracy for QTL discovery across a

large range of metabolites. Although the method showed a

clear run sequence effect, with appropriate controls and

normalisation this systematic error could be corrected. The

DIMS data have been shown to be semi-quantitative without

apparent major ion suppression effects and has provided

data on the variation of some known metabolites within the

mapping population, and a large range of metabolites for

whichMS2 andMS3 spectra are available for identification or

classification. Concurrent targeted MS3 analysis allowed

simultaneous quantitation of important low abundant

metabolites. The data have been successfully used for QTL

discovery and a subset of the QTL was confirmed with

metabolite data from successive harvests, showing that the

analytical method is robust.
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Dall’Aglio E, Valè E. Plant Cell Tiss. Organ Cul. 2005; 82: 317.
DOI: 10.1007/s11240-005-2387-z.

3. Moing A, Maucourt M, Renaud C, Gaudillère M, Brouquisse
R, Lebouteiller B, Gousset-Dupont A, Vidal J, Granot D,
Denoyes-Rothan B, Lerceteau-Köhler E, Rolin D. Funct. Plant
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