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Abstract
Complex cells in primary visual cortex exhibit highly nonlinear receptive field properties such as
phase-invariant direction selectivity and antagonistic interactions between individually excitatory
stimuli. Traditional models assume that these properties are governed by the outputs of antecedent
simple cells, but these models are at odds with studies showing that complex cells may receive direct
inputs from the lateral geniculate nucleus (LGN) or can be driven by stimuli that fail to activate
simple cells. Using a biophysically detailed model of recurrently connected cortical neurons, we
show that complex cell-like direction selectivity may emerge without antecedent simple cell inputs,
as a consequence of spike-timing dependent synaptic plasticity during visual development. The
directionally-selective receptive fields of model neurons, as determined by reverse correlation and
2-bar interaction maps, were similar to those obtained from complex cells in awake monkey primary
visual cortex. These results suggest a new interpretation of complex cells as integral components of
an adaptive cortical circuit for motion detection and prediction.
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1. INTRODUCTION
In their seminal studies of cat and monkey visual cortex, Hubel and Wiesel classified neurons
in the primary visual cortex as simple or complex based on their receptive field properties [1,
2]. Simple cells were identified as cells that are selective for stimulus orientation and phase,
while complex cells were identified as those that respond to an oriented stimulus regardless of
its position within the cell’s receptive field. A majority of simple and complex cells are
directionally-selective i.e. they respond best to oriented stimuli moving in a particular direction.
Most complex cells are directionally-selective throughout their receptive fields, suggesting that
their receptive fields are made up of directionally-selective sub-units. This led Hubel and
Wiesel to suggest their well-known hierarchical model of visual processing in which on- and
off-center cells in the LGN converge onto simple cells in the primary visual cortex, several of
which in turn feed into a complex cell. Hubel and Wiesel’s model has remained highly
influential in guiding studies of the visual cortex and many elements of it have received
experimental support [3,4].
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However, several lines of evidence challenge the idea that complex cell outputs are determined
solely by pooling the outputs of simple cells. First, there exists evidence for direct LGN input
to complex cells without an antecedent simple cell stage [5–8]. In addition, several anatomical
studies have suggested a lack of direct monosynaptic connections from simple to complex cells
as postulated by the hierarchical model [9,10] (but see also [11]). These anatomical results are
complemented by electrophysiological studies showing that certain classes of visual stimuli
drive complex cells, but not simple cells [12–14]. Finally, many complex cells continue to
exhibit responses when simple cells are silenced via pharmacological inactivation of
corresponding input cells in the LGN, suggesting direct inputs to complex cells from the LGN
[15].

These results suggest that there exists a class of complex cells that receive direct LGN inputs
and whose outputs are not dependent on pooled simple cell inputs. What then is the source of
the highly non-linear receptive field properties of these complex cells? One possibility is that
the receptive field sub-units are computed within the dendritic tree of individual complex cells,
as suggested by Mel and colleagues for orientation- and disparity-selective complex cells
[16,17]. A similar single-neuron model for direction selectivity is possible [18], but as shown
by Anderson et al [19], the biophysical properties of such a model can only account partially
for the range of direction selective responses exhibited by cortical neurons.

Here, we pursue a second possibility, namely, that the source of the non-linear receptive field
properties of complex cells is the pattern of excitatory and inhibitory connectivity in recurrent
cortical networks. This pattern of connectivity may emerge as a consequence of spike-timing
dependent plasticity in cortical circuits specialized for motion detection. Motivation for such
a model comes from two fronts: (a) studies showing a strong influence of early visual
experience on the development of direction selectivity [20,21], and (b) recent results suggesting
an anatomical asymmetry between excitation and inhibition in direction-selective circuits in
primary visual cortex [22].

We first show, using a detailed biophysical model of a recurrent cortical network, that an
asymmetric pattern of intracortical connections can develop as a consequence of temporally
asymmetric spike-timing dependent plasticity. Such a form of synaptic plasticity has been
observed in recurrent cortical synapses [23], and in the hippocampus [24,25], the tectum
[26], and in layer II/III of rat somatosensory cortex [27]. It has been shown to be useful for
learning and predicting temporal sequences [28,29]. We show that a network of recurrently
connected complex cells can develop non-linear directionally-selective receptive fields as a
consequence of learning to predict moving stimuli. Space-time response plots of model
complex cells to single flashed bars were found to be similar to those of complex cells in awake
monkey VI.

Furthermore, the types of non-linear interactions observed in awake monkey complex cells
due to pairs of successively flashed bars were also observed in the model and could be explained
on the basis of the learned pattern of excitatory and inhibitory connections. These results
suggest a new interpretation of complex cells in the visual cortex, namely, that they are vital
components of an adaptive cortical circuit geared towards motion detection and prediction.
Preliminary reports of this study appeared as [30] and [31].

1.1. Experimental Results
For our simulations, we used a two-compartment model of a cortical neuron consisting of a
dendrite and a soma-axon compartment, as depicted in Fig 1a. The compartmental model was
based on a previous study that demonstrated the ability of such a model to reproduce a range
of cortical response properties [32]. Figure 1a illustrates the response of the model neuron to
random excitatory and inhibitory Poisson-distributed synaptic inputs to the dendrite (see
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Methods). The presence of voltage-activated sodium channels in the dendrite allowed
backpropagation of action potentials from the soma into the dendrite as shown in Fig 1b. These
backpropagated action potentials allowed the calculation of synaptic modifications as a
function of local changes in membrane potential, as discussed below.

1.2. Simulating Spike-Timing Dependent Plasticity
Synaptic currents in the model were calculated using a kinetic model of synaptic transmission
[33] with model parameters fitted to whole-cell recorded AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazole proprionic acid) currents (see Methods for more details). Other inputs
representing background activity were modeled as sub-threshold excitatory and inhibitory
Poisson processes with a mean firing rate of 3 Hz. Synaptic plasticity was simulated by
incrementing or decrementing the value for maximal synaptic conductance by an amount
proportional to the temporal-difference in the postsynaptic membrane potential at time instants
t + Δt and t − Δt for presynaptic activation at time t; this simulates a “temporal-difference”
learning rule for prediction and yields asymmetric learning windows similar to those observed
physiologically (see [29] for more details). Figure 1c shows the temporally asymmetric
learning window observed in the model when the delay parameter Δt was set to 5 ms. In this
case, potentiation was observed for EPSPs that occurred between 1 and 12 ms before the
postsynaptic spike, with maximal potentiation at 6 ms. Maximal depression was observed for
EPSPs occurring 6 ms after the peak of the postsynaptic spike and this depression gradually
decreased, approaching zero for delays greater than 10 ms. As in rat neocortical neurons [23],
Xenopus tectal neurons [26], and cultured hippocampal neurons [24], a narrow transition zone
(roughly 3 ms in the model) separated the potentiation and depression windows. Note that the
exact duration of the potentiation and depression windows in the model can be adapted to match
physiological data by appropriately choosing the temporal-difference parameter Δt and/or
varying the distribution of active channels in the dendrite the synapse is located on. Alternately,
following [34], one could directly use one of the physiologically observed learning windows.
This choice yields results that are qualitatively similar to those presented here.

2. DEVELOPMENT OF DIRECTION SELECTIVITY THROUGH SPIKE-TIMING
DEPENDENT PLASTICITY

To illustrate how direction selective receptive fields can emerge as a consequence of spike-
timing dependent learning, we first simulated a simple motion detection circuit consisting of
a single chain of nine recurrently connected excitatory cortical neurons (Fig 2a). Each neuron
in the chain initially received symmetric excitatory and inhibitory inputs of the same magnitude
(maximal synaptic conductance 0.003μS) from its preceding and successor neurons (Fig 2b,
“Before Learning”). Excitatory and inhibitory synaptic currents were calculated using kinetic
models of synaptic transmission based on properties of AMPA and GABAA (γ-aminobutyric
acid A) receptors as determined from whole-cell recordings (see Methods). Neurons in the
network were exposed to 100 trials of retinotopic sensory input consisting of moving pulses
of excitation in the rightward direction (5 ms pulse of excitation at each neuron). These inputs,
which approximate the depolarization caused by nonlagged retinotopic inputs from the LGN,
were sufficient to elicit a spike from each neuron.

The effects of spike-timing dependent learning on the excitatory and inhibitory synaptic
connections in the network are shown in Fig 2b (“After Learning”). There is a profound
asymmetry in the developed pattern of excitatory connections from the preceding and successor
neurons to neuron 0 in Fig 2b. The synaptic conductances of excitatory connections from the
left-side have been strengthened while the ones from the right-side have been weakened. This
result can be explained as follows: due to the rightward motion of the input stimulus, neurons
on the left side fire (on average) a few milliseconds before neuron 0 while neurons on the right
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side fire (on average) a few milliseconds after neuron 0; as a result, the synaptic strength of
connections from the left side are increased while the synaptic strength for connections from
the right side are decreased, as prescribed by the spike-timing dependent learning window in
Fig 1c. The opposite pattern of connectivity develops for the inhibitory connections because
these were modified according to an asymmetric anti-Hebbian learning rule that reversed the
polarity of the rule in Fig 1c. Such a rule is consistent with spike-timing dependent anti-Hebbian
plasticity observed in some classes of inhibitory interneurons [35]. Alternatively, one could
keep the level of inhibition constant (for example, at 0.015μS) and obtain qualitatively similar
results because a decrease in the strength of the corresponding excitatory connections, as shown
in Fig 2b, would again tilt the balance in favor of inhibition on the right side of neuron 0.

The responses of neuron 0 to rightward and leftward moving stimuli are shown in Fig 2c. As
expected from the learned pattern of connections, the neuron responds vigorously to rightward
motion but not to leftward motion. Similar responses selective for rightward motion were
exhibited by other neurons comprising the network. More interestingly, each neuron fires a
few milliseconds before the time of arrival of the input stimulus at its soma (marked by an
asterisk) due to recurrent excitation from preceding neurons. Such predictive neural activity is
characteristic of temporally asymmetric learning rules (see, for example, [28;29]). In contrast,
motion in the non-preferred direction triggered recurrent inhibition and little or no response
from the model neurons.

2.1. Detecting Multiple Directions of Motion
To investigate the question of how selectivity for different directions of motion may emerge
simultaneously, we simulated a network comprised of two parallel chains of neurons (see Fig
3a), each containing 55 neurons, with mutual inhibition (dark arrows) between corresponding
pairs of neurons along the two chains. As in the previous simulation, a given excitatory neuron
received both excitation and inhibition from its predecessors and successors, as shown in Fig
3b for a neuron labeled ‘0’. Inhibition at a given neuron was mediated by an inhibitory
interneuron (dark circle) which received excitatory connections from neighboring excitatory
neurons (Fig 3b, lower panel). The interneuron received the same input pulse of excitation as
the nearest excitatory neuron. Maximum conductances for all synapses were initialized to small
positive values (dotted lines in Fig 3c). To break the symmetry between the two chains, one
may: (a) select small randomly chosen values for the synaptic conductances in the two chains,
or (b) provide a slight bias in the recurrent excitatory connections, so that neurons in one chain
may fire slightly earlier than neurons in the other chain for a given motion direction. Both
alternatives succeed in breaking symmetry during learning. We report here the results for
alternative (b), which is supported by experimental evidence indicating the presence of a small
amount of initial direction selectivity in cat visual cortical neurons before eye opening [36].

To evaluate the consequences of synaptic plasticity in the two-chain network, model were
exposed alternately to leftward and rightward moving stimuli for a total of 100 trials. The
excitatory connections (labeled ‘EXC’ in Fig 3b) were modified according to the asymmetric
Hebbian learning rule in Fig 1c while the excitatory connections onto the inhibitory interneuron
(labeled ‘INH’) were modified according to the asymmetric anti-Hebbian learning rule, as in
the previous simulation. The synaptic conductances learned by two neurons (marked N1 and
N2 in Fig 3a) located at corresponding positions in the two chains after 100 trails of exposure
to the moving stimuli are shown in Fig 3c (solid line). The excitatory and inhibitory connections
to neuron N1 exhibit a marked asymmetry, with excitation originating from neurons on the left
and inhibition from neurons on the right. Neuron N2 exhibits the opposite pattern of
connectivity.

As expected from the learned pattern of connectivity, neuron N1 was found to be selective for
rightward motion while neuron N2 was selective for leftward motion (Fig 3d). Moreover, when
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stimulus motion is in the preferred direction, each neuron starts firing a few milliseconds before
the time of arrival of the input stimulus at its soma (marked by an asterisk) due to recurrent
excitation from preceding neurons. Conversely, motion in the non-preferred direction triggers
recurrent inhibition from preceding neurons as well as inhibition from the active neuron in the
corresponding position in the other chain. Thus, the learned pattern of connectivity allows the
direction selective neurons comprising the network to conjointly code for and predict the
moving input stimulus in each possible direction of motion.

To test the importance of temporal order of spikes in learning direction selectivity, we
investigated whether classical rate-based Hebbian learning [37] could also lead to a similar
pattern of asymmetry in connections and produce direction selectivity in our network. In rate-
based Hebbian learning, a connection between two neurons is strengthened based on the
correlation between the firing rates of the two neurons, irrespective of the temporal order of
input and output spikes. We used the same network as in the previous simulation (see Fig 3a
and 3b, and Fig 4 - top panel), with an identical initial bias in the network connectivity as shown
in Fig 3c (dotted lines). The network was exposed to 100 trials of rightward and leftward
moving stimuli as before, but a rate-based Hebbian learning rule was used for modifying the
synaptic conductances. In particular, conductances for connections onto excitatory (inhibitory)
neurons were increased (decreased) based on correlations between pre- and postsynaptic spikes
within a 30 ms temporal window regardless of the temporal order of the spikes. As shown in
Fig 4 (middle panel), despite the initial bias in connectivity, the network fails to develop
asymmetric connections using the purely rate-based Hebbian learning rule. Neurons in the two
chains were found to respond similarly to both leftward and rightward moving input stimuli,
demonstrating a failure to develop direction selectivity (Fig 4, bottom panel). These results
suggest that spike-timing dependent learning mechanisms may play a crucial role in sculpting
and maintaining direction-selective circuits in the visual cortex.

3. THE IMPORTANCE OF RECURRENT EXCITATORY AND INHIBITORY
CONNECTIONS

To investigate the role of recurrent excitation in the model, we gradually decreased the value
of the maximum synaptic conductance between excitatory neurons in the trained network of
Fig 3, starting from 100% of the learned values. For a stimulus moving in the preferred
direction, decreasing the amount of recurrent excitation increased the latency of the first spike
in a model neuron and decreased the spike count until, with less than 10% of the learned
recurrent excitation, the latency equaled the arrival time of the input stimulus and the spike
count dropped to 1 (Fig 5a and 5b). These results illustrate the role of recurrent excitation in
generating predictive activity in the network and in enhancing direction selective responses by
increasing the spike count in the preferred direction.

To evaluate the role of inhibition in maintaining direction selectivity in the model, we
quantified the degree of direction selectivity using the direction index: 1 -(Number of Spikes
in Non-Preferred Direction)/(Number of Spikes in Preferred Direction). Direction indices were
calculated for a trained network consisting of two chains of neurons, each containing 35
excitatory and 35 inhibitory neurons. Figures 5c and 5d show the distribution of direction
indices with and without inhibition in the network. In the control case, most of the excitatory
neurons and inhibitory interneurons receiving recurrent excitation are highly direction
selective. Blocking inhibition significantly reduces direction selectivity in the model neurons
but does not completely eliminate it, consistent with some previous physiological observations
[38, 39]. The source of this residual direction selectivity in the absence of inhibition can be
traced to the asymmetric recurrent excitatory connections in the model network which remain
unaffected by the blockage of inhibition.
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3.1. Comparison to Awake Monkey Complex Cell Responses: First-Order Analysis
Similar to complex cells in primary visual cortex, model neurons were found to be direction
selective throughout their receptive field. This phase-invariant direction selectivity is a
consequence of the fact that at each retinotopic location, the corresponding neuron in the chain
receives the same pattern of asymmetric excitation and inhibition from its neighbors as any
other neuron in the chain. Thus, for a given neuron, motion in any local region of the chain
will elicit direction selective responses due to recurrent connections from that part of the chain.
This is consistent with previous modeling studies [40] suggesting that recurrent connections
may be responsible for the spatial-phase invariance of complex cell responses.

The model predicts that the neuroanatomical connections for a direction selective neuron
should exhibit a pattern of asymmetrical excitation and inhibition similar to Fig 3c. A recent
study of complex cells in awake monkey V1 found excitation on the preferred side of the
receptive field and inhibition on the null side, consistent with the pattern of connections learned
by the model [18]. In this study, optimally oriented bars were flashed at random positions in
a cell’s receptive field, and a reverse correlation map was calculated from a record of eye
position, spike occurrence, and stimulus position. Fig 6 (top panel, left) depicts an eye-position
corrected reverse correlation map for a complex cell, with time on the x-axis and stimulus
position on the y-axis: each row of the map is the post-stimulus time histogram of spikes elicited
for a bar flashed at that spatial position. The map thus depicts the firing rate of the cell as a
function of the retinal position of the stimulus and time after stimulus onset.

For comparison with these experimental data, spontaneous background activity in the model
was generated by incorporating Poisson-distributed random excitatory and inhibitory alpha
synapses on the dendrite of each model neuron. As shown in Fig 6 (top panel), there is good
qualitative agreement between the space-time response plot for the direction-selective complex
cell and that for the model. Both space-time plots show a progressive shortening of response
onset time and an increase in response transiency going in the preferred direction: in the model,
this is due to recurrent excitation from progressively closer cells on the preferred side. Firing
is reduced to below background rates 40–60 ms after stimulus onset in the upper part of the
plots: in the model, this is due to recurrent inhibition from cells on the null side. The response
transiency and shortening of response time course appears as a slant in the space-time maps,
but unlike space-time maps in simple cells, this slant cannot be used to predict the neuron’s
velocity preference (see [18] for more details). However, assuming a 200 μm separation
between excitatory model neurons in each chain and utilizing known values for the cortical
magnification factor in monkey striate cortex [41], one can estimate the preferred stimulus
velocity of model neurons to be in the range of 3.1°/s in the fovea and 27.9°/s in the periphery
(at an eccentricity of 8°), which is within the range of monkey V1 velocity preferences (1°/s
to 32°/s) [18,42].

3.2. Comparison to Awake Monkey Complex Cell Responses: Second-Order Analysis
Complex cells are known to exhibit higher-order interactions between two successively
presented stimuli. For example, the response to two oriented bars presented sequentially at two
different positions is generally not a linear function of the responses to the bars presented
individually. In the case of the model network, we would expect the asymmetry in synaptic
connections to give rise to non-linear facilitation if the two bars are flashed along the preferred
direction relative to each other and a reduction in response for bars flashed in the opposite
direction (see Fig 7a).

To study such 2-bar interactions in complex cells in awake monkey V1, single bars of optimal
orientation were flashed within a direction selective cell’s receptive field at a series of locations
along the dimension perpendicular to stimulus orientation (these experiments were conducted
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in Margaret Livingstone’s laboratory at Harvard Medical School). A continuous record was
kept of eye position (at 250 Hz), spike occurrence (1 ms resolution), and stimulus position. A
reverse correlation analysis was performed, after correcting for eye position, to produce two-
bar interaction maps as shown in Fig 7b. These maps show how the response to one stimulus
is influenced by a preceding stimulus, as a function of the two stimulus locations. Thus, for
each of the plots shown, the y-axis represents the spatial position of bar 1 while the x-axis
represents the position of bar 2, which was flashed after an inter-stimulus-interval (ISI) of 56
ms after bar 1. The four plots represent the evolution of the cell’s response to the two bar
sequence at delays of 25 ms, 50 ms, 75 ms, and 100 ms respectively after the onset of bar 2.
The average responses for the individual bars were subtracted from each of the plots to show
any facilitation or reduction in responses due to sequential interactions.

Facilitation (red) can be observed above the diagonal line for all four plots in Fig 7b. Locations
above the diagonal represent cases where the two bar sequence is flashed in the preferred
direction of the cell (see Fig 7a). A reduction in the cell’s response (blue) occurs at longer
delays, predominantly at positions below the diagonal. This is consistent with the model
predictions sketched in Fig 7a. A repetition of the two-bar experiment in the model yielded
interaction plots that were qualitatively similar to the physiological data (Fig 7c). The main
differences are in the time scale and magnitude of facilitation/reduction in the responses, both
of which could be fine-tuned, if necessary, by adjusting model parameters such as the maximal
allowed synaptic conductance, synaptic delays, and the number of neurons used in the
simulated network.

4. CONCLUSIONS AND FUTURE WORK
Our results suggest that a network of cortical neurons can develop complex-cell-like receptive
field properties as a consequence of spike-timing dependent plasticity in cortical circuits for
motion detection. The model predicts that some direction selective complex cells should start
responding a few milliseconds before the preferred stimulus arrives at the retinotopic location
of the neuron in primary visual cortex. Such predictive neural activity has recently been
reported in ganglion cells in the rabbit and salamander retina [43]; the extent to which neural
responses in V1 can be characterized as being predictive remains an interesting open question.

The development of complex cell receptive fields in our model is activity-dependent and is
based on the assumption that these receptive fields can be modified by visual experience, either
directly via moving visual stimuli or indirectly via traveling waves in the developing retina.
Such an assumption is consistent with experimental evidence indicating that visual experience
during a critical period can profoundly affect the development of direction selectivity in the
visual cortex. For example, direction selectivity in kittens can be influenced by selective
exposure to a single direction of motion [20] and even abolished by strobe rearing [21].
Although several models for the development of direction selectivity have been proposed
[44,45], the roles of spike timing and asymmetric Hebbian plasticity have not been previously
explored. An interesting question currently being investigated is whether the explicit
dependence of visual development on spike timing in our model can account for the fact that
only low frequencies of stroboscopic illumination (approximately 8- Hz or below) cause a loss
of direction selectivity.

In a recent study [22], Roerig and Kao showed, using a combination of in vivo and in vitro
techniques, that excitatory synaptic inputs to direction selective cells in ferret primary visual
cortex iso-direction tuned, emanating from local regions preferring the same direction of
motion. On the other hand, up to 40% of the inhibitory connections originated in cortical regions
preferring the opposite direction of motion. Such a distribution of synaptic inputs is consistent
with the pattern of connections predicted by our model as a consequence of spike-timing
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dependent plasticity. Whether the same anatomical result holds for macaque primary visual
cortex remains an open question.

Several other models of cortical direction selectivity based on circuit-level interactions have
previously been proposed [45–50]. Most of these have been aimed at capturing the properties
of simple cells in layer IV of primary visual cortex in anesthetized cats. For example, Maex
and Orban [48] and Suarez et al [50] present models for direction selectivity based on the idea
of spatially asymmetric connectivity and intracortical amplification. Both of these are intended
to be models of simple cell direction selectivity. The model analyzed by Mineiro and Zipser
[49] is similar to our model, although at a more abstract level. None of the above models
addresses the issue of how network connectivity may develop naturally as a consequence of
synaptic plasticity. Wimbauer et al present a model for the development of direction selectivity
in simple cells in cat striate cortex based on rate-based Hebbian learning and lagged/non-lagged
inputs from the LGN [45]; however, the applicability of this model to monkey visual cortex is
unclear given that there is inconclusive evidence for lagged/nonlagged cells in monkey LGN.
A popular class of models that captures some important properties of complex cells is the class
of spatiotemporal energy models [51,52]; these typically utilize the squared outputs of a pair
of quadrature filters that model simple cell receptive fields. Although extremely useful as
phenomenological models, such models would not be applicable to cases where a given
complex cell receives direct non-oriented LGN inputs.

Temporally asymmetric Hebbian learning has previously been suggested as a possible
mechanism for sequence learning in the hippocampus [28,25] and as an explanation for the
asymmetric expansion of hippocampal place fields during route learning [53,54]. Some of these
theories require relatively long temporal windows of synaptic plasticity (on the order of several
hundreds of milliseconds) [28] while others have utilized temporal windows in the sub-
millisecond range for coincidence detection [55]. Prediction and sequence learning in our
model is based on a window of plasticity in the tens of milliseconds range which is roughly
consistent with recent physiological observations [23,24,26,27]. Although a fixed learning
window (roughly 15 ms of potentiation/depression) was used in the simulations, the temporal
extent of this window can be modified by changing the parameter Δt. The model predicts that
the shape and width of the asymmetric learning window should be a function of the
backpropagating action potentials in the dendrite that the synapse is located on (see [29] for
more details). In the case of hippocampal neurons and cortical neurons, the width of
backpropagating action potentials in apical dendrites has been reported to be in the range of
10–25 milliseconds, which is comparable to the size of potentiation/depression windows for
synapses located on these dendrites [24,56].

In vitro experiments involving cortical and hippocampal slices suggest the possibility of short-
term plasticity in synaptic connections onto pyramidal neurons [57–59]. The kinetic model of
synaptic transmission used in the present study can be extended to include short-term plasticity
with the addition of a parameter governing the level of depression caused by each presynaptic
action potential [40,57,59]. The adaptation of this parameter may allow finer control of
postsynaptic firing in the model in addition to the coarse-grained control offered by
modifications of maximal synaptic conductance. As suggested by previous studies [40,57], we
expect the addition of synaptic depression in our model to enhance the transient response of
model neurons to stimuli such as flashed bars (see Fig 6) and to broaden the response to drifting
stimuli, due to the reduced sensitivity of postsynaptic neurons to mean presynaptic firing rates.

In summary, our results suggest the new hypothesis that complex cells may play a crucial role
in predicting and tracking moving stimuli as part of an adaptive cortical network for motion
detection. Prediction and sequence learning have both been previously suggested as important
goals of cortical information processing [28,60–67]. Our biophysical simulations suggest a
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specific mechanism for achieving these goals in the context of visual information processing.
Given the discovery of spike-timing dependent learning mechanisms in several different
cortical areas [23,25,27], the biophysical mechanisms investigated herein may prove useful in
studying information processing in other cortical areas as well.

5. METHODS
5.1. Neocortical Neuron Model

Two-compartment model neocortical neurons consisting of a dendritic compartment and a
soma-axon compartment [32] were implemented using the simulation software Neuron (M
Hines, in Neural Systems: Analysis and Modeling, F H Eeckman, editor (Kluwer, Boston, MA,
1993), pp 127–136). Four voltage-dependent currents and one calcium-dependent current were
simulated: fast Na+, INa; fast K+, IKv; slow non-inactivating K+, IKm; high voltage-activated
Ca2+, ICa and calcium-dependent K+ current, IK Ca (see [32] for references). Conventional
Hodgkin-Huxley-type kinetics were used for all currents (integration time step = 25 μs
temperature = 37° celsius). Ionic currents I were calculated using the ohmic equation: I =
ḡAXB(V–E) where ḡ is the maximal ionic conductance density, A and B are activation and
inactivation variables respectively (x denotes the order of kinetics - see [32] for further details),
and E is the reversal potential for the given ion species (EK = −90 mV, ENa = 60mV, Eca = 140
mV, Eleak = −70 mV). The following active conductance densities were used in the dendritic
compartment (in pS/μm2): ḡNa= 20, ḡca= 0.2, ḡKm= 0.1, and ḡK ca= 3, with leak conductance
33.3 μS/cm2 and specific membrane resistance 30 kΩ-cm2. The soma-axon compartment
contained ḡNa = 40,000 and ḡkv = 1400. For all compartments, the specific membrane
capacitance was 0.75 μF/cm2. Two key parameters governing the response properties of the
model neuron are [32]: the ratio of axosomatic area to dendritic membrane area (ρ) and the
coupling resistance between the two compartments (κ). For the present simulations, we used
the values ρ = 150 (with an area of 100 μm2 for the soma-axon compartment) and a coupling
resistance of κ = 8 M Ω. Poisson-distributed synaptic inputs to the dendrite were simulated
using alpha function [68] shaped current pulse injections (time constant = 5 ms) at Poisson
intervals with a mean presynaptic firing frequency of 3 Hz.

5.2. Model of Synaptic Transmission and Plasticity
Synaptic transmission at excitatory (AMPA) and inhibitory (GABAA) synapses was simulated
using first order kinetics of the form:

(1)

where r(t) denotes the fraction of postsynaptic receptors bound to the neurotransmitter at time,
t, [T] is the neurotransmitter concentration, and α and β are the forward and backward rates for
transmitter binding. Assuming receptor binding directly gates the opening of an associated ion
channel, the resulting synaptic current can be described as [33]:

(2)

where ḡsyn is the maximal synaptic conductance, Vsyn(t) is the postsynaptic potential and
Esyn is the synaptic reversal potential. For the simulations, all synaptic parameters were set to
values that gave the best fit to whole-cell recorded synaptic currents (see [33]). Parameters for
AMPA synapses: α = 1.1 × 106 M−1s−1, β = 190 s−1, and EAMPA=0mV. Parameters for
GABAA receptors: α = 5 × 106 M−s−, β= 180 s−1, and EGABAA= −80 mV. Synaptic plasticity
was simulated by adapting the maximal synaptic conductance ḡAMPA for recurrent excitatory
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synapses onto both excitatory neurons and GABAergic interneurons according to the learning
rules described in the text. The inhibitory synapses themselves were not adapted because
evidence is currently lacking for their plasticity. We therefore used the following fixed values
for ḡGABAA(in μS): 0.05 for mutual inhibition between the two chains and 0.016 for recurrent
inhibitory connections within a chain for the simulations in Fig 3. Synaptic plasticity for
connections onto excitatory neurons was simulated by changing maximal synaptic conductance
ḡAMPA by an amount equal to ΔḡAMPA = α (Pt + Δt −Pt) for each presynaptic spike at time t,
where Pt denotes the postsynaptic membrane potential at time t (synapses onto inhibitory
neurons were modified by an amount equal to −ΔḡAMPA) This simulates a temporal difference
learning rule for prediction and results in asymmetric learning windows similar to those
observed in physiological experiments (see [29] for more details). The synaptic conductance
was adapted whenever the absolute value of;ΔḡAMPA exceeded 10 mV with the gain α in the
range 0.02–0.03 μS/V. The maximum value attainable by a synaptic conductance was set equal
to 0.03 μS This phenomenological model of synaptic plasticity approximates the effects of
known biophysical mechanisms such as calcium-dependent and NMDA (N-methyl-D-
aspartate) receptor-dependent induction of long-term potentiation (LTP) and depression (LTD)
(see [69] for a more detailed biophysical implementation).
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Fig 1.
Model Neocortical Neuron and Window of Synaptic Plasticity. (a) Response of the two-
compartment model neuron to Poisson distributed excitatory and inhibitory synaptic inputs at
random locations on the dendrite. (b) Example of a backpropagating action potential in the
dendrite of the model neuron as compared to the corresponding action potential in the soma
(enlarged from the initial portion of the trace in (a)). (c) Window for synaptic plasticity in the
model neuron obtained by varying the delay between presynaptic stimulation and postsynaptic
spiking (negative delays refer to cases where presynaptic stimulation occurred before the
postsynaptic spike).
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Fig 2.
Emergence of Direction Selectivity in the Model. (a) Schematic depiction of recurrent
connections to a given neuron (labeled ‘0’) from 4 preceding and 4 successor neurons in its
chain. (b) Synaptic strength of recurrent excitatory and inhibitory connections to neuron 0
before and after learning. Note the symmetry in connections before learning and the asymmetry
in connections after spike-timing dependent learning. Synapses were adapted during 100 trials
of exposure to rightward moving stimuli. (c) Direction selective response of neuron 0 to
rightward moving stimuli after learning. Due to recurrent excitation from preceding neurons,
the neuron starts firing a few milliseconds before the expected arrival time of its input (marked
by an asterisk). The dark triangle represents the time at which the input stimulus begins its
rightward motion.
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Fig 3.
Detecting Multiple Directions of Motion. (a) A model network consisting of two chain of
recurrently connected neurons receiving retinotopic inputs. A given neuron receives recurrent
excitation and recurrent inhibition(white-headed arrows) as well as inhibition (darkheaded
arrows) from its counterpart in the other chain. (b) Recurrent connections to a given neuron
(labeled ‘0’) arise from 4 preceding and 4 succeeding neurons in its chain. Inhibition at a given
neuron is mediated via a GABAergic interneuron (darkened circle). (c) Synaptic strength of
recurrent excitatory (EXC) and inhibitory (INH) connections to neurons N1 and N2 before
(dotted lines) and after learning (solid lines). Synapses were adapted during 100 trials of
exposure to alternating leftward and rightward moving stimuli. (d) Responses of neurons N1
and N2 to rightward and leftward moving stimuli. After learning, neuron N1 has become
selective for rightward motion (as have other neurons in the same chain) while neuron N2 has
become selective for leftward motion. In the preferred direction, each neuron starts firing
several milliseconds before the input arrives at its soma (marked by an asterisk) due to recurrent
excitation from preceding neurons. The dark triangle represents the start of input stimulation
in the network.
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Fig 4.
The Effect of Rate-Based Hebbian Learning. The same network as in Fig 3, with identical
initial conditions and input stimuli, was used to test the effects of rate-based learning. The top
panel depicts the recurrent connections to a given neuron (labeled ‘0’) in the two-chain network.
The GABAergic interneuron is represented by the darkened circle. The middle panel represents
the changes in synaptic strength as a result of rate-based Hebbian learning, which relies on
correlations in pre- and postsynaptic spikes irrespective of their temporal order. Despite an
initial asymmetry in the excitatory connections (dotted lines), ratebased Hebbian learning
resulted in an approximately symmetric pattern of connections. As a result, the neurons in the
two-chain network fail to exhibit direction selective responses (bottom panel).
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Fig 5.
The Role of Recurrent Excitation and Inhibition in Direction Selectivity. (a) & (b) Latency of
the first spike and number of spikes elicited in an excitatory neuron in the preferred direction
as a function of the strength of recurrent excitation in a model network (100% corresponds to
the learned values of recurrent connection strength). The network comprised of two chains,
each containing 35 excitatory neurons and 35 inhibitory interneurons (mutual inhibition
between corresponding neurons in the two chains was mediated by a separate set of inhibitory
neurons that were not plastic). (c) & (d) Distribution of direction selectivity in the network for
excitatory and inhibitory interneurons respectively with GABAergic inhibition (Control) and
without GABAergic inhibition (Inh Block) as measured by the direction index: 1 - (Non-
Preferred Direction Response)/(Preferred Direction Response).
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Fig 6.
Comparison of Monkey and Model Space-Time Response Plots to Single Flashed Bars. (Top,
Left) Sequence of PSTHs obtained by flashing optimally oriented bars at 20 positions across
the 5°-wide receptive field (RF) of a complex cell in alert monkey V1 (from [18]). The cell’s
preferred direction is from the part of the RF represented at the bottom towards the top. Flash
duration = 56 ms; inter-stimulus delay = 100 ms; 75 stimulus presentations. (Top, Right) PSTHs
obtained’ from a model neuron after stimulating the chain of neurons at 20 positions to the left
and right side of the given neuron. The lower PSTHs represent stimulations on the preferred
side while upper PSTHs represent stimulations on the null side. (Bottom pane1) Interpretation
of the space-time plots in the model. Bars flashed on the left (preferred) side of the recorded
cell (shaded) cause progressively greater excitation as the stimulation site approaches the
recorded cell’s location. Bars flashed to the right of the cell cause inhibition due to the
predominantly inhibitory connections that develop on the right (null) side during learning.
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Fig 7.
Two-Bar Interactions. (a) Model predictions for sequential presentation of two optimally
oriented bars. Dark arrowheads represent inhibitory connections. Facilitation is predicted when
spatial position of bar 1 is greater than that of bar 2 (relative motion in the preferred direction);
a reduction in response is expected when position of bar 2 is greater than that of bar 1 due to
recruitment of inhibition. (b) Sequential two-bar interaction maps for a direction selective
complex cell in awake monkey V1. The maps show the percent difference in response after
subtracting the average responses to the individual bars from the cell’s two bar response. The
four plots represent the cell’s response to the two bar sequence at delays of 25 ms, 50 ms, 75
ms, and 100 ms respectively after the onset of bar 2. The inter-stimulusinterval (i.s.i.) between
bar 1 and bar 2 was 56 ms. (c) Two-bar interaction maps for the model network. Note the
slightly different scale bar for model data as compared to the experimental data. Both model
and experimental data show qualitatively similar sequential interactions consistent with the
expectations in (a), namely, facilitation (red) for spatial points above the diagonal (bar 1
position > bar 2 position) and a reduction in response (blue) for points close to and below the
diagonal.
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