Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):o2757. doi: 10.1107/S1600536809041506

2,2′-o-Phenyl­enediacetonitrile

Yang Li a, Guoxiong Hua a, Alexandra M Z Slawin a, J Derek Woollins a,*
PMCID: PMC2971004  PMID: 21578351

Abstract

In the title compound, NCCH2C6H4CH2CN, the bond lengths and angles are within normal ranges. The benzene ring makes dihedral angles of 4.94 (8) and 77.04 (8)° with the C—C—C—N mean planes. Weak non-conventional C—H⋯N hydrogen bonds are effective in the stabilization of the crystal structure. The weak C—H⋯N contacts form anti­parallel chains running in the a + c direction, and ring systems with two N-atom acceptors and four H-atom donors.

Related literature

For reactions of Woollins’ Reagent see: Gray et al. (2005); Hua et al. (2006, 2009); Hua & Woollins (2009). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o2757-scheme1.jpg

Experimental

Crystal data

  • C10H8N2

  • M r = 156.18

  • Monoclinic, Inline graphic

  • a = 8.3882 (18) Å

  • b = 8.1605 (15) Å

  • c = 11.993 (2) Å

  • β = 101.890 (6)°

  • V = 803.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 93 K

  • 0.30 × 0.25 × 0.15 mm

Data collection

  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2004) T min = 0.977, T max = 0.988

  • 5271 measured reflections

  • 1660 independent reflections

  • 1330 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.133

  • S = 1.09

  • 1660 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041506/si2203sup1.cif

e-65-o2757-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041506/si2203Isup2.hkl

e-65-o2757-Isup2.hkl (80.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N1i 0.99 2.57 3.5605 (18) 176
C9—H9B⋯N1ii 0.99 2.56 3.5210 (17) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPRSC, UK) for financial support.

supplementary crystallographic information

Comment

Recently, we have continued our studies exploring the reactivity of Woollins reagent towards different organic substituents (Gray et al. 2005, Hua et al. 2006 and 2009; Hua & Woollins 2009). Thereby 2,2'-(1,2-phenylene)diacetonitrile represents one of the starting materials. Single crystals of 2,5-dihydroxybenzaldehyde for X-ray crystallographic analysis were obtained by recrystallization from dichloromethane-hexane solution.

The bond lengths (Allen et al., 1987) and angles are within normal ranges.The benzene ring makes the dihedral angles of 4.94 (8) and 77.04 (8)° with the mean planes of C1—C7—C8—N1 and C2—C9—C10—N2 respectively. The antiparallel chains running in a+cdirection are generated through the weak C—H···N contacts, glide plane and inversinon symmetry operations[see Fig. 2 and Table 1]. Inversion symmetry forms also C—H···N ring systems consisting of two N acceptors and four H atom donors,where the centroid-centroid distance between the inversion-related benzene ring planes is 3.6809 (10) Å, the perpendicular plane to plane distance is 3.364 Å, and the slippage between the planes is 1.495 Å.

Experimental

Commercially available 2,2'-(1,2-phenylene)diacetonitrile was recrystallized from dichloromethane-hexane.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were treated as riding on their parent C atoms with Uiso(H)= 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View along the b direction of the crystal packing of the title compound with non-conventional hydrogen bonding shown as dashed lines.

Crystal data

C10H8N2 F(000) = 328
Mr = 156.18 Dx = 1.291 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.3882 (18) Å Cell parameters from 2633 reflections
b = 8.1605 (15) Å θ = 2.7–28.3°
c = 11.993 (2) Å µ = 0.08 mm1
β = 101.890 (6)° T = 93 K
V = 803.4 (3) Å3 Block, colorless
Z = 4 0.30 × 0.25 × 0.15 mm

Data collection

Rigaku Mercury CCD diffractometer 1660 independent reflections
Radiation source: rotating anode 1330 reflections with I > 2σ(I)
confocal Rint = 0.031
Detector resolution: 0.83 pixels mm-1 θmax = 28.7°, θmin = 2.7°
ω scans h = −11→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2004) k = −9→10
Tmin = 0.977, Tmax = 0.988 l = −13→15
5271 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0698P)2 + 0.0077P] where P = (Fo2 + 2Fc2)/3
1660 reflections (Δ/σ)max = 0.001
109 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.77845 (13) 0.05887 (16) 0.95174 (10) 0.0215 (3)
C2 0.72184 (13) 0.13136 (16) 1.04228 (10) 0.0218 (3)
C7 0.83384 (14) 0.16768 (16) 0.86390 (10) 0.0257 (3)
H7A 0.7404 0.2350 0.8253 0.031*
H7B 0.9191 0.2433 0.9038 0.031*
C3 0.66532 (15) 0.03264 (16) 1.12009 (11) 0.0250 (3)
H3 0.6273 0.0817 1.1816 0.030*
C8 0.89813 (14) 0.07728 (16) 0.77779 (10) 0.0252 (3)
N1 0.94789 (13) 0.00673 (14) 0.70957 (10) 0.0313 (3)
C10 0.88145 (15) 0.38338 (15) 1.10361 (10) 0.0248 (4)
C9 0.71906 (14) 0.31597 (16) 1.05579 (11) 0.0249 (3)
H9A 0.6768 0.3666 0.9805 0.030*
H9B 0.6438 0.3448 1.1064 0.030*
C5 0.71958 (14) −0.20835 (16) 1.02028 (11) 0.0278 (4)
H5 0.7192 −0.3242 1.0126 0.033*
C6 0.77646 (14) −0.11076 (16) 0.94203 (11) 0.0248 (4)
H6 0.8146 −0.1607 0.8809 0.030*
N2 1.00792 (13) 0.43446 (14) 1.14226 (9) 0.0318 (3)
C4 0.66348 (14) −0.13701 (17) 1.10929 (11) 0.0271 (3)
H4 0.6239 −0.2034 1.1628 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0169 (6) 0.0226 (7) 0.0238 (7) 0.0002 (4) 0.0009 (5) 0.0007 (5)
C2 0.0176 (6) 0.0247 (7) 0.0221 (7) 0.0023 (5) 0.0013 (5) −0.0002 (5)
C7 0.0267 (7) 0.0232 (7) 0.0274 (7) 0.0013 (5) 0.0062 (5) 0.0001 (6)
C3 0.0207 (7) 0.0311 (8) 0.0220 (7) −0.0002 (5) 0.0019 (5) −0.0002 (6)
C8 0.0217 (7) 0.0285 (7) 0.0252 (7) −0.0031 (5) 0.0043 (5) 0.0008 (6)
N1 0.0292 (7) 0.0337 (8) 0.0319 (7) −0.0012 (5) 0.0085 (5) −0.0019 (5)
C10 0.0321 (7) 0.0198 (7) 0.0243 (7) 0.0044 (5) 0.0097 (6) −0.0012 (5)
C9 0.0256 (7) 0.0240 (8) 0.0250 (7) 0.0021 (5) 0.0049 (5) −0.0018 (6)
C5 0.0257 (7) 0.0210 (7) 0.0342 (8) −0.0006 (5) 0.0007 (6) 0.0018 (6)
C6 0.0241 (7) 0.0235 (8) 0.0263 (7) 0.0027 (5) 0.0040 (5) −0.0023 (6)
N2 0.0325 (7) 0.0272 (7) 0.0359 (7) −0.0019 (5) 0.0071 (5) −0.0044 (5)
C4 0.0234 (7) 0.0314 (8) 0.0253 (7) −0.0034 (5) 0.0022 (5) 0.0054 (6)

Geometric parameters (Å, °)

C1—C6 1.3890 (19) C8—N1 1.1471 (15)
C1—C2 1.4025 (16) C10—N2 1.1452 (15)
C1—C7 1.5218 (18) C10—C9 1.4714 (17)
C2—C3 1.3882 (18) C9—H9A 0.9900
C2—C9 1.5159 (18) C9—H9B 0.9900
C7—C8 1.4599 (17) C5—C4 1.3809 (18)
C7—H7A 0.9900 C5—C6 1.3882 (17)
C7—H7B 0.9900 C5—H5 0.9500
C3—C4 1.390 (2) C6—H6 0.9500
C3—H3 0.9500 C4—H4 0.9500
C6—C1—C2 119.02 (11) N2—C10—C9 178.97 (14)
C6—C1—C7 121.58 (11) C10—C9—C2 112.32 (10)
C2—C1—C7 119.36 (12) C10—C9—H9A 109.1
C3—C2—C1 119.52 (13) C2—C9—H9A 109.1
C3—C2—C9 119.34 (11) C10—C9—H9B 109.1
C1—C2—C9 121.14 (11) C2—C9—H9B 109.1
C8—C7—C1 113.88 (11) H9A—C9—H9B 107.9
C8—C7—H7A 108.8 C4—C5—C6 120.00 (12)
C1—C7—H7A 108.8 C4—C5—H5 120.0
C8—C7—H7B 108.8 C6—C5—H5 120.0
C1—C7—H7B 108.8 C1—C6—C5 121.00 (11)
H7A—C7—H7B 107.7 C1—C6—H6 119.5
C2—C3—C4 120.94 (12) C5—C6—H6 119.5
C2—C3—H3 119.5 C5—C4—C3 119.53 (12)
C4—C3—H3 119.5 C5—C4—H4 120.2
N1—C8—C7 179.54 (14) C3—C4—H4 120.2
C6—C1—C2—C3 0.04 (16) C3—C2—C9—C10 103.33 (13)
C7—C1—C2—C3 177.52 (11) C1—C2—C9—C10 −77.54 (13)
C6—C1—C2—C9 −179.09 (11) C2—C1—C6—C5 0.00 (17)
C7—C1—C2—C9 −1.61 (15) C7—C1—C6—C5 −177.43 (10)
C6—C1—C7—C8 −5.75 (16) C4—C5—C6—C1 0.15 (18)
C2—C1—C7—C8 176.84 (10) C6—C5—C4—C3 −0.34 (18)
C1—C2—C3—C4 −0.23 (17) C2—C3—C4—C5 0.38 (18)
C9—C2—C3—C4 178.91 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9A···N1i 0.99 2.57 3.5605 (18) 176
C9—H9B···N1ii 0.99 2.56 3.5210 (17) 165

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2203).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Gray, I. P., Bhattachcharyya, P., Slawin, A. M. Z. & Woollins, J. D. (2005). Chem. Eur. J 11, 6221–6227. [DOI] [PubMed]
  3. Hua, G., Li, Y., Fuller, A., Slawin, A. M. Z. & Woollins, J. D. (2009). Eur. J. Org. Chem pp. 1612–1618.
  4. Hua, G., Li, Y., Slawin, A. M. Z. & Woollins, J. D. (2006). Org. Lett 8, 5251–5254. [DOI] [PubMed]
  5. Hua, G. & Woollins, J. D. (2009). Angew. Chem., Int. Ed 48, 1368–1377. [DOI] [PubMed]
  6. Rigaku (2004). CrystalClear Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041506/si2203sup1.cif

e-65-o2757-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041506/si2203Isup2.hkl

e-65-o2757-Isup2.hkl (80.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES