Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 28;65(Pt 11):o2856–o2857. doi: 10.1107/S1600536809043384

(E)-3-(Biphenyl-4-yl)-1-(3-bromo­phen­yl)prop-2-en-1-one

Grzegorz Dutkiewicz a, C S Chidan Kumar b, H S Yathirajan b, B Narayana c, Maciej Kubicki a,*
PMCID: PMC2971314  PMID: 21578444

Abstract

In the title compound, C21H15BrO, there are two planar rings connected through a conjugated double bond. As it crystallizes in a non-centrosymmetric space group it can be regarded as a good candidate for non-linear optical applications. The mol­ecule adopts an E configuration and the C—C=C—C torsion angle is 177.1 (4)°. The overall conformation of the compound may be described by the values of dihedral angles between the approximately planar parts. The terminal rings are twisted by an angle of 51.52 (9)°, while the biphenyl part is almost planar, the dihedral angle between the planes of the rings being 4.44 (17)°. The unit cell has one long dimension, above 35 Å, characteristic also of a majority of related compounds. The mol­ecules pack head-to-tail along this direction. C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For applications of chalcones, see: Cho et al. (1996); Dinkova-Kostova et al., (1998); Fichou et al. (1988); Liu et al. (2003); Nielson et al. (1998); Rajas et al. (2002); Sarojini et al. (2006). For related structures, see: Fischer et al. (2007a ,b ,c ); Moorthi et al. (2007); Sarojini et al. (2007).graphic file with name e-65-o2856-scheme1.jpg

Experimental

Crystal data

  • C21H15BrO

  • M r = 363.24

  • Orthorhombic, Inline graphic

  • a = 6.092 (1) Å

  • b = 7.295 (1) Å

  • c = 36.619 (2) Å

  • V = 1627.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 295 K

  • 0.4 × 0.2 × 0.2 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2006) T min = 0.632, T max = 1.000

  • 5236 measured reflections

  • 2766 independent reflections

  • 2209 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.085

  • S = 1.05

  • 2766 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983), 1133 Friedel pairs

  • Flack parameter: 0.059 (11)

Data collection: CrysAlis Pro (Oxford Diffraction, 2006); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043384/nk2009sup1.cif

e-65-o2856-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043384/nk2009Isup2.hkl

e-65-o2856-Isup2.hkl (133KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.85 3.583 (5) 137
C6—H6⋯Cg1ii 0.93 2.78 3.516 (5) 137
C9—H9⋯Cg2i 0.93 2.87 3.544 (5) 131
C12—H12⋯Cg2ii 0.93 2.97 3.655 (5) 131
C21—H21⋯Cg3iii 0.93 2.83 3.505 (5) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7–C12 and C17–C22 rings, respectively.

Acknowledgments

CSC thanks the University of Mysore for research facilities.

supplementary crystallographic information

Comment

For such a structurally simple group of compounds, chalcones have displayed an impressive array of biological activities, among which antimalarial (Liu et al., 2003), antiprotozoal (Nielson et al., 1998), nitric oxide inhibition (Rajas et al., 2002) and anticancer (Dinkova-Kostova et al., 1998) activities have been cited in the literature. Also, among organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are notable materials for their excellent blue-light transmittance and good crystallizability. They provide the necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (e.g., Sarojini et al., 2006). Substitution on either of the benzene rings greatly influences the non-centrosymmetric crystal packing. It is speculated that, in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influenced, not only by the electronic effect, but also by the steric effect of the substituent (Cho et al., 1996). Prompted by this, and in a continuation of our quest to synthesize new materials which can find use in the photonics industry, we have synthesized new chalcones and studied their SHG (second harmonic generation) efficiency.

(2E)-3-(biphenyl-4-yl)-1-(3-bromophenyl)prop-2-en-1-one (I) crystallizes in the non-centrosymmetric space group Pca21, which makes NLO activity possible. The overall conformation of the molecule can be described by the dihedral angles between the planar fragments: two rings of biphenyl system (A and B, cf. Fig. 1), the enone fragment (C) and the (bromo)phenyl ring (D). All these fragments are in a good approximation planar (maximum deviation from the least-squares plane is 0.018 (4)Å for the enone fragment). The biphenyl rings are almost coplanar, the dihedral angle between them is 4.44 (17)°; the enone fragment is significantly inclined with respect to both neighbouring rings, B/C angle is 30.74 (11)° and C/D - 16.34 (12)°.

The conformation for the ketone system is s–cis, as evidenced by the torsion angle O16—C15— C14—C13 of -21.7 (6)°. In general, the conformation of the molecule (I) is similar to the related compounds (e.g., Fischer et al., 2007a, b, c, Moorthi et al., 2007).

The unit cell of (I) has a long c axis of 36.619 (2) Å, and the molecules pack head-to-tail along this direction (Fig. 2). Such a long unit-cell parameter is observed in a number of similar compounds, even though they crystallize in different space groups and even in different crystal classes. For instance, 4-bromo (Fischer et al., 2007b), 4-chloro (Fischer et al., 2007a) and 4-methoxyphenyl (Fischer et al., 2007c) analogues crystallize all in the Cc space groups with the long parameter (ca. 36 Å) along c-direction, 4-fluoro derivative (Sarojini et al., 2007) - in P21 space group (Z' = 2) with the long b direction etc. It might be also noted, that other unit-cell parameters in all these structures are also similar to those observed in (I), and the comparison of the packing modes shows a significant degree of isostructurality. This suggests that the same interactions are responsible for the crystal packing in these structures: these can be some relatively short and linear C—H···π contacts, and van der Waals interactions.

Experimental

5 ml 40% KOH solution was added to a thoroughly stirred solution of 3-bromoacetophenone (1.0 g, 5 m mol) and 4-biphenylcarboxaldehyde (1.0 g, 5.4 m mol) in 15 ml of methanol. The mixture was stirred overnight and filtered. The product formed was crystallized in methanol. X-ray quality crystals were grown from slow evaporation of ethyl acetate solution (m.p.: 378 – 380 K).

Refinement

Hydrogen atoms were placed in idealized positions, and refined as riding. Their isotropic thermal parameters were set at 1.2 times Ueq's of appropriate carrier atoms.

Figures

Fig. 1.

Fig. 1.

Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.

Fig. 2.

Fig. 2.

The crystal packing as seen along [100] direction.

Crystal data

C21H15BrO F(000) = 736
Mr = 363.24 Dx = 1.483 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 2900 reflections
a = 6.092 (1) Å θ = 2.2–26.8°
b = 7.295 (1) Å µ = 2.53 mm1
c = 36.619 (2) Å T = 295 K
V = 1627.4 (4) Å3 Prism, colourless
Z = 4 0.4 × 0.2 × 0.2 mm

Data collection

Oxford Diffraction Xcalibur Sapphire2 (large Be window) diffractometer 2766 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2209 reflections with I > 2σ(I)
graphite Rint = 0.022
Detector resolution: 8.1929 pixels mm-1 θmax = 26.9°, θmin = 2.2°
ω scans h = −5→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) k = −5→9
Tmin = 0.632, Tmax = 1.000 l = −45→41
5236 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2766 reflections Δρmax = 0.25 e Å3
208 parameters Δρmin = −0.45 e Å3
1 restraint Absolute structure: Flack (1983), 1133 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.059 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6509 (7) 0.7425 (7) 0.79823 (11) 0.0516 (11)
H1 0.5927 0.7379 0.7748 0.062*
C2 0.8449 (7) 0.8289 (5) 0.80447 (11) 0.0532 (10)
H2 0.9194 0.8847 0.7853 0.064*
C3 0.9320 (7) 0.8337 (5) 0.83967 (9) 0.0430 (9)
H3 1.0645 0.8938 0.8437 0.052*
C4 0.8253 (6) 0.7506 (5) 0.86911 (10) 0.0333 (7)
C5 0.6238 (6) 0.6661 (4) 0.86149 (11) 0.0407 (9)
H5 0.5454 0.6120 0.8804 0.049*
C6 0.5403 (7) 0.6612 (5) 0.82712 (12) 0.0504 (10)
H6 0.4072 0.6026 0.8229 0.061*
C7 0.9218 (6) 0.7517 (5) 0.90615 (9) 0.0302 (7)
C8 1.1289 (5) 0.8263 (5) 0.91272 (10) 0.0376 (8)
H8 1.2081 0.8759 0.8934 0.045*
C9 1.2194 (6) 0.8281 (5) 0.94747 (11) 0.0390 (8)
H9 1.3586 0.8776 0.9508 0.047*
C10 1.1075 (6) 0.7580 (5) 0.97729 (10) 0.0364 (8)
C11 0.9024 (6) 0.6836 (5) 0.97075 (10) 0.0424 (9)
H11 0.8234 0.6346 0.9902 0.051*
C12 0.8120 (6) 0.6801 (5) 0.93638 (11) 0.0398 (8)
H12 0.6738 0.6284 0.9332 0.048*
C13 1.2154 (6) 0.7575 (6) 1.01312 (11) 0.0449 (9)
H13 1.3613 0.7952 1.0136 0.054*
C14 1.1287 (7) 0.7096 (6) 1.04483 (11) 0.0494 (10)
H14 0.9815 0.6761 1.0461 0.059*
C15 1.2648 (7) 0.7089 (5) 1.07855 (11) 0.0476 (9)
O16 1.4619 (5) 0.6988 (4) 1.07694 (8) 0.0696 (9)
C17 1.1481 (6) 0.7302 (5) 1.11410 (10) 0.0412 (8)
C18 1.2662 (6) 0.6895 (4) 1.14615 (10) 0.0380 (8)
H18 1.4069 0.6405 1.1447 0.046*
C19 1.1730 (6) 0.7225 (5) 1.17930 (11) 0.0435 (8)
C20 0.9649 (8) 0.7894 (5) 1.18260 (12) 0.0515 (10)
H20 0.9028 0.8092 1.2055 0.062*
C21 0.8486 (6) 0.8273 (5) 1.15093 (14) 0.0487 (11)
H21 0.7074 0.8751 1.1526 0.058*
C22 0.9371 (7) 0.7956 (5) 1.11731 (11) 0.0477 (9)
H22 0.8545 0.8183 1.0964 0.057*
Br23 1.33920 (7) 0.67882 (6) 1.222156 (16) 0.06635 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.071 (3) 0.044 (2) 0.040 (2) 0.008 (2) −0.014 (2) −0.0040 (19)
C2 0.071 (3) 0.054 (2) 0.035 (2) −0.006 (2) 0.0032 (17) 0.0005 (16)
C3 0.042 (2) 0.054 (2) 0.0327 (18) −0.0073 (18) 0.0040 (14) −0.0016 (15)
C4 0.038 (2) 0.0254 (16) 0.0363 (17) 0.0042 (15) 0.0029 (14) −0.0008 (13)
C5 0.044 (2) 0.0343 (19) 0.044 (2) −0.0048 (15) −0.0018 (15) 0.0043 (15)
C6 0.057 (3) 0.045 (2) 0.049 (2) −0.0094 (18) −0.0123 (19) 0.0004 (18)
C7 0.0334 (19) 0.0240 (15) 0.0332 (16) 0.0007 (14) 0.0039 (13) 0.0004 (12)
C8 0.036 (2) 0.040 (2) 0.0362 (18) −0.0046 (15) 0.0024 (13) 0.0039 (14)
C9 0.0300 (19) 0.041 (2) 0.046 (2) −0.0043 (15) −0.0044 (15) −0.0022 (15)
C10 0.037 (2) 0.0369 (18) 0.0354 (18) −0.0008 (15) −0.0013 (13) −0.0026 (15)
C11 0.043 (2) 0.048 (2) 0.036 (2) −0.0089 (17) 0.0034 (15) 0.0064 (16)
C12 0.031 (2) 0.048 (2) 0.0408 (18) −0.0061 (17) −0.0008 (13) −0.0014 (15)
C13 0.050 (2) 0.042 (2) 0.043 (2) 0.0038 (18) −0.0044 (18) −0.0012 (17)
C14 0.043 (2) 0.066 (3) 0.038 (2) −0.0047 (19) −0.0095 (16) −0.0006 (18)
C15 0.046 (2) 0.056 (2) 0.040 (2) −0.0019 (19) −0.0052 (17) −0.0007 (17)
O16 0.0414 (18) 0.118 (3) 0.0490 (17) 0.0122 (17) −0.0012 (13) −0.0013 (16)
C17 0.037 (2) 0.046 (2) 0.0412 (19) −0.0037 (17) −0.0081 (14) −0.0013 (16)
C18 0.0331 (19) 0.0402 (19) 0.0406 (19) −0.0016 (15) −0.0073 (14) −0.0010 (15)
C19 0.041 (2) 0.048 (2) 0.042 (2) −0.0057 (18) −0.0078 (15) −0.0001 (16)
C20 0.051 (3) 0.058 (2) 0.045 (2) −0.001 (2) 0.0027 (17) −0.0004 (18)
C21 0.035 (2) 0.051 (2) 0.060 (3) −0.0022 (18) −0.0076 (17) 0.000 (2)
C22 0.044 (2) 0.047 (2) 0.052 (2) −0.0032 (18) −0.0090 (18) 0.0020 (16)
Br23 0.0653 (3) 0.0941 (3) 0.03960 (19) 0.0043 (2) −0.0142 (2) 0.0021 (3)

Geometric parameters (Å, °)

C1—C2 1.358 (6) C11—C12 1.374 (5)
C1—C6 1.387 (6) C11—H11 0.9300
C1—H1 0.9300 C12—H12 0.9300
C2—C3 1.394 (5) C13—C14 1.323 (6)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.397 (5) C14—C15 1.487 (5)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.401 (5) C15—O16 1.204 (5)
C4—C7 1.478 (5) C15—C17 1.492 (6)
C5—C6 1.358 (5) C17—C22 1.376 (6)
C5—H5 0.9300 C17—C18 1.408 (5)
C6—H6 0.9300 C18—C19 1.361 (5)
C7—C12 1.395 (5) C18—H18 0.9300
C7—C8 1.395 (5) C19—C20 1.364 (6)
C8—C9 1.387 (5) C19—Br23 1.894 (4)
C8—H8 0.9300 C20—C21 1.387 (6)
C9—C10 1.385 (5) C20—H20 0.9300
C9—H9 0.9300 C21—C22 1.364 (6)
C10—C11 1.383 (5) C21—H21 0.9300
C10—C13 1.468 (5) C22—H22 0.9300
C2—C1—C6 119.5 (4) C10—C11—H11 119.1
C2—C1—H1 120.3 C11—C12—C7 121.9 (3)
C6—C1—H1 120.2 C11—C12—H12 119.1
C1—C2—C3 119.9 (4) C7—C12—H12 119.1
C1—C2—H2 120.0 C14—C13—C10 127.3 (4)
C3—C2—H2 120.1 C14—C13—H13 116.3
C2—C3—C4 121.7 (4) C10—C13—H13 116.3
C2—C3—H3 119.2 C13—C14—C15 120.4 (4)
C4—C3—H3 119.2 C13—C14—H14 119.8
C3—C4—C5 116.4 (3) C15—C14—H14 119.8
C3—C4—C7 121.4 (3) O16—C15—C14 121.0 (4)
C5—C4—C7 122.2 (3) O16—C15—C17 121.6 (3)
C6—C5—C4 121.6 (4) C14—C15—C17 117.3 (4)
C6—C5—H5 119.2 C22—C17—C18 118.6 (4)
C4—C5—H5 119.2 C22—C17—C15 123.8 (3)
C5—C6—C1 120.9 (4) C18—C17—C15 117.5 (3)
C5—C6—H6 119.5 C19—C18—C17 119.5 (4)
C1—C6—H6 119.5 C19—C18—H18 120.2
C12—C7—C8 116.3 (3) C17—C18—H18 120.2
C12—C7—C4 122.4 (3) C18—C19—C20 122.0 (4)
C8—C7—C4 121.3 (3) C18—C19—Br23 119.1 (3)
C9—C8—C7 121.4 (3) C20—C19—Br23 118.9 (3)
C9—C8—H8 119.3 C19—C20—C21 118.2 (4)
C7—C8—H8 119.3 C19—C20—H20 120.9
C10—C9—C8 121.6 (3) C21—C20—H20 120.9
C10—C9—H9 119.2 C22—C21—C20 121.2 (4)
C8—C9—H9 119.2 C22—C21—H21 119.4
C11—C10—C9 116.9 (3) C20—C21—H21 119.4
C11—C10—C13 124.0 (3) C21—C22—C17 120.4 (4)
C9—C10—C13 119.0 (3) C21—C22—H22 119.8
C12—C11—C10 121.9 (3) C17—C22—H22 119.8
C12—C11—H11 119.1
C6—C1—C2—C3 0.6 (6) C4—C7—C12—C11 −179.3 (3)
C1—C2—C3—C4 0.3 (6) C11—C10—C13—C14 −9.0 (7)
C2—C3—C4—C5 −1.4 (5) C9—C10—C13—C14 174.4 (4)
C2—C3—C4—C7 178.2 (4) C10—C13—C14—C15 177.1 (4)
C3—C4—C5—C6 1.7 (5) C13—C14—C15—O16 −21.7 (6)
C7—C4—C5—C6 −178.0 (3) C13—C14—C15—C17 155.4 (4)
C4—C5—C6—C1 −0.9 (6) O16—C15—C17—C22 160.0 (4)
C2—C1—C6—C5 −0.3 (6) C14—C15—C17—C22 −17.1 (5)
C3—C4—C7—C12 175.8 (3) O16—C15—C17—C18 −16.7 (6)
C5—C4—C7—C12 −4.6 (5) C14—C15—C17—C18 166.3 (3)
C3—C4—C7—C8 −3.8 (5) C22—C17—C18—C19 −2.6 (5)
C5—C4—C7—C8 175.8 (3) C15—C17—C18—C19 174.2 (3)
C12—C7—C8—C9 0.1 (5) C17—C18—C19—C20 1.9 (6)
C4—C7—C8—C9 179.7 (3) C17—C18—C19—Br23 −176.8 (3)
C7—C8—C9—C10 −0.7 (5) C18—C19—C20—C21 −1.1 (6)
C8—C9—C10—C11 0.9 (5) Br23—C19—C20—C21 177.6 (3)
C8—C9—C10—C13 177.7 (4) C19—C20—C21—C22 1.2 (6)
C9—C10—C11—C12 −0.5 (5) C20—C21—C22—C17 −2.0 (6)
C13—C10—C11—C12 −177.1 (4) C18—C17—C22—C21 2.7 (6)
C10—C11—C12—C7 −0.2 (6) C15—C17—C22—C21 −173.9 (3)
C8—C7—C12—C11 0.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···Cg1i 0.93 2.85 3.583 (5) 137
C6—H6···Cg1ii 0.93 2.78 3.516 (5) 137
C9—H9···Cg2i 0.93 2.87 3.544 (5) 131
C12—H12···Cg2ii 0.93 2.97 3.655 (5) 131
C21—H21···Cg3iii 0.93 2.83 3.505 (5) 131

Symmetry codes: (i) x+1/2, −y+2, z; (ii) x−1/2, −y+1, z; (iii) x−1/2, −y+2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2009).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Cho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996). Bull. Korean Chem. Soc.17, 693–695.
  3. Dinkova-Kostova, A. T., Abey-Gunawardana, C. & Talalay, P. (1998). J. Med. Chem.41, 5287–5296. [DOI] [PubMed]
  4. Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn. J. Appl. Phys 27, 429–430.
  5. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1349–o1350.
  6. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1351–o1352.
  7. Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1353–o1354.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M. I. (2003). Bioorg. Med. Chem.11, 2729–2738. [DOI] [PubMed]
  10. Moorthi, S. S., Chinnakali, K., Nanjundan, S., Radhakrishnanan, S. & Fun, H.-K. (2007). Acta Cryst. E63, o692–o694.
  11. Nielson, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem 41, 4819–4832. [DOI] [PubMed]
  12. Oxford Diffraction (2006). CrysAlis Pro Oxford Diffraction Ltd, Abingdon, England.
  13. Rajas, J., Paya, M., Domingues, J. N. & Ferrandiz, M. L. (2002). Bioorg. Med. Chem. Lett.12, 1951–1954. [DOI] [PubMed]
  14. Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  15. Sarojini, B. K., Yathirajan, H. S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o2945.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043384/nk2009sup1.cif

e-65-o2856-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043384/nk2009Isup2.hkl

e-65-o2856-Isup2.hkl (133KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES